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Abstract: In the era of Big Data and IoT, successful systems have to be designed to discover, store,
process, learn, analyse, and predict from a massive amount of data—in short, they have to behave
intelligently. Despite the success of non-symbolic techniques such as deep learning, symbolic
approaches to machine intelligence still have a role to play in order to achieve key properties such
as observability, explainability, and accountability. In this paper we focus on logic programming
(LP), and advocate its role as a provider of symbolic reasoning capabilities in IoT scenarios, suitably
complementing non-symbolic ones. In particular, we show how its re-interpretation in terms of
LPaaS (Logic Programming as a Service) can work as an enabling technology for distributed situated
intelligence. A possible example of hybrid reasoning—where symbolic and non-symbolic techniques
fruitfully combine to produce intelligent behaviour—is presented, demonstrating how LPaaS could
work in a smart energy grid scenario.

Keywords: Logic Programming as a Service; IoT; symbolic reasoning

1. Introduction

According to reference [1], the Internet of Things (IoT) can be defined as

“made out of networked sensors and smart objects whose purpose is to measure/control/operate on an
environment in such a way to make it intelligent, usable, programmable, and capable of providing
useful services to humans.”

This definition calls for ubiquitous intelligence where everyday physical objects should be able
to join an IoT network where software components are required to behave intelligently—that is,
for instance, understanding their own goals as well as the context where they operate. Devices are
thus required to “understand each other, learn and understand situations, and understand us” [2].
This is the path to realise the Internet of Intelligent Things (IoIT) vision [3,4].

But what does it mean for devices to be intelligent? Historically, two families of techniques have
been developed to answer the question, mostly independently since they are traditionally viewed as
being antithetic, namely, symbolic and non-symbolic approaches to artificial intelligence (AI).

Symbolic techniques are desirable for representing domains with highly-structured knowledge.
They feature a sound theoretical foundation, many years of practice, and human interpretability. Within
the realm of AI, for instance, the explainability of symbolic knowledge is viewed as one of the defining
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factors that distinguish logic-based representations from statistical or neural ones [5], hence often said
to produce “white-box” models. As a paramount example, Logic Programming (LP, henceforth) is a
declarative programming technique that leverages the idea of logic inference to structure programs as
logic theories and computations as proofs of theorems. So far, it has had little impact on the IoT, mostly
because of the lack of generally applicable techniques [6]. Also, one of its drawbacks is requiring a
precise understanding of the application domain, so as to encode inference rules as logic clauses.

Non-symbolic techniques mostly emerged from the early failures of symbolic ones, as in the
case of Brooks’ approach to robotics [7,8]. Nonetheless, nowadays the most significant examples of
non-symbolic approaches are represented by predominant machine learning (ML) techniques, such as
deep learning [9], and represent the de-facto standard for emulating intelligence in IoT deployments:
sensor devices collect data, a central hub (usually, in the cloud) analyses information according to a
data processing pipeline, and then commands for actuators are dispatched based on the information
inferred from the data. Advancements in computational power, data storage, and parallelisation,
in combination with methodological advances in applying ML algorithms, are contributing to
the uptake of these approaches witnessed in recent years [9]. However, since they require many
examples to actually learn general models of the application domain [10,11], these techniques tend
to be computationally expensive–especially for resource-constrained scenarios like the IoT–and
suffer from the so-called cold-start problem: at the beginning of a new deployment, there are no
data available for training models—let alone “big data”. Also, many specific ML algorithms, for
instance, those requiring neural networks or deep learning, lack interpretability (“why did my model
make that prediction?”)–accordingly, they are often known as “black-box” models–, which is now
becoming a crucial issue, as witnessed by recent “transparency initiatives” of organisations such as
the Association for Computing Machinery (ACM) and institutions such as the EU [12,13]. Indeed,
the former emphasises the fundamental role that algorithms and data analytics in general play in
modern decision-making, while advocating the need for explainability of such a decision-making and
accountability of institutions and firms relying on it; the latter is a project started by the European
Commission with the explicit aim of gathering scientific evidence about the presence of bias in
algorithms exploited in many application areas, for instance, in filtering access to information online.

Recently, big industry players (such as IBM, Amazon, and Microsoft) started to tie up ML (and
non-symbolic techniques in general) with IoT, opening the way to new intriguing scenarios [11,14].
We believe that the complexity of scenarios nowadays, especially those featuring different problems
at different scales, would greatly benefit from a hybrid approach where symbolic and non-symbolic
approaches co-exist and complement each other. Combining symbolic reasoning with non-symbolic
approaches may help to address the fundamental challenges of reasoning, hierarchical representations,
transfer learning, and robustness in the face of adversarial examples and interpretability [15–17].
These needs are highly interdependent and stem from the push towards trustworthy computing
applied in the context of the IoT paradigm [17]. It is worth remarking that our vision does not
propose to cast out non-symbolic techniques as ML ones; rather, it proposes to synergically exploit
both symbolic and non-symbolic approaches, since they better deal with different requirements.
For instance, reasoning over symbolic knowledge bases allows, among others, consistency checking
(i.e., detecting contradictions between facts or statements), classification (i.e., generating taxonomies),
and other forms of deductive inference (i.e., revealing new, implicit knowledge given a set of facts).

As discussed in Section 5, we envision IoT systems benefit by mitigating some of the issues
experienced by non-symbolic approaches and by enabling novel forms of distributed and local
reasoning, adding all the symbolic techniques advantages to the system. In this way models become
“grey-boxes” in the spirit of reference [2]—that is, they are partially understandable.

The scenario depicted above implies serious challenges from a software engineering perspective,
starting from a careful design of both the ML pipeline and the logic inference engine, separately, and
proceeding with their complementary exploitation. In this paper we focus on the latter—that is, on
how traditional LP can be geared toward this future of hybrid reasoning. This issue does not merely
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concern the features that the LP software component is meant to provide, but also the way in which it
should be developed in order to achieve it, i.e., the interoperability of deployment environments, the
scalability of software delivery, and the efficiency of software development [18].

For the reason above, we discuss Logic Programming as a Service (LPaaS) [19] both as an enabling
technology and in terms of the way it is developed, and advocate its role as a provider of symbolic
reasoning techniques in IoT scenarios, complementing non-symbolic ones. To this end, we move from
the LPaaS re-interpretation of distributed logic programming [20] in the IoT era, which re-casts logic
programming as a microservice that is easily deployable in compliance with the current agile software
development and continuous delivery best practices. The idea of exploiting LP for the IoIT moves
from the fact that LP, by definition, should be the paradigm of choice for endowing software with
some form of intelligence, such as inference of novel data, deliberation of actions, etc.

In particular, we extend our previous work [21] by delving deeper into the benefits of combining
LPaaS with non-symbolic approaches in IoT scenarios by discussing an envisioned case study regarding
energy grid operations. Accordingly, we recall the main software engineering challenges in the IoT
context highlighting the benefits of such a mixed approach (Section 2), and then introduce the LPaaS
vision and architecture (Section 3), and the RESTful design alongside the implementation process
(Section 4), emphasising the development process and the microservice nature of LPaaS. Then, we
present the energy grid use case to illustrate the need for and the expected benefits of LPaaS (Section 5),
and compare LPaaS with other approaches to distribute intelligence in IoT deployments (Section 6).
Finally, conclusions are drawn in Section 8.

