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Abstract: The increasing use of AI in different societal contexts intensified the debate on risks, ethical
problems and bias. Accordingly, promising research activities focus on debiasing to strengthen
fairness, accountability and transparency in machine learning. There is, though, a tendency to fix
societal and ethical issues with technical solutions that may cause additional, wicked problems.
Alternative analytical approaches are thus needed to avoid this and to comprehend how societal and
ethical issues occur in AI systems. Despite various forms of bias, ultimately, risks result from eventual
rule conflicts between the AI system behavior due to feature complexity and user practices with
limited options for scrutiny. Hence, although different forms of bias can occur, automation is their
common ground. The paper highlights the role of automation and explains why deep automation
bias (DAB) is a metarisk of AI. Based on former work it elaborates the main influencing factors and
develops a heuristic model for assessing DAB-related risks in AI systems. This model aims at raising
problem awareness and training on the sociotechnical risks resulting from AI-based automation and
contributes to improving the general explicability of AI systems beyond technical issues.

Keywords: artificial intelligence; machine learning; automation bias; fairness; transparency; account-
ability; explicability; uncertainty; human-in-the-loop; awareness raising

1. Introduction

Global society is subjected to a sociotechnical transformation writ large that is essen-
tially driven by artificial intelligence (AI) and machine learning (ML). This development
increasingly affects economic, social and political decision-making. The impact of AI is thus
expected to be enormous and accordingly, there is also a growing debate on the societal
risks and ethical problems related to the broader diffusion of AI systems in society. This
paper explores these issues and proposes a conceptual approach in order to facilitate deal-
ing with AI in a more constructive, risk-aware way. The main focus is on deep automation
bias (DAB), which I identified in [1] as a crucial problem that is inherent to the use of AI in
societal contexts. DAB represents a systemic metarisk that can be a useful reference point
to assess the risks of AI systems. Based on this previous work, the paper further develops
the approach. It discusses scope and different dimensions of DAB and how this metarisk
could be conceptualized to be useful for detecting related risks in AI systems.

There is little doubt that AI has great innovation potential. However, there are also
a number of serious risks that need to be tackled in order to avoid AI becoming one of
the most severe technological threats to society ever. Even though the use of AI aims to
benefit society, it is not sufficient to address risks with technical means only and assume
that potential harm to society would be exaggerated. Apparently, it is always a matter of
how technology is applied in particular application contexts and how its design relates to
the corresponding individual, institutional, societal and ethical requirements. The crux
is how to assess this and how to understand what kind of risks the use of AI bears. A
main objective of this paper therefore is, to explore potential answers to this question by
analyzing the role of automation in AI and how it affects the severity of sociotechnical risks.
The focus is on how to improve the general understanding of the societal impact of AI with
an analytical view on DAB, framed as a metarisk that can entail further risks. The paper is
thus a contribution to strengthen a problem-oriented approach to deal with the societal
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challenges of AI technology. This is important because as of yet, discussions on the risks of
AI seem to be dominated by a tendency to seek for technological fixes, e.g., to reduce bias
in ML. This is a fallacy because societal problems cannot be fixed by technological means
only. Several scholars thus argue that there is a need for approaches to better grasp the
societal and ethical issues of AI ([1–5]). In line with this, the paper explores the multiple
factors of DAB as sociotechnical metarisk and how this could support AI risk assessment.

The paper is structured as follows: after this introduction, Section 2 argues that the
current emphasis on fairness, accountability and transparency in ML (FAT-ML) is not
sufficient to tackle the risks of AI. Section 3 then discusses whether the use of AI leads to
so-called wicked problems. Based on this, Section 4 then explains why DAB is a crucial
issue, what main factors drive its occurrence and how they interrelate. Section 5 discusses
the specific role of automation in AI systems and its societal issues based on particular
examples. Section 6 then outlines a heuristic model to map and identity the occurrence
of DAB in an AI system. Finally, Section 7 of the paper provides a brief summary and
concluding remarks.

