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Abstract: Recent advancements of Generative Adversarial Networks (GANs) pose emerging yet
serious privacy risks threatening digital media’s integrity and trustworthiness, specifically digital
video, through synthesizing hyper-realistic images and videos, i.e., DeepFakes. The need for as-
certaining the trustworthiness of digital media calls for automatic yet accurate DeepFake detection
algorithms. This paper presents an attention-based DeepFake detection (ADD) method that exploits
the fine-grained and spatial locality attributes of artificially synthesized videos for enhanced de-
tection. ADD framework is composed of two main components including face close-up and face
shut-off data augmentation methods and is applicable to any classifier based on convolutional neural
network architecture. ADD first locates potentially manipulated areas of the input image to extract
representative features. Second, the detection model is forced to pay more attention to these forgery
regions in the decision-making process through a particular focus on interpreting the sample in
the learning phase. ADD’s performance is evaluated against two challenging datasets of DeepFake
forensics, i.e., Celeb-DF (V2) and WildDeepFake. We demonstrated the generalization of ADD by
evaluating four popular classifiers, namely VGGNet, ResNet, Xception, and MobileNet. The obtained
results demonstrate that ADD can boost the detection performance of all four baseline classifiers sig-
nificantly on both benchmark datasets. Particularly, ADD with ResNet backbone detects DeepFakes
with more than 98.3% on Celeb-DF (V2), outperforming state-of-the-art DeepFake detection methods.

Keywords: computer vision; cybersecurity; generative adversarial networks; DeepFake detection

1. Introduction
The recent advances in the field of deep learning, specifically generative adversarial

networks [1,2] and convolutional auto-encoders [3], have significantly propelled the gen-
eration of sophisticated and compelling forged versions of misinformation of all kinds.
Generally, fake information is carried out for malicious purposes, such as propaganda or
misinformation campaigns. In the context of digital video, sophisticated image and video
manipulation techniques have emerged as one of the most sinister forms of misinformation,
posing emerging yet increasing privacy risks targeting large-scale communities all over
the world [4–8]. Such manipulated videos are so sophisticated that they are extremely
difficult to detect using state-of-the-art Artificial Intelligence (AI) visual media forensic
tools, or even with human eyes [9]. Moreover, recent improvements in computer vision
and deep learning techniques have made it extremely easy to create fake videos called
DeepFakes, hyper-realistic and deceptive videos of real people by manipulating the face re-
gion while leaving only minimal visual artifacts [10,11]. Mainly, DeepFakes are the product
of merging, combining, replacing, and superimposing images and videos using AI tech-
niques to generate fake digital videos that appear authentic [12]. While initial DeepFake
videos were benign and plain, created for fun or artistic values, adversaries abused this
technology for malicious purposes leading to severe political, social, financial, and legal
consequences [12–15]. The DeepFake videos’ impact becomes more critical considering
the scope, scale, and sophistication of the technology involved, as they can be fabricated
using a simple computer [14]. Furthermore, DeepFake generation algorithms are evolving
continually, which not only improve their visual quality but also makes them better at
circumventing existing detection methods.
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Thanks to the accessibility of large-volume training data, high-throughput computing
power, and automated generation procedures, there has been a huge surge in developing
new DeepFake creation algorithms. DeepFake generation methods can be categorized into
before deep learning approaches [3,16–20] and deep learning-based approaches [21–25].
Despite small differences in the design of different DeepFake generators, they all follow
the same flow. The common flow is to take in a video of a specific individual (target)
and replace its face with another person (source). The backbone of the recent deceptive
algorithms is generative adversarial networks, which map the source’s facial expressions to
the target through which it can achieve a high level of realism with a proper post-processing
step [11].

As DeepFakes became super-realistic and more pervasive, ascertaining a digital
video’s trustworthiness and deciding on its authenticity becomes a more demanding
yet challenging task. The fact that DeepFakes are created exploiting an AI algorithm
rather than a camera capturing real events implies that they can still be detected using
advanced deep learning networks [26]. Recently, multiple research works have focused
on presenting a comprehensive understanding of the state-of-the-art methods and com-
parative analysis of DeepFakes [27–29]. The literature in this field shows that DeepFakes
are inherently equipped with different artifacts ranging from visible artifacts as in earlier
DeepFakes [11,30,31] to more hidden traces in more sophisticated DeepFakes [10,32,33],
which can be exploited using high-level AI models to develop an automated digital video
authentication system.

Objectives. This paper’s primary goal is to present a digital video authentication system
that offers high detection performance while covering a wide range of possible manipu-
lation techniques. Such a digital media forensics tool is vital in the real-world scenario,
considering the adversary’s ever-evolving techniques in generating more deceptive Deep-
Fakes. In general, training a new detection model is a computationally heavy and time-
consuming process or even impractical due to a lack of sufficiently labeled data from the
new manipulation technique. However, this goal can be achieved by forcing the model to
learn hidden traces and intrinsic representations from manipulated regions.