2. Intelligence in IoT: Techniques, Challenges, and Opportunities

Making sense of IoT data —that is, gaining value from them —has been a hot topic and challenge
of IoT research since its early days. The quest for collecting and sharing context information from
connected things has been addressed in earlier research [22,23], often by architecting ad-hoc solutions
to address a specific aspect, such as device management, context information collection and sharing,
context-awareness, interoperability, etc. [24]. However, there is currently no single and standardised
solution that covers all such challenges [24]: new models and technologies are required in order to face
the distributed intelligence issues.

A critical issue, in particular, concerns knowledge consistency—including updating business
logic rules or policies automatically and possibly learning from past experiences. This is particularly
true when the IoT platform is cloud-centric, and each device might control thousands of things to be
updated synchronously and consistently.

The main Artificial Intelligence (AI) techniques exploited so far to deal with these issues belong
to two main categories—namely, symbolic and non-symbolic techniques. From a software engineering
(SE) perspective, engineering models and technologies to distribute intelligence in such environments
means properly facing IoT challenges in terms of flexibility, interoperability, and scalability. Accordingly,
in this section, we first discuss the two main AI techniques for intelligence (Section 2.1), highlight the
SE challenges of IoT (Section 2.2), and finally, propose the LPaaS vision as a possible answer to the
above challenges and opportunities (Section 2.3).

2.1. Symbolic vs. Non-Symbolic Techniques: Features & Synergies

Both researchers and industry players have recently started to tie up ML (and non-symbolic
techniques in general) for spreading intelligence and learning capabilities in the IoT [9,11,14].
Non-symbolic techniques are based on statistical methods, in which intelligence is taken as an emergent
property of the system. The intelligent behaviour is commonly formulated as an optimisation problem,
whose solutions lead to behaviour that resembles intelligence. Among their many features, it is worth
emphasising [25,26]:

• The capability to learn patterns or regularities from data, without (or, with very little)
a-priori knowledge;
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• The ability to generalise beyond the training domain of knowledge; and
• The possibility of run-time tuning of models to make more timely and accurate predictions, as well

as to ease deployment.

However, non-symbolic approaches are often computationally expensive and lack some typical
features of symbolic approaches. First, their implicit black-box nature can make them unsuitable to
domains where verifiability is important [27]; moreover, their inability to reason at an abstract level
makes it difficult to implement high-level cognitive functions, such as transfer learning, analogical
reasoning, and hypothesis-based reasoning [15]. This is why several works in the last decade have
focussed on extracting symbolic rules [28] from the knowledge implicit in a black-box model.

Symbolic approaches, on the other hand, represent things within a domain of knowledge through
symbols, combine symbols into symbol expressions, and manipulate the latter, possibly through
inferential processes. Symbolic representations feature two important properties that we intend to
focus on, among the many [28]:

• Observability, explainability and accountability, in the sense of human readability, transparency
of inference rules, and opportunities to provide explanations about the outcomes of the
inference process;

• Malleability, in the sense of the capability to easily update rules and policies at run-time in an
automatic way; and

• Composability, in the sense that more complex representations can be obtained by composing
basic symbols with appropriate rules, while maintaining basic symbols that are recognisable in
complex representations—which is useful for producing new symbols through inference rules.

Moreover, reasoning on such knowledge bases makes it possible to deal with issues like
consistency checking (i.e., detecting contradictions between facts or statements), classification
(i.e., generating taxonomies intended as representation of knowledge with the subdivision of
phenomena into classes [29]), and other forms of deductive inference (i.e., revealing new, implicit
knowledge given a set of facts). However, several issues arise with symbolic approaches, too.
Among these, it is worth mentioning performance, which is often good only in narrow domains
facing specific problems, and the “no types” approach, that makes them distant to mainstream
programming paradigms.

Although symbolic approaches and LP languages represent, in principle, natural candidates
for injecting intelligence within computational systems [30], the adoption of such approaches in
pervasive contexts has been historically hindered by technological obstacles—efficiency and integration
issues—as well as by some cultural resistance towards LP-based approaches outside the academy.
For a survey on practical applications developed over the years and the related benefits, we forward
the reader to references [31–34].

2.2. Software Engineering Challenges

From a SE perspective, no consolidated set of best practices has emerged so far in the IoT
world [1]; indeed, properly engineering such a new generation of scalable, highly-reactive, (often)
resource-constrained software systems is still a challenge, for both symbolic and non-symbolic
approaches. There is a need for rapid, reliable, scalable, and evolvable processes (and guidelines),
specifically tailored to the IoT peculiar features; for instance, interoperability is a major issue in
the realm of so many diverse technologies, especially considering the increasing pace of change in
technology. As the number of devices involved in IoT deployment grows, delivering software updates
and handling scalability in a timely manner becomes crucial, too. Flexibility of deployments is also a
major issue, in order to avoid developers having the overhead of heavily re-configuring an existing
IoT solution for a slightly different application.
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With agile methods bringing significant contributions with respect to these requirements [35],
service-orientation and agile deployment paradigms have recently culminated in a new architectural
style referred to as microservices [36]. Moving from Service-Oriented Architecture (SOA) [37], LPaaS is
specifically designed and developed according to these best practices. A microservice can be seen as a
specialisation of a service-based system, which consists of very fine-grained independent services and
is rooted in the decentralisation of control and management, lightweight communication mechanisms,
and technological heterogeneity (and interoperability). The software development process has moved
on from well-defined requirements, emphasising the need to support fast-changing requirements,
fast-paced release cycles, as well as the scalability of deployments.

A microservice should be a small and coherent unit of functionality (with a bounded context)
so as to gain benefits such as increased application resiliency, efficient scalability, as well as fast and
independent deployment. More generally, with the very notion of service, functionalities should
be offered via a uniform and platform-agnostic interface so as to achieve interoperability among
devices and communication protocols. Each service is thus supposed to be self-contained, composable,
technology-neutral, and loosely coupled as well as to allow for location transparency.

2.3. LPaaS Approach to Micro-Intelligence

The aim of LPaaS is to provide a complementary solution to non-symbolic techniques in order
to achieve distributed intelligence while adhering to the major SE requirements posed by the agile
paradigm and microservices in the IoT context. According to the micro-intelligence vision, LPaaS means
to provide intelligence at the things level, as suggested in [24,38,39], highlighting the need for different
scales of intelligence. The intelligence of things is then provided by gathering information and inference
processes closer to the devices, towards the edges of computing networks, by enabling local symbolic
reasoning (at the scale of “small data”) to co-exist with global non-symbolic reasoning (alongside the
scale of Big Data, usually in the cloud). The micro-level feature aims to highlighting and reminding
such a peculiarity of intelligence; very small chunks of intelligence, spread all over the system, are
capable of enabling the individual intelligence of devices of any sort, promoting interoperation and
smart coordination among diverse entities.

As depicted in Figure 1, LPaaS makes symbolic approaches suitable for the IoT domain
by tackling the SE challenges which traditionally hindered its exploitation. In particular, the
re-interpretation of the LP paradigm under the microservices architecture paves the way towards
designing intelligence according to interoperable, reliable, composable, and scalable functionalities,
while enabling observability and understandability. In the following section, we present the LPaaS
model and architecture as well as the software engineering process adopted to deliver it.

