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Abstract: Parking is a crucial element in urban mobility management. The availability of parking
areas makes it easier to use a service, determining its success. Proper parking management allows
economic operators located nearby to increase their business revenue. Underground parking areas
during off-peak hours are uncrowded places, where user safety is guaranteed by company overseers.
Due to the large size, ensuring adequate surveillance would require many operators to increase the
costs of parking fees. To reduce costs, video surveillance systems are used, in which an operator
monitors many areas. However, some activities are beyond the control of this technology. In this
work, a procedure to identify sound events in an underground garage is developed. The aim of the
work is to detect sounds identifying dangerous situations and to activate an automatic alert that
draws the attention of surveillance in that area. To do this, the sounds of a parking sector were
detected with the use of sound sensors. These sounds were analyzed by a sound detector based on
convolutional neural networks. The procedure returned high accuracy in identifying a car crash in an
underground parking area.

Keywords: sound classification; convolutional neural networks; audio event detection;
acoustic measurements; acoustic features

1. Introduction

The appearance of new situations of social alarm linked to a lack of human resources has
led to the progressive use of technologies to which some of the safety prerogatives are delegated.
Technological development has made new tools available to guarantee high levels of safety for
people while socializing, who require ever higher standards in reducing the risk associated with
their own safety. In different contexts, large amounts of data are collected, which can be used to
develop applications and services that can simplify our daily lives. In this way, the collected data
can be processed to extract information on social phenomena and guide the processes of developing
new and more incisive policies. The main component of road traffic is represented by private cars.
Each movement of a vehicle always takes place from a departure to a destination, and, in the vicinity
of both, the vehicle will have to remain stationary for some time: on average, more than 90% of a
car’s life is spent in parking conditions. Parking, especially in large cities, is a factor which has a great
impact on the flow of traffic and on the level of stress of people in finding a parking space. As the
number of vehicles increases, the problem of parking management increases [1]. Parking lots have
become essential near large public buildings such as hospitals, shopping malls, hotels, and airports.
The absence of parking areas near major public structures prevents people from carrying out their
activities, which is detrimental to the local economy. In a city, the presence of a parking lot is also
strategic in terms of security: a dark and abandoned place would prove much safer if it were used
as a lighted parking area [2]. The parking sector in Europe and North America is going through an
innovation process towards intelligent systems. In addition to adopting advanced automation and
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software solutions for parking reservations and payments, it is gradually integrating with other mobility
solutions, also thanks to the use of communications and information technology. These systems use
detection devices to determine the occupation status of the parking lot. The detection devices are
different: cameras, gates at the parking entrance, or sensors normally installed on the road surface.
The accuracy of the algorithms and the usability of the applications are the determining factors for the
success of the intelligent parking system [3,4].