Contributions. In this work, we look at the DeepFake detection task as a Fine-Grained
Visual Classification (FGVC) problem. In both assignments, the main goal is to recognize
the subordinate-level categories under a basic-level category. First, there is a substantial
variance in the same class’s images in terms of poses and viewpoints of the face, even
for a person in the same video. Second, there is a minimal variance between the two
different class images. The difference between the original and the fabricated image is tiny
enough to deceive even human eyes, as can be observed in Figure 1. Furthermore, the
forgery involves only the face region and leaves the background and other portions intact.
By taking these characteristics into account, we developed a digital video authentication
system, i.e., ADD, built based on an attention mechanism. ADD first locates potentially
manipulated areas of the input image and extracts key representative features. Second,
ADD forces the detection model to pay extra attention to these manipulated regions for
decision making by imposing additional supervision on instance interpretation in the
learning procedure through attention-based data augmentation. Finally, the performance
of the ADD is evaluated against two challenging DeepFake forensic datasets. Comparing
the obtained results with other existing models clearly demonstrate the excellence of the
ADD in the given task. The major contributions of this work are summarized as follows:

• We considered the Deepfake detection task as an FGVC problem and proposed a
digital video authentication system, ADD, built based on an attention mechanism.

• ADD first locates potentially manipulated areas of the input image and extracts
discriminative features from those regions. Second, the detection model is made
to pay more attention to these forgery regions for decision-making by imposing
additional supervision on instance interpretation in the learning procedure through
attention-based data augmentation.

• The performance of the ADD is evaluated against two challenging DeepFake forensic
datasets. Experimental results demonstrate that ADD could achieve a detection rate of
98.37% on Celeb-DF (V2), outperforming state-of-the-art DeepFake detection methods.
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Organization. The rest of the paper is organized as follows. In Section 2 we review
the related works on DeepFake generation and detection techniques. In Section 3 we
describe ADD outlining its three main components, including frame-wise face localization,
localized discriminative features, and attention-based data augmentation. In Section 4
we review overall evaluation settings, including datasets, baseline network architectures,
implementation specifics, and evaluation metrics. In Section 5 we discuss the experimental
results of ADD, and finally, a conclusion is drawn in Section 6.

Figure 1. Example frames of DeepFake videos [25]. The left column (green border) is a selected frame
from original videos, and other columns (red border) are corresponding AI-generated frames. Note,
the intra-class variance is high, whereas the inter-class variance is small.

2. Related Work
In general, the field of DeepFake video analysis can be categorized into two broad

domains, including DeepFake generation and DeepFake detection.

DeepFake Generation. Early DeepFake generation methods were simple and mostly
relying on traditional vision and voice impersonation; however, most current methods
involve sophisticated AI-based generation techniques, i.e., GANs. FakeApp was the first
DeepFake creation software developed by a Reddit user using an autoencoder–decoder
pairing structure [34,35]. Furthermore, Thies et al. [3] presented a real-time face capture
and re-enactment of videos using a non-rigid model-based bundling. Masi et al. [19]
presented a face-specific data augmentation technique using 3D shapes, and appearances
of faces. Recent advancements in the field of deep learning have enabled adversaries to
devise more sophisticated DeepFake creation techniques, leading to super-realistic videos,
exploiting the unique generation capabilities of generative adversarial networks.

For example, Zhu et al. [36] and Kim et al. [37] have modified the GANs and pre-
sented cycle-consistent GANs to modify the domains of the output images based on the
input image’s domain. They have utilized this method for DeepFake generation where
the source person’s identities were changed to the target person while keeping the facial
expression unchanged. Lu et al. [38] presented identity-guided conditional CycleGAN to
create high-resolution face images from its low-resolution peers. Similarly, Kim et al. [23]
presented deep video portraits that transfer both facial expression and 3D poses of the
source image into the target image. Moreover, Faceswap-GAN [39] improves the visual
quality of the synthesized images with adversarial and perceptual losses. The generated
videos were more realistic thanks to the frame-to-frame face detection box’s temporal
smoothing and an attention mask. Thies et al. [16] presented a facial reenactment forgery
method, NeuralTextures, based on a patch-based adversarial loss alongside a photometric
reconstruction loss. Wang et al. [40,41] presented a flow-based face reenactment forgery
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method known as the video-to-video synthesis approach based on multiple talking videos
of the source and generating new DeepFakes using a single image of the target. In a similar
approach, Siarohin et al. [42] incorporated a learnable optical flow network approximation
to a first-order Taylor polynomial to generate a manipulated video of a person using a
single image. Li et al. [43] presented Faceshifter, an adaptive attention-based denormal-
ization generator for high-quality face replacement using a heuristic error acknowledging
refinement network learning method.