2. Why Fairness, Accountability and Transparency Are Not Enough

With AI becoming more widespread, there is an intensified debate on issues regarding
algorithmic bias, discrimination and debiasing by fostering FAT in ML. Many scholars from
various disciplines have been pointing out that algorithms and particularly ML are biased,
unfair and lack in transparency and accountability ([1–12]). To deal with these serious
issues, there is important research proceeding in the AI/ML community, particularly in
computer science, data science and related disciplines aiming at developing approaches for
debiasing and improving FAT ([3,4,12–15]). Correspondingly, there is a growing research
community dealing with these issues. This is observable, e.g., in annual conferences on
FAT/ML, algorithmic transparency etc. (e.g., the annual ACM FaccT conferences formerly
known as FAT*ML, www.fatml.org, accessed on 12 March 2021, or specific workshops like
Fair ML for Health). However, these research activities are largely dominated by a quest
for technical solutions to reduce bias in data sets, e.g., by integrating automated debiasing
functionality into AI systems (e.g., such as IBM’s OpenScale approach). While it is obviously
relevant to tackle these issues of data quality and technical bias, there is also a need for
approaches to address the societal and ethical issues of AI. Several scholars thus argue that
bias is not merely a technical issue ([1,3–6,11–17]). The complexity of the problem is already
observable in the various different, and partially contradictory notions and definitions
of fairness ([5,11]). Similar is the case for the other concepts of FAT. There is no general
definition for concepts such as fairness, unbiased, neutral, etc. [11]. Transparency, which
is basically essential, and which is not just an ethical principle but an enabling condition
for ethical practices ([5,17]), can also have ambiguous meanings. From a technical design
perspective, transparency can even mean hiding information from users, with the aim to
reduce complexity and ease understandability by avoiding information overload. This can
be in opposition to common understandings of transparency as comprehensibility (cf. [18],
(p. 67ff.). Hence, there is a paradox situation as technical approaches to tackle bias might
create additional bias with further societal impact.

In spite of the currently strong research focus on bias in ML, the problem as such,
bias in digital technology, is nothing new. In their work, Friedman and Nissenbaum
(1996) argued for a better understanding of bias in computer systems, which can lead
to discrimination of individuals or groups. Biased systems that affect individuals bear
the risk of becoming “instruments of injustice” [6], (p. 345f.). They differ in three types
of bias: (1) preexisting, (2) technical and (3) emergent bias. (1) Preexisting bias exists in
society, in social institutions, cultural practices or attitudes of individual persons. It occurs
independently from a technological system but it can flow into the system in different ways,
e.g., as implicit prejudice of an individual developer or a common cultural practice, or also
explicitly as intended form of discrimination. However, in most cases, it probably results
from entrenched, nonreflective preconceptions. (2) Technical bias results from constraints
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due to the design or functionality of a system. This can include hard- and software issues
like rulesets programmed into algorithms that unreasonably formalize social values or
similar. (3) Emergent bias occurs when a system is in use that does not correspond with
the peculiarities of application contexts; or when there is some kind of mismatch between
what users or a usage context requires, and what the system features [6,16]. The context
of deployment of an AI system, thus, can make a significant difference to the proper
functioning of this system. Accordingly, the question is crucial if the AI or ML approach
fits the particular context it is applied to. In [5], they discuss this issue as context bias that
emerges when a system “is used in a new environment”. They refer to the example of a
healthcare algorithm developed for the context of a hospital to manage resource allocation.
Even though the system may function appropriately for the hospital applying it, e.g., for a
smaller rural clinic, the system may be flawed and produce inappropriate or misleading
results. This is because the application context of the system does not correspond with the
initial context the system was designed for. Amongst others, this example reminds us that
it is crucial to bear in mind that the context in which an AI system, ML algorithm, etc., is
applied has an effect on its functioning which consequently has an impact on the system
and its sociotechnical environment as a whole.

Against this background, it is thus generally questionable whether technical fixes can
effectively contribute to ease problems that are at their core sociotechnical issues with seri-
ous ethical and societal implications. From the perspective of technology assessment and
science and technology studies (STS), a techno-centered understanding of the problem itself
can even aggravate the problem because the functioning of technology does not always
correspond with the societal contexts it is applied to. An essential precondition for account-
ability and transparency is that AI needs to function in a predictable and controllable way.
A system, though, that is biased and automatically attempts to debias may become even
more opaque and thus uncontrollable for humans. Because then neither the occurrence
of bias nor the technical approach of debiasing might be comprehensible. This could lead
to a complex dilemma or vicious circle where bias and debiasing approaches reinforce
themselves. One of many differences between AI and human cognition is that humans
can basically recognize and adapt to changed situations or contexts. AI systems usually
do not have this capability. Technical approaches, such as reinforcing the adaptability of
AI are not appropriate solutions to compensate this because it could even reinforce the
problem: a system that frequently attempts to adapt to its environment might be even
more unpredictable in behavior. Consequently, this would lead to an opaque, erratically
functioning AI which would be even more of a threat than of use. To avoid such dilemmas,
there is need for broader analytical perspectives that do not just focus on the technical
issues of bias but bring together different views from multiple disciplines.