Figure 1. Logic Programming as a Service (LPaaS) contribution with respect to (i) Internet of Things
(IoT) software engineering (SE) challenges and (ii) complementing non-symbolic approaches.
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3. LPaaS: Model and Architecture

LPaaS is based on the idea of providing an inference engine in the form of a service—library
service, middleware service, network service, etc.—leveraging the power of LP resolution [20]. For this
purpose, we re-interpret LP from the service perspective as a means of spreading intelligence in a
pervasive IoT system. LPaaS [19] was, in fact, specifically designed to enable and take advantage
of situatedness—the property of making computations sensitive to the local context—for the target
application context, so that it is possible to reason efficiently for data that are local to situated
components. Not by chance, situatedness is a crucial feature for most IoT applications—although it is
not always explicitly acknowledged, but comes as a consequence of context-awareness. Being based
on the LP model, diverse computational models can be tailored to the local needs, exploiting LP
extensions explicitly aimed at pervasive systems such as labelled variables systems [40,41]. Labelled
variables systems are meant to deal with domain-specific knowledge so that diverse computational
models, tailored to the specific needs of situated components, can fruitfully coexist side by side.
More precisely, by labelling variables and suitably defining a computational model for label elaboration
and propagation, a domain-specific computational model can be added to traditional LP, thus enabling
diverse computational models to interact within a logic-based framework.

The design of LPaaS in terms of situated service moves along three main directions: (i) devising
out a modular architecture—to guarantee a clear separation of concerns and to reduce the overall
system complexity; (ii) defining the standard APIs—to guarantee a standardised network-addressable
entry point and to provide data contracts; and (iii) adopting a continuous delivery pipeline—to represent
the automation needed to provide a continuous release of value to the end user. All of the above
is in the spirit of agile software development and aims to follow microservice best practices and
architectural principles.

3.1. The Situated Nature of LPaaS

The resolution process [42] remains a staple in LPaaS, yet it is re-contextualised according to the
situated nature of the specific LP service. Given the precise spatial, temporal, and general context
within which the service is operating when the resolution process starts, the process follows the usual
rules of resolution. At the same time, this context is exactly what can make resolution come up with
different solutions to the same queries.

Making LP aware of space–time essentially means making the resolution process sensitive
(i) to the passing of time, and (ii) to the topology of space—that is, being aware of the existence
of different points in time/space and of the possibility of moving between them. It is worth
remarking that spatio-temporal awareness is nowadays a strict requirement for the vast majority
of IoT applications, where periodic or scheduled tasks and location-based services are a norm rather
than an exception [22,43]. As an illustrative example, consider the case of a number of LPaaS inference
engines distributed in a smart building. Depending on the sensors available in the surroundings
and on the measures they stream to the closest LPaaS node, answers to queries and proofs to goals
about complex situations may be different, depending on the specific LPaaS service instance involved.
Moreover, the situation perceived as well the proofs to goals may change as time passes, i.e., because
measurements from sensors change due to inner dynamics of the environment they live within.

In classical LP, a goal is basically proven against a logic theory that is considered true,
independently of space and time—that is, regardless of when and where the resolution process
takes place. LPaaS promotes a broader vision—the resolution process becomes sensitive to the time
and space dimension. Hence, a goal is demonstrated against a logic theory that is considered true
within a (possibly open) interval of time and within a region of space. Notice that this helps in dealing
with the issue of guaranteeing global consistency in large-scale, ever-changing scenarios, such as the
IoT; with LPaaS, local consistency within individual knowledge bases distributed over the network
suffices to support local reasoning. Our previous smart building example may help to clarify the above.
Given the existence of many different instances of the LPaaS service, distributed in the area covered by
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the building and possibly available at different times in its lifespan, it makes no sense to talk about,
for example, the global consistency of the logic theory stored in LPaaS—basically because there is no
actual use for it. What is meaningful, on the contrary, is the local consistency and reasoning that is
available and “correct” in a precise region of space and time, i.e., in our exemplary scenario, this refers
to a given room in a given day.

In principle, the resolution process could also span and move over time and space. Intuitively,
moving back in time means to ask the LPaaS service the solution of a given goal at a certain moment
in the past, whereas moving forward in time either means to ask to “predict” the solutions that could
become available in the future, or to wait until the goal become provable. Analogously, moving in
space in either direction means to consider a different region of validity associated to the logic theory,
providing solutions that are situated (hold true) in a given region of space—and only provable therein.
We refer the interested reader to [44] for a deeper discussion of the subject.

3.2. LPaaS Interface

Each LP server node exposes its services concurrently to multiple clients via suitable interfaces.
The inference engine is expected to implement SLD (Selective Linear Definite) resolution [42]. Like in
classical LP, it is configured with a theory of axioms—its knowledge base (KB). Unlike classical LP,
however, it is also configured with a set of goals—the only admissible queries for which a proof can be
asked. The reason for this design choice is that micro-intelligence is supposed to address specific local
needs that correspond to specific possible queries (situated in space and time), not to provide a general
LP inferential engine.

The service is initialised on the server at deployment-time. Once started, it can be accessed
by clients (querying the KB for logic facts or asking for proofs of admissible goals), sources (meant
to represent sensors and actuators willing to update the KB with latest measurements and action
feedbacks), and configurators (privileged agents with the right to dynamically re-configure the service
at run-time, subject to proper access credentials) via the corresponding interfaces. Since sources can
modify the theory by adding new facts, they are designed as privileged clients (access credentials
have to be provided). Specifically, the client interface exposes methods for observation and usage, the
source interface provides methods for adding data (logic facts) to the KB, and the configurator interface
accounts for service configuration, as depicted in Figure 2a. Figure 2b shows an example of use of
the source interface. There, the LPaaS service has been deployed on a smart home conditioner to
control the temperature of a room. The device autonomously decides when to turn itself on/off based
on measurements of two sensors—namely, temperature and presence. Once the service is properly
configured through the configurator interface (not depicted), the two sensors exploit the source interface
to add up-to-date facts to the KB, while the user or other devices can access the service exploiting the
client interface. Details on the interfaces’ APIs are discussed in Section 3.3 below.

Figure 2. The LPaaS actors and their interfaces (a). An example of the use of the source interface (b).
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As far as the network architecture is concerned, the LPaaS model does not put any constraint on
deployment solutions. An LPaaS node (server) can be placed in the cloud, on a IoT device, or in a
dedicated gateway component (as in edge/fog computing). Presently, the available implementation
provides LPaaS as a RESTful web service developed on a stack of Java-based technologies, which
guarantees extreme portability and availability. As a final note, although different LPaaS nodes do not
share information—as by design they represent different knowledge that is contextual to where and
when they live—they can become aware of each other’s existence, so as to, for instance, collectively try
to respond to queries involving regions of space—see Section 3.3.

3.3. LPaaS API

The LPaaS API methods are detailed in Table 1 (configurator interface and source interface), and
Table 2 (client interface)—adopting the standard Prolog notation for input/output where “+” means
that the argument must be instantiated (input argument), “−” that it is an output argument (usually
non-instantiated, unless one wants to check for a specific return value), and “?” that it can be either
instantiated or not [45].

As far as the logic theory is concerned, a static KB is immutable, while a dynamic KB can evolve
during the server’s lifetime, thus implying that clauses have lifetimes too and can be asserted and
retracted as needed—for instance, a clause representing the current temperature in a room. The static
knowledge base reflects the view of LP based on a static representation of knowledge with the standard
LP semantics under the closed-world assumption (CWA) [46]. In IoT scenarios, this possibility is of
great interest when dealing with invariants, such as properties or statements, that must be always
guaranteed to be true, no matter what. In our model, the dynamic knowledge base which takes the
time dimension into account constitutes a more general case than the static one. Accordingly, the static
KB predicates can be seen as a simpler subset of the dynamic KB ones, as discussed below.