DeepFake Detection. A large body of work in the DeepFake analysis domain is focused
on devising automated yet effective detection techniques. Early detection techniques were
focused on handcrafted features, i.e., blinking inconsistencies [11], biological signals [44],
and unrealistic details [45]. Although manually crafted detection features helped to ad-
vance the DeepFake detection domain, their performance was poor and could be easily
circumvented. Techniques based on deep learning networks are utilized lately to overcome
this issue and build more reliable forgery detection tools. For instance, Afchar et al. [33]
proposed the MesoNet that detects forgeries at an intermediate level of detail using a
shallow convolutional network while avoiding microscopic features that can be eliminated
during the video compression process. Cozzolino et al. [46] proposed the forensictransfer
method, a forgery detection approach that is built based on autoencoder architecture and
transfer learning. Nguyen et al. extended this method [47] by replacing the standard
decoder with a decoder that generates a mask of the manipulated region using a multitask
learning approach. Furthermore, Nguyen et al. [32] proposed Capsule-Forensics method
to detect both replay attacks and digitally generated images and videos. Rana et al. [48]
introduced a technique that combines a series of deep learning classification models and
creates an improved composite classifier for DeepFake detection.

While the previously discussed approaches target intraframe dissimilarities, Güera
and Delp [49] utilized time-distributed features and a long short-term memory network
for DeepFake detection. Furthermore, Sabir et al. [50] evaluated the same approach
using ResNet [51] and DenseNet [52] feature extractors, where the extracted faces were
aligned in consecutive order using facial landmarks to maintain temporal consistency.
Furthermore, Yu et al. [53] investigated the potential of GAN fingerprinting analysis for
DeepFake detection. Dordevic et al. [54] presented a method based on scale-invariant
feature transform for DeepFake detection. Kaur et al. [55] presented a sequential temporal
analysis to detect face-swapped video clips using convolutional long short-term memory.
Mittal et al. [56] presented an approach that simultaneously exploited audio and video
modalities and perceived emotions from the two modalities for DeepFake detection.

Although researchers in the community have investigated the DeepFake detection
problem from various perspectives, only minimal effort has been devoted to investigating
DeepFakes from a fine-grained visual classification point of view, especially using attention-
based techniques. The most similar works to ADD are [26,57] methods. In line with [26,57],
our proposed method looks at the DeepFake detection problem as a fine-grained visual
classification task while utilizing attention-based data augmentation techniques. However,
our proposed method is different from [26] where the authors proposed a DeepFake
detection method from FGVC angle that is built using an autoencoder structure different
from our proposed method, which is based on a deep learning structure. Furthermore,
ADD is different from [57] as ADD considers only the last two convolutional blocks in the
model for data augmentation rather than the whole convolutional blocks, as it is proposed
in [57]. Besides, ADD uses two different modules, i.e., Face close-up and Face Shut-off,
to force the model to extract more discriminative information from different parts of face
region; however, [57] generates attention masks focused on only eyes, nose, and mouth for
adjusting the feature map of the face.

3. ADD: Methods
In this section, the proposed framework for the attention-based digital video authenti-

cation system, ADD, is introduced. The general pipeline of the presented attention-based
DeepFake detection approach is illustrated in Figure 2. ADD which is composed of
three main components, including face localization and preprocessing Section 3.1, local-
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ized discriminative feature extraction Section 3.2, and attention-based data augmentation
Section 3.3 followed by a classifier to distinguish original frames from DeepFakes.

Figure 2. General structure of the proposed digital video authentication system. Representative features of each frame of a
given video are calculated using face close-up and face shut-off attention mechanisms. While the face close-up attention
mechanism enlarges and focuses on distinctive parts of the face, the face shut-off attention mechanism helps extracting
other discriminative features from other parts of the image. Note that the classifier component of the ADD can be replaced
with CNN-based classifiers.

3.1. Face Localization and Preprocessing
As it is pointed out in Section 1, DeepFake generation algorithms mainly manipulate

face regions and leave the background part intact. Therefore, focusing on the face region of
a video frame, instead of analyzing the whole frame as input to the learning model, not
only improves the detection performance by reducing background noise but also reduces
the computational time by reducing the size of the input sample [58]. To this end, the
following steps, as shown in Figure 3, are taken for face localization and further analysis.
First, for each input video, 20% of the frames are extracted in consecutive order, yielding to
over 2 million frames on Celeb-DF (V2) dataset. Second, the state-of-the-art face detection
method, i.e., RetinaFace [59], is utilized to locate facial landmarks on each extracted frame.
The obtained facial landmarks are utilized to crop, align, and resize the faces to standard
configuration [60]. These cropped frames, containing only face regions, are further used
for attention-based image augmentation and feature extraction.