3. Employing AI Systems—A Set of Wicked Problems?

There are various difficulties behind the tempting (and misleading) assumption that
every issue of AI, irrespective of whether it is technical or social, could be fixed by technical
means. To realize that, it is useful to consider that AI can entail so-called wicked problems.
Wicked problems are defined as a “class of social system problems which are ill-formulated,
where the information is confusing, where there are many clients and decisionmakers
with conflicting values, and where the ramifications in the whole system are thoroughly
confusing” [19]. The idea of wicked problems originally stems from philosopher Karl
Popper. Horst Rittel, a mathematician and designer, took up Poppers idea and, together
with Marvin Webber, formulated ten properties of wicked problems [20]:

1. WPs have no definitive formulation.
2. WPs have no stopping rules.
3. Solutions to WPs cannot be true or false as they are context-dependent or value-laden.
4. There is no immediate and no ultimate test of a solution to a WP.
5. Solving a WP is a “one shot“ operation with no room for trial and error.
6. There is no exhaustive list of admissible operations to solve WPs.
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7. Every WP is essentially unique.
8. Every WP is a symptom of another “higher level“ problem.
9. Every WP can be explained in various ways; the chosen way determines the nature of

the problem’s resolution.
10. Planners have no right to be wrong and are fully responsible for their actions.

From an engineering point of view, one may argue that some of these properties do
not apply to AI systems. For instance, because AI systems have definitive formulations,
clear rule sets and architecture, systemic boundaries, etc. Indeed, this may be valid if we
look at AI systems from a sheer technical perspective. However, amongst other things,
particularly AI systems imply a high degree of connectivity and interactivity with their
environment. Therefore, it does not make sense to perceive them as closed systems, even
though some systems might be closed in a narrow technical sense. In the original meaning,
the framing of wicked problems basically refers to general issues of planning and policy-
making. Their properties are thus not specifically applicable to the technical development
of AI systems and might indeed be less relevant for ML developers. However, recalling
the properties of the wicked problems might be supportive to come to a broader, problem-
oriented perspective; especially for decision-makers and planners concerned with the use
of AI systems in particular societal contexts. This could contribute to gain alternative
views on the socio-technical complexity involved in the development and planning of
AI systems. Akin to what Rittel and Webber [20] highlight for planning, for AI research
and development, it is not just important to ask what AI systems are made of but also
what AI systems do, as well as what should AI systems do? Neglecting these questions
is akin to neglecting the fact that societal problems related to AI usage are different from
the problems that AI architects and developers deal with. The crux is that AI research
and development need more awareness and analytical perspectives that enable the grasp
of technical as well as societal issues of AI systems. This includes accepting the fact that
technical solutions are not always appropriate to fix societal problems but may require
alternative approaches.

The core issue of a wicked problem is that there is a gap between determinism
as a result of a given design or technology and indeterminism of the parts of reality
which are affected by the use of the technology. This a general issue that can be found
in every technology and which implies a conflicting relationship between determinacy
and indeterminacy, or in other words: between the “artificial” and the “natural” [19].
AI makes this issue more severe as its use can have wider societal consequences: due
to the high degree of automation inherent to AI, this conflict may intensify as AI has a
transformative capacity where “natural” aspects of society are at risk of becoming reduced
to machine-readable, datafied models that fit the logics of the artificial. AI in this regard
bears the risk of an ‘incremental “normalization” of society ( . . . ) for the sake of AI-based
automation’ [1]. This not only complicates transparency and accountability of AI-based
applications but also reinforces the risks of undetected failure and self-fulfilling prophecies.

To deal with such risks, it is important to recall that automation is not an inevitable
path we must take with AI; or as [11] points out (p. 5): “automation is not a straight-
forward perspective, but a choice.” Consequently, “there is somebody who makes the
choice and there should be reasons” justifying this choice. Otherwise, if there are no
plausible reasons that justify automation through AI in particular contexts, automation
should be questioned, critically assessed to comprehend its wider consequences and
societal costs. More specifically, this means that we need better strategies to detect and
avoid rule conflicts inherent to AI systems and conflicts between AI systems and their
application contexts in real world settings. Based on the role of automation, the following
sections discuss this aspect more thoroughly and propose potential ways to identify and
handle eventual conflicts between system behavior and user practices.
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4. Why AI-Based Automation Makes a Difference