Parking automation cannot be limited to parking management and the payment process.
Parking lots are often crowded, with hundreds of cars frantically looking for a place to leave their car
in order to reach their destination as quickly as possible. This activity can lead to dangerous situations
for pedestrians and cars; in fact, accidents that occur inside parking lots are frequent, especially for
underground ones where visibility is not excellent. Even if the speed of cars is limited, the accidents that
occur can create serious damage to people and cars, triggering further possible conflicts between the
people involved. For example, we can think of the parking lot of a shopping center where families go to
buy necessities. Often, parents are accompanied by children who can get out of control because of the
carts with food that they have to push towards the car. Such a situation in a scenario characterized by
numerous moving cars can really become dramatic. Furthermore, underground car parks in particular
are isolated and often dark places, where acts of violence against users can easily occur. In large cities,
episodes of violence perpetrated against women are frequent in the parking lots which, at certain
hours of the day, become almost deserted. In these cases, it is easy for an attacker to attack people,
aware of the fact that someone is unlikely to run to the rescue of the victim. Being underground,
these environments do not have GSM (Global System for Mobile Communications, London, UK)
signal coverage and therefore it becomes impossible to request an intervention by the police forces if
you have time to do so [5,6]. To address these security concerns, car parks are often equipped with
video surveillance systems that monitor parking areas. Parking lots represent a demanding challenge
for the video surveillance technology used: they have low ceilings and problematic lighting ratios
which combine very dark areas with very bright areas. As a rule, car parks are certainly not inviting
places; however, even here, it is necessary to guarantee the safety of users. The structure of the car
parks and the need to contain hardware costs can create shadow cones that make control in some
areas more difficult. Video monitoring is left to the parking staff, who must simultaneously monitor
multiple monitors in sequence. This activity is characterized by a high percentage of inaccuracies
due to the low image quality. Furthermore, the operator’s ability to focus attention on the emergency
scenario is a subjective factor that depends on multiple variables, not guaranteeing a measurable result
in advance [7,8]. To improve the performance of a video surveillance system, an automatic image
recognition system can be adopted to identify an emergency. A problem arises in the definition of an
emergency scenario: images with nearby cars, or images with people in the vicinity of cars, or images
with groups of people do not generally identify an emergency scenario. This limit can be overcome
by integrating an acoustic monitoring system of the parking areas in a video surveillance system.
The hardware upgrade has a modest cost, requiring only microphones, which are already provided
in some areas—for example, in automatic cash machines or at the entrances and exits of parking
lots. By using auxiliary microphones and an automatic audio event recognition system, it will be
possible to significantly improve the security system of an indoor car park. Furthermore, the location
of the sound source could guide an automatic rotation system of the video camera, which, in this way,
could cover a larger area than the fixed ones [9,10]. The sound emission associated with the parking
of a car can be divided into several phases, which are generally the path of the access roads to the
parking lanes, the search for a parking spot, the actual parking operation, and the opening and closing
of the door. The type of vehicle used also emits different noise levels. Added to these are the noises
emitted by other sources, such as the sound of shopping carts in shopping centers, pedestrian steps,
music from cars and piped music systems, and people who chat or talk on the phone. All these noises
vary according to the parking areas and the periods of the day. In fact, as with other sources, the noise
of the underground car park also depends on the time of day. Some car parks are subject to intense
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traffic only at a specific time of day; for example, the parking areas near the business centers will be
more busy in the morning and in the evening, when people go to the office and then return home.
On the contrary, in entertainment places such as restaurants, bars, and hotels, there will be more cars
after working hours. Identifying a sound source is not an easy task because of the variance in the
sounds. In recent times, various authors have proposed methods for the automatic identification of
sounds using algorithms based on machine learning [11,12].

In this work, a procedure is developed to automatically identify sound events in an underground
garage. The sounds of a parking sector are detected with the use of sound sensors. These sounds
are analyzed by a sound detector based on convolutional neural networks. The study focused on the
automatic identification of car crashes.

The rest of the paper is organized as follows: in Section 2, the materials and methods used
are described in detail; first, the tools used for the records and the techniques used are presented,
and we then move on to analyze the extraction techniques of the characteristics used and finally
explore convolutional neural networks. In Section 3, the results obtained in this study are described,
providing an adequate discussion of the results achieved. In Section 4, conclusions are provided,
with some possible examples of use in real life and the possible evolution of the research.

2. Methodology

The aim of this work is to develop a procedure to detect the presence of a car crash in a complex
acoustic scenario such as an underground car park. The problem of identifying audio events in an
underground car park is highlighted for reasons related to security risk mitigation. These environments
are often theaters of aggression or more simply of accidents in which the need for immediate intervention
by the rescue operators becomes crucial [13–15]. The method involves the use of acoustic sensors that
detect the acoustic signals of the parking areas in real time. The detected acoustic signal is used as
input by a system based on the use of convolutional neural networks that identify the occurrence of a
car crash. In the event of detection, the attention of the surveillance operator is focused by activating
an alert that displays the cameras of the video surveillance system of that area, and, in the case of
emergency acknowledgement, it can notify the emergency services. The developed methodology is
presented through a flowchart with indications of all the phases in Figure 1.
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Figure 1. Flow chart of the automatic procedure for detecting a crash car in an underground car
park. The steps provided by the procedure are the real-time recording of signals with acoustic sensors,
extraction of features, training of a model based on convolutional neural networks, and development
of a CNN (convolutional neural network) based crash car detector. If a car crash is detected, then an
alert is raised which activates the parking surveillance operator.
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2.1. Acoustical Signal Recordings

Several sessions of recordings of the typical sounds of an underground car park were made.
An underground car park for a shopping center on the outskirts of a large city was chosen as the
location. It is a large area divided into compartmental areas for fire prevention, in which the designer
has sought the best and most efficient general arrangement of parking spaces and lanes according
to the size of each section. The driveways and surface public roads have been designed to ensure
maximum efficiency, and the directions of the pedestrian paths have been designed to ensure access to
the shopping areas in the shortest possible time [16].