Client interaction can be either stateless or stateful. In the former case, each request is
self-contained—and thus, always repeats the goal to be proven—while in the latter case, requests are
tracked on the server side so that once the goal is set, there is no need to repeat its specification in
subsequent requests. It is worth noting that while the service can act simultaneously statefully and
statelessly—as it can manage different kinds of request concurrently—the knowledge base is, by its
nature, either dynamic or static.

Table 1. LPaaS configurator interface (left) and LPaaS source interface (right).

Configurator Interface Source Interface

setConfiguration(+ConfigurationList) addFacts(+Facts)
getConfiguration(-ConfigurationList) getFacts(-Facts, template(?Template), ?Timestamp)

resetConfiguration()
setTheory(+Theory)
getTheory(-Theory)
setGoals(+GoalList)
getGoals(-GoalList)

The LP service offers a set of methods to provide configuration and contextual information about
the service and its KB, and a set of methods to query the service for triggering computations and
reasoning, and to ask for solutions. In particular, the configurator interface makes it possible to set the
service configuration, its KB, and the list of admissible goals. The source interface allows new facts
to be added to the KB, meant to represent sensors and actuators with the latest measurements or
feedback actions. The client interface makes it possible to query the service about its configuration
parameters (stateful/stateless and static/dynamic), the state of the KB, and the admissible goals and
facts. Moreover, the interface allows the service to be asked for one solution, N solutions, or all
solutions available. These operations are slightly different in case of stateless or stateful requests. In the
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first case, the solve operation is conceptually atomic and self-contained and always has Goal as its
parameter, whereas in the latter case such a self-containment is not necessary, since the server keeps
track of the client state, so the goal can be set only once before the first solve request is issued.

Unlike classical LP, LPaaS also provides an extra solve operation for dealing with streams of data
(i.e., stream of solutions), that are often found in IoT contexts. This extra operation is particularly useful
when accounting for source clients. Since they are meant to add data to the LPaaS KB dynamically—and
monotonically—it makes sense to allow clients to get a novel solution to the goal set at each t time step
(parameter every(@Time)), to promptly react to changes in contextual data—such as the temperature
of a room. In addition, a family of solve predicates with a specific within(+Time ) argument (intended
as server-side local time) prevents the server from being indefinitely busy. If the resolution process
does not complete within the given time, the request is cancelled, and a failure response is returned to
the client.

Besides these novelties, mostly regarding efficient interaction between the service and its clients,
time can affect computations, leading to time-dependent computations, and the temporal validity of
logic theories as well, and thus, of all the individual facts and clauses therein whose validity can be
collectively bound to a given time horizon—i.e., being true up to a certain instant in time and no
longer after that. Computation requests may then arbitrarily restrict the temporal scope of the expected
solutions, specifying the temporal bounds of the logical facts and clauses to be considered valid while
proving a goal. This is the way in which LPaaS supports temporal situatedness, that is, the ability to
be aware of time passing by and the fact that, in dynamic scenarios like the IoT, the knowledge base
represents truth at a given point in time.

With respect to space situatedness (Section 3.1), the LPaaS server inherently has a notion of its
own location, since the service container is physically located somewhere. By specifying the “width”
of a region, defined according to some (custom) metric, we can define the service surroundings. The
key point is that LPaaS can explore its surroundings to discover other LPaaS instances, representing
different local knowledge, and forward to them the query looking to expand the solutions that it found
by itself. This concept is captured by the solveNeighborhood/2 primitive that associates the inference
process to a region centred in Pos—if omitted, the server position is considered—and distance is
specified by Distance . Similarly to the time case, the client can also open a stream of solutions across
space. This could be interpreted, for instance, as widening/narrowing the region to be considered
at each cycle of the resolution process. The extra Span argument in the same primitive satisfies this
requirement, specifying how much to widen/narrow the range at each cycle.

Finally, the reset primitive clears the resolution process, effectively restarting resolution with
no need to reconfigure the service (i.e., select the goal); in turn, the close primitive actually ends
communication with the server—so that the goal must be re-set in order to restart querying the server.
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Table 2. LPaaS client interface.

DYNAMIC KNOWLEDGE BASE

Stateless Stateful

getServiceConfiguration(-ConfigList)
getTheory(-Theory, ?Timestamp)

getGoals(-GoalList)
isGoal(+Goal)

setGoal(template(+Template))
setGoal(index(+Index))

solve(+Goal, -Solution, ?Timestamp) solve(-Solution, ?Timestamp)
solveN(+Goal, +NSol, -SList, ?TimeStamp) solveN(+NSol, -SolutionList, ?TimeStamp)

solveAll(+Goal, -SList, ?TimeStamp) solveAll(-SolutionList, ?TimeStamp)
solve(+Goal, -Solution, within(+Time), ?TimeStamp) solve(-Solution, within(+Time), ?TimeStamp)

solveN(+Goal, +NSol, -SList, within(+Time), ?TimeStamp) solveN(+NSol, -SList, within(+Time), ?TimeStamp)
solveAll(+Goal, -SList, within(+Time), ?TimeStamp) solveAll(-SList, within(+Time), ?TimeStamp)
solveAfter(+Goal, +AfterN, -Solution, ?TimeStamp)

solveNAfter(+Goal, +AfterN, +NSol, -SList, ?TimeStamp)
solveAllAfter(+Goal, +AfterN, -SList, ?TimeStamp)

solve(-Solution, every(+Time), ?TimeStamp)
solveN(+N, -SList, every(+Time), ?TimeStamp)
solveAll(-SList, every(+Time), ?TimeStamp)

pause()
resume()

solveNeighborhood(+Goal, -Solution, region(?P, +Space), ?TimeStamp) solveNeighborhood(-Solution, region(?P, +Space), ?TimeStamp)
solveNNeighborhood(+Goal, +NSol, -SList, region(?P, +Space), ?TimeStamp) solveNNeighborhood(+NSol, -SList, region(?P, +Space), ?TimeStamp)

solveAllNeighborhood(+Goal, -SList, region(?P, +Space), ?TimeStamp) solveAllNeighborhood(-SList, region(?P, +Space), ?TimeStamp)
solveNeighborhood(-SList, region(?P, +Space, +Span), ?TimeStamp)
solveNNeighborhood(-SList, region(?P, +Space, +Span), ?TimeStamp)

solveAllNeighborhood(-SList, region(?P, +Space, +Span), ?TimeStamp)
solveNeigh.After(+Goal, +AfterN, -SList, region(?P,+Space,+Span), ?TimeS)

solveNNeigh.After(+Goal, +AfterN, +N, -SList, region(?P,+Space,+Span), ?TimeS)
solveAllNeigh.After(+Goal, +AfterN, -SList, region(?P, +Space, +Span), ?TimeS)

reset()
close()

The table reports only methods operating on a dynamic KB that take an additional Timestamp argument, expressing the required time validity; static KB methods are analogous
without the Timestamp parameter: for a full description of the API, we refer the reader to [47].
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3.4. LPaaS Architecture

As discussed in reference [47], the LPaaS microservice architecture is composed of three logical
units (depicted in Figure 3): the interface layer, the business logic layer, and the data store layer.
The interface layer encapsulates the configurator, client, and source interfaces. The business logic wraps
the Prolog engine with the purpose of managing incoming requests. The data layer is responsible for
managing the knowledge base (KB).