Apparently, not every use of AI provides the same form of automation. In the litera-
ture, there are various concepts for categorizing different levels of automation. A common
distinction in the domain of autonomous vehicles, for instance, involves five or six lev-
els [21]. A classical approach is from [22] who provide a comprehensive list of ten general
automation levels; further concepts can be found in [23], offering a detailed literature
review on automation in manufacturing. For AI-based automation, there are varying ap-
proaches that orientate on the levels of driving automation. For example, Ref. [24] adapted
these levels to systems based on natural language processing. All these concepts are useful
to systematize automation. However, the main focus of these approaches is on categorizing
the extent to which a system operates automatically. This is relevant but it is of limited use
in the context of this paper, i.e., how to raise problem awareness and critical AI literacy.
Because the existing approaches rather describe what is automated but not why and where,
human intervention or scrutiny is important in spite of or especially because of automation.
As a consequence, the basic functioning and impact of automation remain inexplicable and
uncontrollable, especially for people without technical expertise. Here, particularly ML
is an important issue as the degree of automation of an AI system is not least determined
by the data model and the ML approaches embedded in the system. Different approaches
can have different implications for the degree of automation and thus also for DAB-related
risks. Therefore, it is important, also for nontechnical users, to understand the implications
of automation, including the general ML approach (for an overview see, e.g., [25]) of the
system they interact with. Typically, supervised learning has a lower degree of automation
than unsupervised, reinforcement, or deep learning. The latter currently offers the highest
level of automation as it can feature self-optimizing algorithms or similar. Reinforcement
learning usually interacts dynamically with the environment, e.g., through sensors and
feedback to gather data, deep learning typically requires more training data and has higher
feature engineering capabilities. Both approaches are highly dynamic and thus may tend
to reinforce more unpredictable behavior compared to, e.g., supervised learning which is
based on predetermined criteria and relatively stable training data. The main aspect here is
that not every ML approach might be appropriate for any given application context. This
is clear for developers and technical experts but not for standard users or decision-makers
interacting with AI systems. To avoid problems and DAB, it is thus also important to
raise awareness of the peculiarities of the ML approach in use and its potential issues in
particular contexts among decision-makers and persons interacting with AI systems. The
following examples highlight the relevance of this aspect:

The first example concerns a classical form of automation: an autopilot system of an
airplane, which usually is a rule-based system that does not need to have a comprehensive
model incorporating the whole complexity of reality. This would even be counterproduc-
tive, but it obviously needs to have a plausible model of the landscape, the environment
of the aircraft, etc., in order to provide reliable information to the pilot so that he or she
can comprehend whether the autopilot and the plane function correctly and, in case of
problems, can rapidly correct failure so that the airplane remains in control and safe. Every
autopilot system usually bears certain risks of AB [26,27] which can be reduced by extensive
training and technical design mechanisms to reduce overreliance and foster controllability
of the system. However, this gets more complicated the more complex and less predictably
a system behaves. This is what DAB addresses. A worst case in this example would be,
if the autopilot is based on a predictive deep learning approach permanently attempting
to optimize the flight route without any effective option for human pilots to intervene.
Consequently, the human pilot would then lag behind the decisions of the autopilot leading
to an escalating vicious circle where the autopilot decisions and the human intervention to
correct them collide. In other words: there is a risk that AI-based automation overrules
human autonomy. The severity of this risk depends not just on general explicability but
also on plausibility, reliability, predictability and intervenability of the automated system.
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Because even though it might be explicable to the human pilot how the autopilot behaves,
it is worthless without intervention in case of problems.

Another example concerns the use of AI systems for job applications in human re-
source management (HR). There are various evident cases of discrimination of job-seekers
by an AI system in this domain. For instance, Ref. [28] revealed a case where the algorithm
of such a system used a model that incorporated the background image of a person to
compute the qualification score of an applicant. Hence, the system inter alia assumes
persons sitting in front of a bookshelf would be better qualified for a job than persons
with, e.g., a transparent background. Similar is the case for black persons or persons
with lower contrasting visual backgrounds. This can also involve racial discrimination
which is evident in other AI-based hiring tools as well as a large variety of algorithmic
systems (see, e.g., [9,29–34]). Obviously, the color of the skin, the ethnicity as well as the
background visuals during a job interview are completely irrelevant for the qualification
of an applicant. This a typical case of algorithmic bias that also highlights a likely risk of
DAB resulting from the use of AI systems in social domains that used to be nonautomated.
Here, DAB occurs, if the HR employee inviting a job-seeker for an interview uncritically
accepts the preselection of the algorithm, e.g., because he is either unaware of the problem
or does not care. Consequently, those applicants without a bookshelf in the background
are discriminated as they have lower chances to get the job. Particularly tricky in such
a case is, that the HR employee may not even be aware of the algorithmic bias and the
discrimination, which is deeply enshrined in the system and thus, is very difficult to reveal.