The critical points were highlighted during peak hours: in such periods, given the large number of
vehicles present, the visibility of the maneuvering lanes is reduced, with an increase in possible crash
cases between a car exiting the parking stall and a car in transit in the maneuvering aisle. Furthermore,
the criticality of the areas of access to the compartment sections for the cars coming from the parking
access ramps was highlighted; these cars risk colliding with the cars coming from the maneuvering
lanes. For these reasons, it was decided to use these stations for sound recording [17].

The recordings were made with a high-quality Zoom H1 Handy Recorder with X-Y microphone.
The recorder was placed on a tripod at a height of around 2.5 m from the floor. The recorder was
placed in a position in the compartment area which guaranteed sufficient coverage of all parking
stalls. Various scenarios were measured: cars coming from the access ramps, cars passing through the
maneuvering lanes, cars maneuvering to occupy a parking stall, cars maneuvering to leave a parking
stall, and cars parked with the engine running.

Each recording was divided into sections lasting around 60 s in order to obtain an adequate number
of samples to be used in the training and testing phase. In this way, around 300 samples were extracted,
equally distributed between the two identification classes (NoCrash, Crash). The samples labeled
Crash were subsequently processed: to simulate a car accident, the typical sounds of a low-speed car
accident were added to the recordings made in situ.

2.2. Signal Descriptor Selection

The audio signals recorded were then analyzed to extract features capable of identifying the
emergency event. This is a crucial procedure in the event identification process, as it is thanks to these
descriptors that the classifier will be able to highlight the anomalies as they will represent its input [18].

We have already listed some of the characteristic sounds of an underground parking area, to which
are added all the noises of the air treatment systems. It is a complex acoustic scenario, with signals
characterized by acoustic spectra with contributions in a wide range of frequencies with different levels.
It follows that a time domain analysis would be inadequate for classifying events. It then becomes
necessary to transfer to the frequency domain in order to extract the energy levels in the different
frequencies. The Fourier operator allows us to switch from the time domain to the frequency domain
through a projection of the signal acquired over time on an orthonormal basis of complex exponentials.
When we apply the Fourier transform, we do nothing but switch between two different representations
of the same signal: the original signal is in the time domain, while the transformed signal is in the
frequency domain [19,20]. The fast Fourier transform (FFT) is a mathematical transformation to a
function, f, represented by Equation (1):

f : Rn
→ C (1)

which matches an F function, represented by the Equation (2):

F(ξ) =
1

(2π)
n
2

∫
Rn

e−iξt f (x)dx (2)

where

• f(x) is a real function of the real variable t.
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• F(ξ) is the Fourier transform of f(x).

An important feature of this transformation is that its computational cost is extremely low. In fact,
to carry out the basic change of a vector of n components, around 3/2 n *log2n operations are enough if
n is an integer power of 2. Furthermore, the transformation is well conditioned and the fast algorithms
for its calculation are numerically stable. For these particularly favorable characteristics, the discrete
Fourier transform finds numerous uses in different fields of mathematics and its applications [21].

Once the FFT of the signals has been calculated, a spectrogram of the recorded sounds is extracted.
A spectrogram is the representation of a sound using a Cartesian in which time is represented on the
abscissa, the frequency on the ordinate. In addition, the frequency content is always represented with
a color map. Therefore, in the spectrogram, the signal is represented with three variables: frequency,
time, and intensity (color scale). The color map is built according to simple rules: dark colors represent
low intensity sound, and light colors represent high intensity [22,23].