Mapping the logical architecture onto a concrete architecture offers some degrees of freedom.
The choice here is to design the whole LPaaS microservice as a composition of three microservices—one
for each logical unit. In this way, scalability and portability are extended beyond LPaaS inference
service, offering a more fine-grained control on deployment—for instance, enabling the effortless
relocation or replication of the whole LPaaS, of the sole inference engine (service), or of the KB alone.
The choice fits the IoT scenarios well where applications usually have a datastore—for instance, in
the context of Big Data (IoT-Big Data), where data are continuously generated, mainly from sensor
systems. In such scenarios, the above choice makes it easy to scale the KB microservice in/out
individually. Such a modular decomposition also allows for easy and efficient deployment on a
network of distributed devices hosting LPaaS.

Figure 3. The LPaaS microservice.

Interoperability in LPaaS relies on standard representation formats, namely, JSON (JavaScript
Object Notation), and common interaction protocols and best practices, such as the adoption of RESTful
APIs, which are nowadays supported by the vast majority of IoT-enabled devices.

4. RESTful LPaaS: Development Process from Design to Deployment

As a first prototype, we chose to realise LPaaS as a web service in compliance with the
Respresentational State Transfer (REST) architectural style [48], thus re-interpreting the main features
of LPaaS and its API (Tables 1 and 2) in terms of web resources being accessible through a stateless
HTTP-based interface. This allows both clients and LPaaS itself to be implemented with different
technologies and programming languages while remaining mutually interoperable.

Of course, in a RESTful implementation, the statefulness disappears to better comply with
REST principles. However, it is worth emphasising here that this is just one among the possible
implementations of LPaaS; thus, since other design choices could benefit from a stateful approach,
the corresponding generic LP API should not be disregarded. For instance, by adopting the SOA
architectural style, we could genuinely take statefulness into account while retaining the advantages
of leveraging a web-service implementation.
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The following sub-sections discuss the RESTful API for LPaaS, the corresponding implementation,
and its deployment process.

4.1. RESTful API Design

The three interfaces from Section 3.2 are collapsed within a unified RESTful API exposing the
same resources to clients possibly playing different roles—namely client, source, or configurator. The two
latter roles, since they are capable of applying side-effects to the service KB, require authentication.
There are four main REST resource types provided: theories, goals, solutions, and authorisation
tokens—as shown in Figure 4, along with their sub-resources and supported operations.

Figure 4. The LPaaS RESTful API. For further details please refer to the LPaaS Home Page [49].

All resources are accessible by specifying the so-called entry point after the service base
URL, for instance, www.lpaas-example.it/ theories, where clients may exploit the logic service
functionalities by issuing HTTP requests on the corresponding entry point. The response contains the
requested information (if possible), an acknowledgement, or some link for late access to the result.
For instance, users wanting to play some privileged role POST their credential to the/auth entry point.
A comprehensive description of the RESTful entry points and their supported HTTP methods is
provided in Table 3, in terms of mapping the LPaaS interface API given in Tables 1 and 2.

Configurators can create theories by POSTing a well-formed Prolog theory on the /theories entry
point. There are multiple named theories and, for each theory, many versions can be maintained.
According to time situatedness, each version of a theory is valid from the instant it has been POSTed
(service local time) until either a newer version is POSTed, or some modification is made through some
other entry point. The specific version, say the one valid at time t , of a particular theory n can be
read by clients via a GET operation at the /theories/n /history/t entry point. In regard to spatial
situatedness, whenever information—i.e., a theory or fact version—is retrieved via a GET operation,
the response includes a spatial tag defining the position in space where the returned information can
be considered valid.

www.lpaas-example.it/


Big Data Cogn. Comput. 2018, 2, 23 13 of 26

Theory versions make it possible to preserve LP consistency despite the side effects possibly
occuring on dynamic KBs; in this way, clients are guaranteed to re-obtain the same solution if the same
goal(s) is re-asked on the same theory version.

Table 3. The Respresentational State Transfer (REST)ful reification of LPaaS API.

Legend

HTTP_METHOD: /resource?queryParam=value
LPaaS Interface APIRequest content Response Content

configurator role

POST /theories/default
setTheory(T )

Req: T Res: -
PUT /goals/default

setGoals(G )
Req: G Res: -

source role

GET /theories/default /facts/f
getFacts(F , template(f (_)), _)

Req: - Res: F
GET /theories/default /facts/f/history/V

getFacts(F, template(f(_)), V )
Req: - Res: F
POST /theories/default /facts

addFacts(F )
Req: F Res: -

client role

GET /theories/default
getTheory(T , _)

Req: - Res: T
GET /theories/default /history/V

getTheory(T, V )
Req: - Res: T
GET /goals/default

getGoals(G )
Req: - Res: G
POST /solutions?limit=1

solve(G , S , _)
Req: G Res: S
POST /solutions?limit=1

solve(G, S, V )
Req: G, V Res: S
POST /solutions?limit=N

solveN(G, N , S, V )
Req: G, V Res: S
POST /solutions

solveAll(G, S, V )
Req: G, V Res: S
POST /solutions?limit=1&within=T

solve(G, S, within(T ), V )
Req: G, V Res: S
POST /solutions?limit=N &within=T

solveN(G, N , S, within(T ), V )
Req: G, V Res: S
POST /solutions?within=T

solveAll(G, S, within(T ), V )
Req: G, V Res: S
POST /solutions?skip=N &limit=1

solveAfter(G, N , S, V )
Req: G, V Res: S
POST /solutions?skip=N1 &limit=N2

solveNAfter(G, N1 , N2 , V )
Req: G, V Res: S
POST /solutions?skip=N

solveAllAfter(G, N, S, V )
Req: G, V Res: S
POST /solutions?every=DT &hook=H

setGoal(template(G )),
solve(S, every(DT ), V )

Req: G, V Res: H
GET /solutions/H
Req: - Res: S
POST /solutions?where=W &regionSize=R

solveNeighborhood(G, S, region(W , R ), V )
Req: G, V Res: S
POST /solutions?where=W &regionSize=R

&regionSpan=DS &hook=H setGoal(template(G )),
solveNeighborhood(G, S,

region(W, R, DS ), V )

Req: G, V Res: H
GET /solutions/H
Req: - Res: S
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4.1.1. Configurator

Other than having the right to create or edit theories, clients playing the configurator role can
create individual goals or lists of goals (composed-goals) by POSTing a well-formed conjunction of Prolog
terms on the /goals entry point, along with a mnemonic name (say g ). Goals can be lately appended
to the list by POSTing them on the /goals/g entry point, while the i-th sub-goal of g can be replaced
by PUTing g’ on the /goals/g /i entry point. Of course, configurators are also authorised to perform
any other operation, including the ones available to source or client roles.

4.1.2. Source

Sensors, actuators, or other clients playing the source role may also inject (or update) novel
information—in the form of logic facts wrapped by a proper functor (say f )—in a theory n by POSTing
(resp. PUTting) the new information to the /theories/n /facts/f entry point. The latest version of a
specific fact (f ) in theory n can be read by any client GETting the aforementioned entry point, while the
fact version valid at t can be obtained querying the entry point, /theories/n /facts/f /history/t .

4.1.3. Client

Any client can get the list of admissible goals by GETting the /goals/g entry point, and inspecting
the i -th sub-goal of /goals/g by GETting the /goals/g /i entry point.