Such problems cannot be fixed by technical means alone, such as improving FAT
or debiasing. To point out why, we can imagine a typical approach of debiasing here:
e.g., to adapt the algorithm so that it explicitly does not consider the background image
at all. This would at least reduce bias resulting from background images, but it does
not solve any other eventual issues resulting from other criteria the algorithm uses to
preselect applicants. It would only be a one-shot solution to a symptom of a larger (wicked)
problem. Beside the relatively simple aforementioned examples, there are several more
complex issues like stereotypes and bias in large scale data models or ML frameworks
that can significantly affect system behavior ([35,36]). Severe problems can occur with AI
systems used in the health sector, where a variety of unintended consequences can lead to
inappropriate decisions ([33,36,37]). In their study, Ref. [36] identified several problems
with ML algorithms in clinical applications, particularly “overreliance on automation,
algorithms based on biased data, and algorithms that do not provide information that is
clinically meaningful”. They thus conclude that automation can be useful but “overreliance
on automation is not desirable”. To reduce these problems, they argue that there is a
need for measures to improve the understanding of the “intent behind the design” of AI
systems “including choosing appropriate questions and settings for machine learning use,
interpreting findings, and conducting follow-up studies” [36]. This could contribute to
meaningful and ethically acceptable use of such systems with beneficial effects. Therefore,
it is crucial to gain an analytical perspective on the problem that allows not just its technical
but also societal dimensions to be considered. The following sections are dedicated to this
aspect, elaborate on the main drivers of automation risks and then propose approaches
that can facilitate the easing of the situation in real-world settings.

5. Influencing Factors of Deep Automation Bias

There are several guidelines and approaches that highlight the various issues of AI
concerning ethics, human rights, bias, responsibility and trust, etc. (e.g., [38–42]). However,
there is a general lack in practicability among those approaches as their focus is either on
highlighting basic ethical requirements like avoiding harm and stimulating benefits for
society, justice, and autonomy; or on technical challenges such as data quality or attempts to
operationalize ethical principles in technology. Apparently, many of these approaches are
relevant, but we also need more specific, problem-oriented approaches that provide useful



Big Data Cogn. Comput. 2021, 5, 18 7 of 14

for application contexts of AI without getting lost in ethical debates beyond practicability
or misleading technocratic approaches to societal problems.

In order to circumvent this, a systemic perspective on AI that incorporates a major
implication of its use in societal contexts could be fruitful to sharpen the analytical lens
on the variety of sociotechnical issues. More precisely, this suggests more emphasis on
automation which is a common denominator of AI systems irrespective of their particular
design. AI basically implies a higher degree of automation than any other technology.
Or in other words: AI-based technology represents a sociotechnical system that enables
and fosters automation at different levels. Consequently, a problem-oriented assessment
of the sociotechnical impact of an AI system involves gaining knowledge on the basic
functionality including the degrees of automation of the system. The crux is that this is not
easy to determine and highly context-dependent. Therefore, it makes sense to focus on how
automation occurs in an AI system and how it affects its application context. Focusing on
automation as an analytical frame puts greater emphasis on the procedural and structural
changes resulting from AI usage, and, with appropriate concepts, also on the practical
effects and societal implications of these changes in particular application contexts. Put
simply, a key aspect to improving the sociotechnical understanding of AI-related problems
is to think of these questions together: how does automation occur in an AI system and
how does this lead to the generation of a particular output? What are the consequences of
this output for human users and, in a wider view, for its societal context?

A general risk of automation is automation bias (AB), which describes the tendency
to uncritically accept the computer-generated outcome (from a technical system). A basic
reason for AB and the corresponding lack of critical reflection or scrutiny of the results
from the lack of options to scrutinize how a system generated a certain outcome. This
refers to, e.g., known issues like lacking transparency, accountability, explicability, verifia-
bility, interpretability, etc. AI technology provides a higher form of automation than other
technology which implies that AI can reinforce the risks of AB. In [1], I thus introduced
deep automation bias (DAB) as a core problem of AI usage to highlight that AI technology
significantly reinforces the risks of AB due to ML featuring adaptivity and unsupervised or
self-learning capabilities (e.g., deep learning). DAB addresses the problem of increasing
levels of complexity and opacity of AI that reinforce AB due to its dynamic, unpredictable
and thus potentially uncontrollable behavior [1]. It includes the self-reinforcing prob-
lem of wrong expectations of AI functionality due to the human propensity to blindly
trust in technology on the one hand, and the limits of technology due to its necessarily
abstract/reductionistic model of societal reality on the other. This can lead to a vicious
circle as unpredictable behavior of a system benefits unreliable decisions based on this
system which then can reinforce pressure to (re-)act to adapt to system behavior. The result
can be a nonoptimal acceptance of insufficient system functionality or failure due to a
lack of other/better choices. As a wider consequence, society then becomes even more
dependent on AI which increasingly produces an impact on society and individuals that
hampers alternatives. DAB is thus a metarisk of AI systems and their intrinsic dynamics.
A pressing question in this regard is: how to scrutinize a system and its societal impact
that dynamically changes its algorithmic rule sets and consequently, its functionality?