2.3. Convolutional Neural Network

The convolutional neural network (CNN) is one of the most common deep learning algorithms.
It is used for the processing of data characterized by a particular grid topology: a CNN is able to
emphasize local relationships, starting from adjacency structures present in the data, through automatic
and adaptive learning of patterns from low to high level [24]. CNNs therefore represent the main
model used in the field of computer vision and in general in applications that require object recognition
and artificial vision. It is an architecture inspired by the biological structure of the visual cortex,
in which there is a hierarchy of two basic types of cells: simple and complex cells. Simple cells react to
primitive patterns present in sub-regions of the visual field, called receptive fields, while complex cells
synthesize the information from the former to identify more complex structures. Similarly, the neurons
present in a convolutional layer are connected to sub-regions of the previous level and are not affected
by the signals located outside that area. The receptive fields can also overlap: the neurons of a CNN
therefore produce spatially correlated results [25].

It is therefore possible to identify the main difference with a fully connected neural network
(FFNN): while in a fully connected neural network, the number of parameters to be learned increases
with increasing input size, a convolutional neural network reduces the number of parameters thanks
to the reduced number of connections, shared weights, and sub-sampling. A convolutional neural
network can have dozens or hundreds of layers, each of which is made up of different filters used
to detect different features and build the corresponding feature maps. In the case of images, in fact,
filters are applied to each input (called kernels) and, through a convolution operation, feature maps are
generated. The latter will be used as input for the next layer. The filters of the first layers look for very
simple features—for example, edges—to take on more and more complex shapes, able to uniquely
define the object [26].

The architecture of a convolutional neural network includes several blocks, such as convolutional
layers, pooling layers, and fully connected layers. The architecture of the convolutional neural network
can be divided into two parts: feature detection, which then deals with the extraction of features
through operations such as convolution, pooling, and ReLU (rectified linear unit), and classification,
which generates the predicted output through the use of fully-connected and softmax layers (Figure 2).

The optimization of the network parameters takes place in the same way as described previously:
the function signal is propagated forward in the network up to the final layer, where the gradient of
the loss function is computed and retro-propagated to allow the updating of the weights through a
gradient descent algorithm [27].
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2.3.1. Convolutional Layer

In the convolution, a filter, called a kernel, is applied to a multidimensional array of numbers,
called the input tensor. This filter represents a mask of multidimensional parameters limited in height
and width but which extends over the entire depth of the input volume. The kernel analyzes the input
tensor in height and width: in each position, the scalar product between the kernel and the covered
portion of input is calculated in order to obtain the output value in the current position. The output
volume obtained at the end of the process is called the activation map or the functionality map [28].

2.3.2. ReLU Layer

The convolution layer is typically followed by a non-linear activation function: only the activated
features are passed to the next layer. The most used function is the rectified linear unit (ReLU),
which performs a thresholding operation on each element by mapping the negative values to zero and
keeping the positive values. It has been demonstrated that the use of the ReLU function allows faster
and more effective training than traditional units such as the hyperbolic tangent [29].

2.3.3. Pooling Layer

The pooling layer performs a non-linear sub-sampling operation that reduces the transversal
size of the activation maps, leaving their depth unchanged, with the aim not only of simplifying
the output of the previous convolutional layer but also of introducing invariance translational to
small displacements and distortions and, consequently, making it more robust than the localization
of the features. Resuming the analogy with the visual cortex, the pooling unit was inspired by
the behavior of complex cells: by capturing a growing visual field, they are able to learn spatial
hierarchies of feature patterns, resulting in less sensitivity to slight displacements in the position of
the salient features. The most popular form of the pooling operation is max pooling, which performs
non-linear sub-sampling by dividing the input into rectangular regions and returning the maximum
value within each window. It is a layer that does not have appreciable weights but for which a set of
hyper-parameters must be set before training, such as filter size, pitch (stride), and padding. If the size
of the filter, r, and stride are equal, the operation reduces the size of the input tensor for each channel
by a factor, r [30].

2.3.4. Fully Connected Layer (FC)

The activation maps output from the last feature extraction block are transformed into a vector and
connected to one or more fully connected layers, in which each value of the input vector is connected to
all the values of the next layer. The last fully connected layer will generate a vector of size, K, equal to
the number of classes in which the input must be classified [31].
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2.3.5. Softmax Layer

The activation function applied to the last fully connected layer generally differs from those
used in the previous levels and will be selected based on the task required from the network. In the
multi-class learning paradigm, the softmax function is used, which normalizes the K real values
obtained from the last FC layer in probability of belonging to the K classes in question [32].