Given the references (i.e., the URLs) to a theory version and a goal-list, any client may request one
or more solutions for the composed goal by POSTing such references to the /solutions entry point.
The request may contain a number of optional parameters that correspond to the parameters shown in
Tables 1 and 2, namely,

• skip: defines the number of solutions to be skipped (defaults to 0);
• limit: defines the maximum number of solutions to be retrieved (defaults to ∞);
• within: defines the maximum amount of time the server may spend searching for a solution

(defaults to ∞);
• every: defines the amount of time between two consecutive solutions, meaning that a periodic

solution stream is actually desired; and
• hook: defines the hook associated with the request, that is, a mnemonic name used to retrieve

ex-post a solution previously computed by the LPaaS server.

The following optional parameters support situatedness in space:

• where: defines the centre of the region of validity to be considered for the solution, meaning that
the resolution process should only take into account the logic theories and facts being valid within
that when the resolution process starts;

• regionSize: defines the size of the aforementioned validity region; and
• regionSpan: defines the variation in size to add to the regionSize value at each step of the

resolution process.

The every and regionSpan parameters aim to support streams of solutions in addition to a single
set of solutions. The first initiates a time-related stream of solutions where the provided query is
resolved periodically, while the second initiates a space-related stream of solutions where the provided
query is resolved against a progressively widening/narrowing validity region (depending on the sign
of regionSpan).

The aforementioned hook makes it possible to retrieve already computed solutions by GETting
the resource located at /solutions/hook, thus providing a sort of cache memory. Its value, say h ,
is of particular interest in case a client needs to consume the results of a streaming request, since it
refers to the very last outcome of the resolution process. Users may then issue a GET request towards
the /solutions/h entry point to retrieve the latter available result of solution stream, while previous
solutions are accessible through an ad-hoc entry point.



Big Data Cogn. Comput. 2018, 2, 23 15 of 26

4.2. The Development Process

Delivering an LP engine (i.e., a logic-based inference service) as a microservice in the IoT
landscape means not only ensuring non-functional properties, such as modularity, loose coupling,
and scalability, but also affecting the software engineering practice and thus, the development process
itself. Continuous integration (CI) [50] and, most importantly, continuous delivery (CD) [51] pipelines
are de-facto standards for developing microservices, since they comply with agile methodologies and
effectively promote the best practices concerning software architecture and implementation.

Figure 5 shows the scheme of the LPaaS development process. The service implementation
supports container-based deployment via the Docker technology, further discussed in Section 4.4, and
the development process supports CI and CD to provide fast updates and improvements to devices
hosting the LPaaS service.

In particular, the distributed software development [49] relies on the GitLab source code repository
and Git (https://git-scm.com/) as a versioning tool. Build cycles are handled through the Gradle
build system(https://gradle.org/) (migrating from Maven), while regression/integration testing
amongst inner microservices exploits GitLab’s CI/CD Pipelines feature (https://docs.gitlab.com/
ee/ci/pipelines.html). Finally, the deployment on the Docker platform (https://www.docker.com/
what-docker) relies on integration with the GitLab pipeline through the Docker Engine feature (https:
//docs.gitlab.com/ce/ci/docker/using_docker_build.html).

Figure 5. The LPaaS development process.

4.3. RESTful API Implementation

In order to adhere to the RESTful API description, the KB of the service is fully versioned, so any
side-effects caused by the configurator or by sources either directly, through POST/PUT methods, or
indirectly, via assert/retract predicate, on some theory automatically produces a new version of that
theory. Versioned theories are referenceable by means of specific URLs and are made to be persistent
through the storage layer; thanks to the uncoupling provided by the PA object, the relational specific target
technology is irrelevant (http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.
html). The client request always specifies (the URL of) the desired version of the theory. If no version is
provided, the last available one is assumed. If no theory is provided at all, the /theories/default
one is assumed. Analogously, for both goals and solutions entry points, if no list of goals is provided,
the /goals/default is assumed. If no hook is specified, a novel and unique one is generated on the fly
and provided to the client together with the solution.

Stream solutions—which require a resolution process to be re-executed periodically—are made to
be resilient by making the request persistent on the storage layer. This implies that the solution stream
continues to be produced even if the LPaaS server crashes and has to be restarted.

https://git-scm.com/
https://gradle.org/
https://docs.gitlab.com/ee/ci/pipelines.html
https://docs.gitlab.com/ee/ci/pipelines.html
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://docs.gitlab.com/ce/ci/docker/using_docker_build.html
https://docs.gitlab.com/ce/ci/docker/using_docker_build.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
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As far as security is concerned, authentication is achieved via JSON Web Tokens (JWT) technology.
The LPaaS service provides—in case credentials are valid—a cryptographically signed token within the
HTTP response, certifying the client’s role(s). It is the client’s responsibility, in order to be recognised
as a configurator or a source, to provide the signed token by means of the Authorization HTTP header
of any following request.

4.4. Deployment by Containerization

Containerisation is a means for developing, testing, and deploying virtually any kind of
application on virtually any kind of infrastructure, either centralised or distributed. Containers consist
of lightweight, portable, and scalable virtual environments wrapping a particular application—LPaaS
microservices in our case—and only including the runtime libraries it strictly needs. Containers can be
serialised, copied on different machines, and then re-executed or arbitrarily replicated, regardless of
the specific configuration of the hosting machine. Docker (https://www.docker.com) is arguably the
most interoperable technology supporting containerisation on mainstream operating systems, such as
Windows, Linux, or MacOS. Deploying an application with Docker requires to build an image of the
application, that is, an executable package featuring everything needed to run the application—the
code, a runtime, libraries, environment variables, and configuration files.

In our case, a Dockerfile is created for the LPaaS image using the Docker runtime. Then,
a containerised application can be deployed either as a standalone service, or as a microservice that is
part of a stack of services depending on one another.

The business logic component of the LPaaS architecture is executable as a standalone application as
well as the data layer component, whichm at presentm may be based on either an embedded database
provided by the Payara Micro edition (https://www.payara.fish/payara_micro) or an external DB such
as PostgreSQL (https://www.postgresql.org/) thanks to JPA. Actually, the LPaaS engine and the KB are
independent microservices, deployed on a common network, isolated from any other stack of services.
Such a stack can then be run either on a single machine or on a swarm of containers/hosts through the
Docker Swarm functionality, thus becoming fully distributed. The LPaaS deployment described in this
paper follows the latter approach, taking advantage of all the aforementioned functionalities provided
by the Docker technology.

5. A Conceptual Use Case

The design of terms of microservices paves the way to the use of LP inference techniques as
micro-intelligence sources to meet the requirements of light, efficient, scalable, and distributed intelligence
in IoT scenarios. This is especially effective when mixed with other non-symbolic approaches. In this
section, we envision a use case in the domain of energy grid distribution, aimed at demonstrating
the potential of such an approach for engineering intelligence in distributed systems. The system we
envision (Figure 6) is therefore composed of thousands or millions of users and their own generators,
becoming producers and consumers of electricity [52], interconnected through an electricity network
that is supposed to be autonomous and intelligent.

https://www.docker.com
https://www.payara.fish/payara_micro
https://www.postgresql.org/


Big Data Cogn. Comput. 2018, 2, 23 17 of 26

Figure 6. The LPaaS smart energy application scenario.