Essentially, this requires heuristic approaches that enable the gaining of the aforemen-
tioned systemic perspective. In this regard, it is crucial to understand how DAB can emerge
and what main factors influence the severity of DAB-related risks. A basic component is
uncertainty, which can have different but interrelated reasons. According to studies on AB,
humans tend to over-rely on automated systems due to: inexperience or lack of skills or
confidence, lack of options to scrutinize an automated process (input, output, or action).
This can be further complicated due to little practical experience or limited resources, e.g.,
due to pressure to act, lack of time and high workload [27,43–45]. All these issues are likely
to aggravate in the case of DAB. In particular, as the higher complexity and opacity of
AI systems reinforces the problem of lacking options to scrutinize the functionality and
automated processes of the system. This can lead to further issues, i.e., a lack of agency, e.g.,
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because of a generally lacking problem awareness and/or a lack of options to intervene in
an automated decision-making process.

These factors are not to be misinterpreted as human deficits which could be fixed
by technical means only like, e.g., fostering usability. Besides these human factors there
are also technical factors that affect the severity of DAB-related risks. Figure 1 illustrates
the interplay of these different factors from both the technical (blue circled area) and the
human (green circled area) perspective:
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top is the “classical” AB risk of overreliance on the behavior of an AI system which can
involve misinterpretation; the bottom shows the additional risk of limited controllability
and lack of agency. Both dimensions are interrelated and the severity of DAB depends on
the interplay of different sociotechnical factors. The main connecting factor is uncertainty
which is shaped by technical as well as social issues. Both can reinforce mutually, as
the intersection highlights. From a technical perspective, system complexity, opacity or
unpredictable system behavior strongly depend on the quality of data models and ML
performance, as well as from usability features. The interplay of these factors basically
affects system behavior and the degree of uncertainty. This can have a negative effect on
the transparency and accountability of the system and the options to verify and scrutinize
system behavior. From the social perspective, the aforementioned factors of AB, such as
user skills, resources or practical experience, affect uncertainty and particularly the problem
awareness of the human agent. Resources here typically mean the time and knowledge
to comprehend, interpret or verify the system behavior, such as the generated output or
action triggered based on the system performance, etc. The interplay of all these factors
influences the ability to comprehend and interpret the functioning of the system. This
typically involves input, output, or action, and if there is a need for scrutiny and evaluation
of system behavior. Hence, the risk of DAB is potentially higher when there is either a lack
of accountability and options to scrutinize system behavior and/or low problem awareness
due to lack of options to comprehend how and what foundation the system generates
an output or how the system triggers particular actions, etc. These issues can mutually
reinforce and increase uncertainty (e.g., low options for scrutiny benefit lacking agency,
low problem awareness hampers the ability to scrutinize and thus agency). The interplay
of all these factors affects the severity of DAB-related risks.
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The core aspect the model highlights is that the higher the mismatch between both
perspectives (system behavior and user practices), the higher is the risk of DAB. Hence,
DAB ultimately bears the risks of undetected mismatches or conflicts between the AI
model of reality and the human users’ model of reality in a particular application context.
DAB-related risks are basically higher, when it is hampered or impossible to critically
assess whether the functioning and behavior of an AI system is transparent, explicable,
plausible, reliable or legitimate. The degree of automation plays a particularly important
role in this regard. To assess the risks of an AI system thus also requires consideration
of the extent to which automated procedures are involved. This supports the raising of
problem awareness and critical AI literacy in order to deal with DAB-related risks from a
sociotechnical perspective.