3. Results and Discussion

In this study, a procedure for automatically identifying crashes between cars in an underground
garage is developed. To start, the sounds of a sector of a parking lot were recorded with the use of
a microphone. The microphone was positioned to cover the entire compartment sector; in addition,
the recording sessions were performed during peak periods in which the car park was mostly occupied
by customers’ cars.

3.1. Processing of Recorded Signals

The recordings covered several acoustic scenarios representative of the sounds that are produced
inside an underground car park. The sounds produced by people moving to and from cars were
recorded: noise of heels on the pavement, drag of shopping carts, conversation between people,
screams of children. Subsequently, the noises produced by the cars were recorded in the common
maneuvering operations: closing of the car doors, maneuver for the occupation of the parking stall,
movement of the cars in the lanes in search of a free stall, passage of the cars on the access ramps to
the compartment sector. Finally, noises from the air circulation system were recorded. Furthermore,
recordings of combinations of these noises were made in order to better represent the real situation.
A total of 150 audio tracks of around 1-min duration were recorded. To simulate a car crash, the audio
tracks were processed by adding a typical sound from a low speed car crash. Figure 3 shows the results
of this processing.Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 8 of 14 
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Figure 3 shows the results of the processing carried out on a recorded audio signal of just over
a minute. The graph shows the trend of sound pressure (left) and the trend of sound pressure level
(SPL). SPL is the pressure level of a sound, measured in decibels (dB). It is obtained through the
following equation:

SPL = 20 ∗ log10

(
p
p0

)
(3)

where
• p is the root mean square of the pressure level.
• p0 is a reference value for sound pressure, which, in air, assumes the standard value of 20 µPa.

In Figure 3a, a recorded audio track is shown in blue, relating to the maneuvering procedures
exiting a parking stall. At the bottom of the same figure (Figure 3b) is shown in red the same audio
track processed with the addition of the characteristic sound of a car accident. It is possible to notice a
slight difference between the two tracks in the middle of the 50–60 s range. This difference is minimal
and therefore represents a real challenge for the classification of the event. The difficulty in identifying
the event using a representation of the signal over time demonstrates the limits of this procedure,
which cannot be used. It is necessary to move on to the analysis of the signals in the frequency domain.

3.2. Feature Extraction

The first method used for the frequency analysis of stationary signals uses a bank of bandpass
filters, which is a series of devices which each allow only a certain frequency range to pass, leaving out
the components of the sound at higher and lower frequencies. By connecting a measuring instrument
to the output of each filter, it is possible to measure the signal level that belongs to the frequency range.
In a graph, a bandpass filter can be represented, with a zone in which the gain is almost constant
and equal to 0 db, and with two zones, on either side of the first one, in which the gain decreases to
negligible values. It should be noted that an ideal filter should have a gain curve like a rectangular
pulse, but if the device is made of passive components, the rising and falling edges can never be
vertical. Figure 4 shows the average spectra of two signals in bands of one-third octaves.
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In frequency analysis, the bands are defined to have a constant width or a width that is proportional
to the lower frequency of the band. The central frequency of the band is linked to its extreme frequencies,
higher frequency, and lower frequency, through the geometric mean. The bands used in acoustics,
present in many technical standards and regulations, are established according to international
conventions. A band subdivision with constant percentage amplitude is the octave band, widely used
in music. It is defined as a doubling in frequency, so having the frequency axis scaled by octaves means
having a bank of filters with a constant percentage height, so that each successive band is twice the
width of the previous one. An octave band can be divided into the corresponding three bands in thirds
of an octave.

From the analysis of Figure 4, there are no major differences between the two diagrams. There are
no frequency bands capable of discriminating between the two signals—that is, such as to allow
the classification of the signal. Altogether, this indicates that this descriptor is not adequate for the
identification of the crash event. We next investigated what would happen if we traced the spectrograms
of the two signals. As previously anticipated, a spectrogram is the representation of a sound using
a Cartesian in which time is represented on the abscissa, the frequency on the ordinate. In addition,
the frequency content is always represented with a color map. Figure 5 shows the spectrograms of the
two signals.Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 10 of 14 
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Figure 5. Spectrograms of the two signals: (a) at the top refers to a signal recorded in the underground
car park where there is the noise of a car maneuvering when leaving the parking stall. (b) at the bottom,
the crash signal has been added to the same signal.