5.1. The State of Art

Figure 6 depicts a typical scenario in modern “smart” energy grid distribution solutions. Energy
harvesting farms, either featuring renewable sources or not, are connected to a power plant in charge
of distribution of the generated power to many heterogeneous (i.e., in scale and goals) destinations,
such as industries, public places, and private houses.

What is “smart” in a grid is its ability to timely and correctly deal with fluctuations in offer and
demand while keeping power distribution within safety and fairness boundaries set, i.e., by local
administration, with little or no human intervention—that is, autonomously. To do so, the most
widespread approach nowadays is to rely on non-symbolic approaches, for instance, exploiting ML
techniques to learn to predict offer and demand based on historical production/consumption data or
statistical analyses to learn correlations between data so as to automatically generate rules and policies
about energy distribution [53]. For instance, reference [54] explored automatically creating site-specific
prediction models for solar power generation from National Weather Service (NWS) weather forecasts
using ML techniques.

In such a scenario, many challenges need to be dealt with in order to achieve a better integration of
flexible demand (demand response and demand side management) with distributed generation [55,56].
For instance, the system has to be designed and operate as an integrated unit, a far from trivial issue
when ownership, decision-making, and operation are distributed. Here, energy management can be
implemented in a global and centralised fashion by a single entity, e.g., a cloud-based grid management
application, or in a local and decentralised manner by means of multiple components which are able
to adjust a site-specific configuration while converging towards system-level goals and in compliance
with system-level safety boundaries.

Smart grids for energy management are meant to enable a future power market with appropriate
communication and intelligent energy control technology that is able to smartly maintain a balance
between the distributed energy resources and the demand requirement in a user-friendly manner.
In particular, according to reference [57–59], a decentralised micro-grid represents a key tool to
improve the energy demand and supply management in the smart grid. This is achieved by exploiting
information about electricity consumption, transmission configuration, and advanced technology
for harvesting renewable energy on a finer demand/supply scale. The grid constantly monitors the
demand for electricity and dispatches generators to satisfy demand as it rises and falls. Since electricity
demand is highly predictable when aggregating over thousands of buildings and homes, today’s
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grid is able to accurately plan in advance which generators to dispatch and when, to satisfy demand.
Moreover, a-priori knowledge about the energy load pattern can help to reshape the load and cut the
energy demand curve, thus allowing better management and distribution of the energy in smart grid
energy systems.

The next section builds on the scenario just described to emphasise how the LPaaS
symbolic approach to distributed intelligence in IoT-like applications can effectively complement
non-symbolic approaches.

5.2. The LPaaS Contribution

Within the application domain depicted above, LPaaS could help by mitigating some of the issues
experienced by non-symbolic approaches, as well as by enabling novel forms of distributed and local
reasoning, adding all the symbolic techniques advantages to the system. In particular,

1. When deploying a system for the first time, either a ML model has been trained on artificially
produced synthetic data (or on similar data coming from a similar environment as the one target
of the deployment) or it will inevitably suffer from the so-called “cold start” problem—the system
is initially unusable and requires a training phase and then starts making increasingly accurate
predictions as soon as it gathers training data from the deployment environment.

2. ML or statistical approaches get better as more data is available for training and online
learning—thus, for instance, they are better applied on energy profiles of many private houses
clustered together based on similarity, rather than at the level of a single house.

3. Stemming from point §2, non-symbolic approaches, in general, are good at generalising models
by abstracting away from specific peculiarities and focussing on the commonalities between
the different data samples. Consequently, they are usually deficient when tailoring models and
producing subsequent predictions of the specific traits of a single data sample.

4. Fixing models in case their accuracy starts worsening, for instance, because the conditions
of the deployment environment have abruptly changed—i.e., a neighbourhood changing
power generators all at once—is extremely difficult, if not impossible. On the one hand,
since non-symbolic approaches rely on data samples to actually learn to generalise, they are
intrinsically slow to adapt to changes and unforeseen situations. On the other hand, their lack of
transparency and explainability hinders data scientists acquiring a complete understanding of
what is going wrong .

The first issue described above can be mitigated by a symbolic approach, such as the one proposed
by LPaaS, in that white-box models are built upon domain experts’ knowledge rather than out of data
processing. As such, they may fail to model hidden patterns buried deep into the data, but at least are
immediately usable and guaranteed to comply with the designed goals and requirements. As far as
issues §2 and §3 are concerned, LPaaS is precisely meant to model and enable seamless access to situated
knowledge and inference services, thus making it possible to take into account the specific features
of each knowledge domain. In the smart energy grid scenario, for instance, it is almost impossible
for a non-symbolic (either statistical or ML) approach to account for the so-called “outliers”, such as
a single house out of a neighbourhood behaving differently from the rest. Tts specificities would be
abstracted away by the general model learnt. Instead, by complementing ML with LPaaS, for instance,
it would be possible to override the inference rules learnt by non-symbolic approaches from the
global data gathered in the neighbourhood with house-specific rules designed for the specific purpose.
Finally, as far as issue §4 is concerned, the white-box models produced by symbolic approaches,
including LPaaS, are inherently easier to fix. The inference process is, in fact, transparent and capable
of explaining outcomes, so that tracking errors and causally connecting the output to the input is easier.
More generally, changing rules, policies, and facts in the knowledge base involved in the inference
process is easier especially with approaches based on logic programming, such as LPaaS, thanks to
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meta-programming features enabling developers to program how the inference engine should modify
itself at run-time and when—that is, as a consequence of which events.

In the energy grid scenario described in previous sub-section and depicted in Figure 6,
the responsibility for global and local energy management policies could be split as follows: globally,
non-symbolic approaches may take advantage of the scale to train clustering and classification models
regarding, for instance, consumption/production profiles of groups of customers and power plants,
and fluctuations of offer and demand at the scale of neighbourhoods, districts, or whole cities. Instead,
locally, each consumer unit (house, office, industry, ...) could host one or more LPaaS services,
either for the unit as a whole or for each device of interest, in charge of (i) communicating with the
smart grid platform any potentially relevant data about energy consumption and production, and (ii)
locally enforcing safety/fairness rules and/or management policies, possibly over-riding the requests
globally computed by the smart grid platform. As an example, Figure 7 considers the case of energy
management in a Smart House. Each smart device is equipped with an LPaaS service which makes
decisions about the local situation of the device (for instance, depending on current energy usage,
whether to turn air conditioning on, whether to store energy produced in excess for later or dispatch
it to the grid, etc.) and communicating energy consumption/production related information to the
smart grid when requested. There, the Energy Management Manager can collect all information
about the house in order to schedule the devices accordingly to users’ policies and energy available at
that moment.

In such a scenario, based on existing literature, it may happen that

• Non-symbolic techniques—such as support vector machines, multiple regression schemas, and
different classification algorithms—are exploited to predict energy generation from renewable
sources, such as solar panels and wind turbines, based on data coming from the National
Weather Service (NWS) weather forecasts for specific sites [54]. Doing so incorporates site-specific
characteristics into the models, such as shade coming from nearby trees, average wind strength,
etc., which should be fine-tuned when transferring the application of the model to another domain.
If a symbolic approach, such as LPaaS, is exploited in synergy, instead, these peculiarities can be
modelled separately on a local-only basis as a white-box model, and they can be used to modulate
or over-ride the predictions coming from the smart grid. For instance, there could be a simple
rule over-riding the estimated solar prediction if the weather is bad despite positive weather
forecasts. Additional benefits would be that (i) changing such over-ride rules on the fly is possible
thanks to logic programming meta-programming features, and (ii) local decision-making is easily
inspectable and accountable since inference rules stem from a white-box model.