6. A Draft Heuristic Model to Assess DAB

In Section 4, I presented the main factors that affect DAB. This section now outlines
some aspects of system behavior that can affect DAB. A basic determinant for DAB-related
risks is the occurrence of contradictions or rule conflicts between factual system behavior
and the expectations of the human user of how the system behaves. This distinction is
important because the increasing use of AI systems in societal contexts also entails an
incremental reduction of complex social issues for the sake of algorithmic representation,
measurement and operation. As any computer model, also data models and algorithmic
rule sets of AI are necessarily abstract and reductionist as they cannot completely represent
the whole complexity of a real-world context. Humans have better skills in this regard.
Consequently, AI models are less complex than social reality. This is unproblematic as
long as system behavior is predictable, explicable and interpretable for human entities and
options for intervention are available if necessary. Problems occur in the case of a mismatch
that remains undetected or uncorrected, leading to problematic decisions or actions (as
also discussed in Section 4). The following model in Figure 2 illustrates an approach to
raise awareness on these issues and to reveal eventual rule conflicts or mismatches:
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The simplified core of the AI system is represented by the data model and the ML
approach which build a functional unit that determines input, output and action of the
system. To some extent, the specific features of this unit predetermine the degree of
automation of the system and thus the general susceptibility to DAB. Therefore, it makes a
difference, e.g., if training data stems from external or internal sources, how accurate and
reliable the data is, and if data is dynamically gathered through sensors during system
operation, etc. The same applies to the ML approach which also affects the degree of
automation and system behavior. As mentioned before, DAB basically occurs in the case of
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mismatch between factual system behavior and human interpretation of this behavior. This
may concern the input, output or action of the system for different reasons. For instance,
the input might be incorrect entailing further issues; or correct but not comprehensible; or
the output is invalid but the error remains uncorrected; or the system operates formally
correctly but produces outcome or leads to actions that are opaque or incompatible with
the application context of the system. This can involve a violation of legal obligations,
human rights (such as privacy, security, autonomy, dignity), reinforcement of prejudice
and discrimination or other ethical issues.

To consider that the occurrence of DAB can have different reasons, the model involves
different levels of human scrutiny and oversight. A precondition for this is a human-
in-the-loop (HITL) concept [46] as an integral part of the AI system. HITL here is not
limited to technical issues like supporting ML feature learning or the like. Depending on
the specifics of an AI-system, this can be a typical part of the review as well. However,
basically, HITL here has a broader scope, i.e., to facilitate human review loops during
system operation in order to assess DAB-related risks at different sociotechnical levels.
Therefore, it is modeled at the threshold between the AI system and the review queries
that concern the application context. Consequently, humans that review the system are not
necessarily system developers but persons who comprehend the functioning of the system
and its wider sociotechnical effects in a particular application context. Ideally, more than
one person is involved in the review. How this is operationalized in practice depends on
the features of an AI-system in particular. However, the model highlights the necessity
to foresee review processes that consider the whole functioning and performance of the
system (including, input, output and action).

There are four basic levels which are not necessarily iterative but apply to input,
output as well as outcome/action of the system: (1) Explicability concerns the assessment
of how explicable and comprehensible the system behavior is. (2) Validity involves the
question of whether the system operates correctly, uses or produces accurate information
that is formally valid for the processes it relates to. (3) Plausibility comprises a check, if the
system behavior is not just formally correct in a technical sense but also plausible, traceable
and interpretable to human users without uncertainties or doubts concerning generation
and reproducibility of the results. For each case applies: the next check can be performed
if there is no significant doubt or uncertainty concerning the issue remaining. Otherwise,
if something in the system operation is questionable or uncertain, then a more detailed
review of the system behavior is necessary with different experts involved. The final level,
(4) acceptability/compatibility concerns the question of whether the behavior and overall
outcome of the system is acceptable and compatible with the context to which it is applied,
also in a legal and ethical sense. In the case of uncertainties or open issues regarding legal
or ethical compliance, the system needs additional compliance checking. Until this review
is proceeding and not finished, the AI system should be taken out of operation to avoid
legal or ethical issues or any further risks and harmful events.

If all queries were positively answered, the behavior of the system seems to be basically
reasonable and explicable in a way that is appropriate and acceptable for the application
context. This means that no opaque or incomprehensible modes of system behavior were
detected during a regular review. Consequently, there was no DAB risk observable. As
the term suggests, this regular review is meant to be on a regular basis, and in any case
of irregularities or uncertainties, a further, more detailed in-depth review process (the
orange block at the bottom) is triggered. To ensure that the system behavior remains
stable with low DAB-risks, it is advisable to conduct frequent in-depth review processes
also if no irregularities were detected (as represented by the dotted line on the right).
This apparently includes legal and ethical compliance checking which requires additional
expertise. Therefore, this block is modeled at the threshold between regular and in-depth
review. In any case, in-depth review ideally involves a specific review board of different
experts with technical as well as organizational, legal and ethical skills or a mix of system
developers, planners, decision-makers and practitioners. In-depth review means that the
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system as a whole (including its design and behavior and outcome in different contexts) is
inspected and analyzed by the expert board.