From the analysis of Figure 5, it is possible to notice a broadband contribution towards the final
part of the signal. This is the distinctive feature of the crash between cars that we have added to the
signal recorded in the underground car park. This tells us that the spectrogram can represent a valid
descriptor of the event that we are trying to identify: a visual analysis of the event is not able to solve
the problem. To automate the event identification procedure, it is necessary to use a technology that
fully exploits the characteristics of an image. Convolutional neural networks are particularly suitable
for identifying objects in the image; for this reason, we decided to use this technology in the procedure.
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The images obtained were subsequently processed by carrying out simple transformations without
changing their structure. The images were subject to random rotation and flipping. In this way,
we were able to increase the number of images to be used in the subsequent training and test phases
from 300 images to 1200.

3.3. Sound Event Classification Using Convolutional Neural Network

The recorded sounds and those processed with the addition of the crash event were divided
into two sets: training set and test set. The classification model was trained using the training data,
while its performance was assessed using the test set. The proportion of confidential data for training
and testing was at the analyst’s discretion. The accuracy of the classifier was assessed based on the
accuracy achieved by the classifier on the test data. For our purposes, we divided the 1200 sounds
into a training set equal to 70% of the available sounds (840 sounds), equally distributed between
NoCrash events and Crash events. The remaining 30% equal to 360 sounds, also equally distributed
between NoCrash events and Crash events, were used to test the model’s performance. For each
sound, a spectrogram was developed, which was then saved as a png image with 800 × 800 pixels.

A model based on convolutional neural networks for the identification of the crash event in a
complex acoustic scenario has been developed. The model is based on an architecture with three
hidden levels, each of which is composed in sequence of a convolutional layer, a pooling layer, and a
ReLU layer. Subsequently, a flatten layer was inserted in order to reduce the map obtained from
one-dimensional information, and a fully connected layer was inserted, to then close with a densely
connected NN layer with a softmax activation function that returned the probability of belonging to
the two classes according to which the data have been labeled (NoCrash, Crash). All the layers of the
elaborated model are shown in Table 1.

Table 1. Convolutional neural network-based model architecture.

Layer Type Description Shape

Input Spectrogram image (800 × 800) png format (800 × 800 × 3)

1◦ Hidden
2D spatial convolution for images (399 × 399 × 32)

Max pooling operation for 2D spatial data (199 × 199 × 32)
ReLu activation function (199 × 199 × 32)

2◦ Hidden
2D spatial convolution for images (199 × 199 × 64)

Max pooling operation for 2D spatial data (99 × 99 × 64)
ReLu activation function (99 × 99 × 64)

3◦ Hidden
2D spatial convolution for images (99 × 99 × 64)

Max pooling operation for 2D spatial data (49 × 49 × 64)
ReLu activation function (49 × 49 × 64)

Flatten
Dimensionality reduction using a flatten operation (153,664)
Random deactivation of some neurons via dropout (153,664)

Fully connected
Layer of neurons interconnected with each other (64)

ReLu activation function (64)
Random deactivation of some neurons via dropout (64)

Output Densely- Layer of neurons interconnected with each other (2)
Softmax activation function (2)

In the architecture shown in Table 1, starting from the input data, each subsequent layer processes
the information provided in input and sends it to the next layer. In this way, feature maps are extracted
that allow us to locate the characteristic information of that audio event. These feature maps will then
be used to classify events, thus returning increasingly complex processing. After the training phase
performed by the hidden convolutional layers, the classification phase is performed by a network
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densely connected with a softmax activation function that returns the probability of belonging to its
outgoing classes.

In the first phase of the procedure shown in Figure 1, training of the model is foreseen using 70%
of the available data. Subsequently, the remaining 30% of the data is used for the model test; in this
way, the validation of the algorithm takes place with the use of new data, never processed by the model
until that moment. It is important that the set of tests is independent of the set used for sampling in
order to avoid too optimistic estimates. For the evaluation of the model’s performance, the accuracy
in the classification of the two sound classes (NoCrash, Crash) was calculated. Accuracy returns the
percentage of correct classifications on all observations submitted to the model. The model developed
using convolutional neural networks provided an accuracy of 0.87, showing the strength of the
procedure for identifying a crash in an underground car park. The accuracy of a prediction indicates
how close the expected value of a quantity is to the real value of that quantity. In our case, the real
value is available as we have measured the accuracy of the model on test data that have been properly
labeled. A classification model is a mathematical function that uniquely determines the class to which
a statistical unit belongs, based on the values observed for the variables of interest. Its predictive
accuracy depends on the ability to correctly classify new units, regardless of the class they come from.
A result such as that obtained (0.87) tells us that the model can correctly classify 87 cases out of 100 that
have been presented to it. Furthermore, it should be noted that this performance was obtained on a
sample equally representing the two classes.