• In reference [60], energy load forecasting based on Deep Neural Networks—specifically, Long
Short Term Memory (LSTM) algorithms—was used to make predictions about future energy
demand, at both aggregate and individual site levels. Good results were shown for an hourly
resolution of the prediction horizon. Based on these predictions, the energy production was
scheduled. LPaaS could also help also in regard to events that are not considered in the training
dataset, such as a strike or holiday closing. Yet again, local rules crafted upon need by domain
experts may over-ride the forecasts dispatched by the smart grid, also providing the same added
benefits mentioned above.

It is worth remarking here that on the one hand, LPaaS is complementary to non-symbolic
approaches, as described above, but on the other hand, ML is complementary to the symbolic approach
of LPaaS as well. In fact, it is very unlikely for LPaaS or similar techniques to outperform non-symbolic
approaches in (i) handling large amounts of data, (ii) coping with incomplete and uncertain information,
and (iii) automatically learning models without any a-priori knowledge. Hence, our position to exploit
them in synergy rather than separately.

To the best of our knowledge, symbolic and non-symbolic techniques are integrated manually.
In particular, symbolic rules rely on manually-crafted expert knowledge. A possible research



Big Data Cogn. Comput. 2018, 2, 23 20 of 26

perspective here could consider the automatic synthesis of rules based on some suitable inference
process; however, such an interesting investigation is outside the scope of this paper.

Also, we would like to emphasise that all of the above is made possible by the re-interpretation
of distributed logic programming provided by the LPaaS model and technology, which, above all,
is meant to promote and support the distribution of micro-intelligence wherever needed. A similar
scenario would not be possible with traditional logic programming, where there is no concept of
situatedness in space and time, and where only a single monolithic theory of the whole world is
considered. Related works, sources of inspiration for the re-interpretation of logic programming, and
for the design of LPaaS are discussed in next section.

Figure 7. The LPaaS energy management in the smart house.

6. Related Work

In order to optimally support the wide variety of IoT applications and user needs, intelligence is
needed in both the smart objects populating the scene and the infrastructure on which they rely for
communication and coordination [61]. Here, intelligence is not only related to the processing of data,
but also to security, quality of service, network configuration, etc. [23,61]. Moreover, there is no single
place where intelligence can be placed or activated. Depending on the situation it may be better to
have it directly on-board devices, i.e., for efficiency and responsiveness, or centralised in the cloud, i.e.,
to have ML pipelines operating on all available data.

To this end, and exploiting symbolic reasoning, reference [62] discusses a comprehensive logic
programming framework designed to support intelligent composition of Web services. The underlying
model relies on representing web services as actions, each described by a logic programming theory.
This promotes the use of a logic-based approach and symbolic reasoning to address some IoT
challenges, in particular, making a step towards interoperability and composeability. Symbolic
reasoning capabilities and features are also discussed in reference [63], highlighting the importance
of high-level programming on resource-constrained devices. There, they develop a lightweight
middleware to support distributed intelligence exploiting event detection that combines fuzzy
reasoning and additional symbolic knowledge—in the form of data, rules, and executable code—to
enrich the semantics of events. With respect to both of these works, we adopted a similar logic
programming approach, offering high-level programming and symbolic reasoning capabilities.
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Nevertheless, LPaaS goes beyond this w.r.t. context-awareness and situatedness, by supporting
the injection of intelligence within existing services/agents via either a network-reachable API or direct
embedding of the LPaaS service.

On the side of architectures and middleware for scalable and ubiquitous computing in IoT, many
research works promote the usage of event-driven SOA (EDA-SOA) [64–66], mostly due to their
effectiveness in terms of scalability, interoperability, reliability, and responsiveness. In particular,
reference [64] shows how challenges like scalability can be addressed by exploiting SOAP-based,
RESTful, and broker-based architectures. LPaaS itself follows the EDA-SOA principles in regard
to the model and architecture design. In particular, the proposed notion of a stream of solutions
was inspired by the EDA principles, in that it allows a “signal” containing the new solution to be
sent. By following the EDA-SOA principles, is possible to achieve distribution, interoperability, and
scalability as confirmed by the abovementioned research works.

Generally speaking, as highlighted in reference [61,67], distributed intelligence can contribute to
increased interoperability as well as better usage of scarce resources (enabling local reasoning), and
this is exactly the aim of LPaaS.

Moreover, the logic-based approach brings advantages related to symbolic reasoning, such as
provable properties, sound and explainable inference, and the fact that the intelligent behaviour
exhibited by the system becomes explainable—converse to what happens with the majority of
non-symbolic approaches. As a step further, references [67,68] show the importance of combining
symbolic and non-symbolic techniques to achieve intelligent behaviours. Hybrid intelligent
architectures [69] synergically combine the strengths of diverse computational intelligence paradigms
and exploit both the domain knowledge and the training data to solve difficult learning tasks. To this
end, LPaaS, thanks to its light-weight architecture, could be easily combined with other techniques in
order to achieve hybrid reasoning—where symbolic and non-symbolic techniques fruitfully combine
to produce intelligent behaviour.

7. Materials and Methods

The LPaaS prototype is freely available on Bitbucket [70] with the corresponding installation
guide. It was built on the top of the tuProlog system, a lightweight Prolog engine which provides the
required interoperability and customisation capabilities [71].

A prototype implementation of LPaaS as a RESTful Web Service was provided in accordance
with the REST API discussed above, showing the effectiveness of LPaaS in supporting REST and
distributing situated intelligence. A full discussion on the case studies implemented exploiting the
LPaaS RESTful Web Service is presented in reference [19].

8. Conclusions

IoT scenarios are increasingly demanding intelligence to be scattered everywhere and to support
adaptation and self-management at different degrees. Software engineering challenges in this context
concern interoperability, efficiency, and scalability, but also a careful design of both the ML pipeline
and the logic inference engine, separately as well as in complementary exploitation. Such issues do
not merely concern the application or service logic and runtime, but also impact on the software
development process.

The LPaaS model and architecture, discussed in depth in this work, aims to fit such a challenging
context by introducing an LP microservice as a provider of symbolic reasoning techniques in IoT
scenarios, complementing non-symbolic ones. Accordingly, we discussed an envisioned use case
regarding energy grid operations to highlight the benefits of the LPaaS approach in terms of scalability,
interoperability, and reactivity, but also in terms of observability, explainability, and accountability,
fostering the idea that symbolic approaches have the potential to be key players in the future of
large-scale intelligent systems.
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Open issues in this research thread are mostly concerned with how to integrate the two
complementary—no longer antithetic—approaches, possibly in an automated way. As relatively
recent examples, three techniques have been presented by the same research group in the context
of adaptation and scaling of transactional memories: divide and conquer [72], bootstrapping [73],
and boosting [74]. In the first, black-box modelling (thus, non-symbolic approaches) and white-box
modelling (that is, symbolic approaches) are used separately on different sub-problems, and their
output is reconciled afterwards in a single comprehensive objective function. In the second, white-box
models are hand-crafted with the purpose of providing initial, synthetic training data to black-box
ones to be later refined with real data (in the form of online training). In the third, a ML pipeline made
up of several black-box models in a cascade is used to incrementally reduce the error of a white-box
model—by learning the error of an objective function instead of the function itself.

The extent to which a LP-based approach to symbolic reasoning can fit the above techniques is
yet unexplored and will be subject of further work.
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