7. Summary and Conclusions

A main argument of this paper is that technical approaches to improve FAT or debias-
ing are not sufficient to address the sociotechnical and ethical risks related to the use of AI
systems. Particularly, because these risks may involve several wicked problems that may
require alternative approaches beyond technical solutions. Certainly, bias in ML is a critical
issue of AI systems with various reasons and effects. Bias can result from pre-existing
prejudice during technical development, technical issues such as poor data quality, insuffi-
cient modeling, or inappropriate operation of ML-algorithms, etc. Ultimately, though, bias
can also result from rule conflicts between AI design and AI application contexts due to
complexity gaps between (algorithmic/statistical) assumptions in the AI system and user
practices. Hence, although different forms of bias can occur in an AI system, automation
is their common ground. Therefore, the paper focusses on deep automation bias (DAB)
as a metarisk of AI. There is indeed a lot of relevant research in the field of FAT and
debiasing with several important approaches in this regard. Furthermore, it is important to
consider ethical implications of a technology at an early stage of development. However,
incorporating ethical values into technology design as part of automated procedures as
such can be counterproductive and could worsen the situation by making existing societal
risks of AI even more severe. Related to that, there is also a risk of “agency-laundering”
meaning that instead of taking responsibility for unethical actions and measures to correct
them, ethical and societal problems remain unsolved [5]. Accordingly, techno-fixes for FAT
and the like might be misused to avoid taking responsibility by reframing the problems to
sheer technical issues. To avoid this, we need to be aware of the fact that the problems that
bias in ML can induce, like unfair/discriminating, false, misleading, unethical or socially
inacceptable outcomes, are not sheer technical, but sociotechnical issues. Otherwise, there
is no chance to understand the societal implications of AI systems, its risks and thus also
no option to effectively avoid different forms of bias, discrimination, system malfunction
or unethical consequences.

The conceptualization of DAB in this paper is an attempt of an alternative analytical
frame to improve practical problem awareness in this regard. As argued, automation
plays a particular role in AI with different degrees and implications for the application
context of AI systems. A stronger focus on this role is thus important to tackle the variety
of sociotechnical risks and broaden the analytical view. To stimulate this focus with an
analytical lens, the paper presented and discussed DAB as a metarisk inherent to AI systems.
As shown in Section 5, DAB is a multifaceted problem that is shaped by a number of driving
factors comprising technical as well as social issues that together affect uncertainty on how
to comprehend and scrutinize the functionality and behavior of an AI system. The main
issue of DAB concerns conflicts or undetected mismatches between the behavior of an
AI system and human user practices. Risks of DAB are basically given in cases, where it
is hampered or impossible to critically assess whether the functioning and behavior of
an AI system is transparent, explicable, plausible, reliable or legitimate. Particularly the
degree of automation plays an important role in this regard. To highlight this issue, the
proposed heuristic model in Section 6 provides an approach to assess DAB-related risks
of AI systems. The basic idea here is a to arrive at approaches that ease regular review to
detect DAB-related risks due to conflicts or mismatches between system behavior and user
practices. In case of problems or uncertainties, this could be linked to in-depth reviews
where different experts can then analyze the system behavior in detail. This heuristic model
can be also of practical use in real world settings to support users or non-technical experts
in detecting DAB-related risks of AI systems. Depending on the identified issue, further,
more detailed review phases might then be triggered. In this regard, the model also aims
at supporting “human-in-the-loop” concepts which are basically essential. However, to be
effective, they require more awareness on the role of automation in AI systems, including



Big Data Cogn. Comput. 2021, 5, 18 12 of 14

its effects, limits and societal implications. This paper is a contribution in this respect.
Further research is necessary which may also involve a stronger focus on the variable
degrees of automation in AI systems and how to foster explicability and scrutiny on a
general level. This is not least relevant in order to come to harmonized approaches that
combine technical solutions for FAT and debiasing with advanced concepts of training
and education for human actors interacting with AI or being confronted with the use
of AI systems in particular application contexts. This could be supportive to avoid AI
shaping society as blackbox-systems beyond human control and come to a responsible
implementation and use of AI in accordance with ethical principles, societal values and
human wellbeing.
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