The accuracy returned by the CNN-based model proved to be in line with the results obtained
from previous studies that used pattern recognition in different areas. Bardou et al. [33] used CNN to
classify lung sounds. The authors extracted the functionality of the local binary model (LBP) from the
visual representation of the audio files using spectrograms: the accuracy returned by the model was
0.80. Salamon et al. [34] used CNN to classify ambient sound. The accuracy returned by the model
was 0.75–0.80, and the performance was improved by performing a data-augmentation operation.
Piczak [35] used CNN to classify short sound clips of ambient sounds. A deep model consisting of
two convolutional levels with max pooling and two fully connected levels was trained on a low-level
representation of audio data using segmented spectrograms. The results of the model returned accuracy
ranging from 0.65 to 0.80 depending on the dataset used to confirm the importance of the data in the
correct classification of the audio sources.

4. Conclusions

In the social life of people, mobility is a crucial element to guarantee meeting and cultural and
service exchange. Among the means of transport, the car is most widely used by populations living on
the outskirts of large cities or in medium and small cities. For motorists, a prerequisite for reaching a
destination is the availability of parking in the immediate vicinity. This is the reason why large car parks
are built near large shopping and service centers to ensure that users can park. Often, these car parks
are very large and arranged on several underground floors. In such environments, checking security
is difficult and requires a large amount of resources. For some time now, large underground car
parks have been equipped with video surveillance systems which, in some cases, have sophisticated
systems for detecting moving objects [36]. Although these systems have often been studied to improve
performance [37,38], they currently do not guarantee adequate control due to the difficulty in identifying
an emergency.

Machine learning-based algorithms have recently been widely used in various fields both for
regression problems [39,40] and for classification problems [41–44]. In this work, a procedure was
developed to automatically identify sound events in an underground garage. The sounds of a parking
sector were detected with the use of microphones. These sounds were subsequently processed to add
a crash event and then labeled according to one of two classes (NoCrash, Crash). For the classification
of events, a model based on convolutional neural networks was developed.

From the experimental results, the following conclusions can be drawn:
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1. The characterization of the crash noise between cars did not highlight any trends in the time
domain, meaning that an analysis in this domain is not able to identify the event.

2. The comparison between the spectra in the frequency domain in the one-third octave band
during the two scenarios (NoCrash, Crash) shows that the two signals are comparable and no
tonal components are highlighted. This confirms that the ambient noise in such scenarios is so
complex that it is not possible to distinguish between the different acoustic sources, even using
this descriptor.

3. The comparison between the spectrograms of the two scenarios demonstrated a broadband
component at the event. This indicates that the spectrogram is a descriptor capable of
discriminating between the two scenarios.

4. A CNN-based rating system has proven to be able to identify the occurrence of a crash between
cars with an accuracy of 0.87, demonstrating the strength of the procedure for identifying an
accident in an underground parking garage.

This procedure can be used to enrich modern indoor video surveillance systems by simply adding
a microphone to the cameras. A CNN-based system will then be able to identify an audio event and
issue an alert that will focus the surveillance operator’s attention on the parking sector. The procedure
used in this study can be extended to other sound sources in order to identify specific sounds in
emergency situations that require an emergency response, in which the identification of possible risks
for users becomes difficult with traditional technologies.

The limits shown by CNN relate to computational costs, which are high, since it is an image
processing process; however, this is a disadvantage rather than a limit. This problem can be
overcome with better processing hardware that takes advantage of the graphics processing units
(GPU). In addition, the support of a surveillance operator is required in order to verify the alert signal;
therefore, the procedure is not fully automated. The latter limit can be overcome by integrating the
recognition of the images detected by the video cameras into the proposed classification system.
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