3.2. Localized Discriminative Features
In the DeepFake detection task, it is essential to determine the face region along with

different facial landmarks for effective feature extraction. In this work, the distribution of
face regions and associated facial landmarks is represented using attention maps. For a
given frame I, the feature maps F ∈ RH×W×C are extracted using a CNN-based feature
extractor, where H, W and C represent feature layer’s height, width, and the number of
channels, respectively. The obtained feature maps, F, are then utilized to calculate the
distribution of M different parts of the face, i.e., Attention Maps A ∈ RH×W×M, using a
convolutional function f (· ) as A = f (F) =

⋃M
k=1 Ak. Here, each specific part of the face,

i.e., lips, eyes, forehead, etc., are represented using Ak ∈ RH×W . Having generated M
attention maps corresponding to M different parts of the face, representative feature maps
of those parts Fk can be obtained by element-wise multiplication of feature maps F with
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each attention map Ak. This process is shown in Figure 4. A feature extractor, e.g., global
pooling function g(· ), is utilized along with each of these local feature maps Fk to pool out
more discriminative local features associated with kth attention feature fk ∈ R1×C. Finally,
these local features fk are stacked to build a comprehensive and distinctive feature set
containing detailed information of the whole frame. Passing this valuable information to
the model enforces the model to focus specifically on the forgery regions of a given input
image and learn local interpretations to perform its decision-making.

Figure 3. Frame-wise face localization pipeline. For every input video, 20% of the frames are extracted
in consecutive order. For every obtained frame, facial landmarks are calculated using RetinaFace [59]
to find and crop facial regions. Finally, all cropped faces are resized, augmented, and normalized for
further analysis.

Figure 4. Localized discriminative feature extraction framework. Element-wise multiplication
of feature maps with specific attention map results in localized feature maps to pool more
discriminative features.

3.3. Attention-Based Data Augmentation
Once the attention maps are calculated, they can be employed for more efficient data

augmentation. The problem with random data augmentation methods is their low effi-
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ciency and introducing background noise. However, attention-based data augmentation is
more efficient as it exposes the model to additional instance interpretation in the learning
procedure. Two complimentary attention-based data augmentation approaches are em-
ployed in this work, including Face Close-Up and Face Shut-Off. While the former looks
closer at a specific region of the face, the latter approach ignores that area and sees other
face regions.

Face Close-Up. The face close-up augmentation approach’s primary goal is to look closer
at specific regions of the face, e.g., eyes, forehead, lips, etc., and provide more distinctive
local features to the model to enhance its local interpretability. The following steps are
taken into account to perform face close-up augmentation. One attention map is randomly
selected from M available attention maps for each frame, and its elements are normalized
to [0, 1]. All elements with a value greater than a particular predefined threshold are set to
one, and the remaining are set to zero. Finally, only the region enclosed into a bounding
box that covers all active areas is selected. The face close-up augmentation approach
enlarges the scale of the face’s selected region from raw input, thus improving the detection
model’s local explainability by focusing on the forgery region while being exposed to more
fine-grained features. The augmented image is illustrated in Figure 2.

Face Shut-Off. While the face close-up approach provides a closer look into specific
regions of the face, the resulting bounding boxes for different attention maps might be very
similar. In such cases, the model would not learn new representative features. To avoid
this issue and extract more discriminative features from other regions, the face shut-off
data augmentation approach is utilized. Like the previous approach, for each frame, one
attention map out of M available attention maps is randomly selected and normalized to
[0, 1]. All the normalized attention map elements with a value greater than a particular
predefined threshold are set to zero, whereas the remaining parts are set to one. This results
in removing the active parts from the image, which in return forces the model to see other
parts of the image and attain additional localized discriminative features.

4. Evaluation Settings
This section is devoted to introducing the overall evaluation settings, including the

DeepFake detection datasets, baseline network architectures, implementation specifics, and
evaluation metrics.

4.1. Datasets
To make a real-world impact and bear strong relevance of any digital video authenti-

cation system, it is crucial to evaluate the system against high-quality DeepFake datasets.
The dataset should be super-realistic and stealthy while covering more diverse real-world
scenes, and having minimal visual artifacts to maintains its high visual quality. Different
research groups in the community have introduced different DeepFake detection datasets,
such as UADFV dataset [61], the DeepFake-TIMIT dataset (DF-TIMIT) [62], the FaceForen-
scics++ dataset (FF-DF) [58], and the FaceBook DeepFake detection challenge (DFDC)
dataset [63]. While this has considerably advanced the DeepFake detection in the early
stages, most of them are far from perfect for today’s real-world applications. They have
major visual problems, such as limited scenes in original videos, low-quality synthesized
faces, visible splicing boundaries, color mismatch, visible parts of the original face, and
inconsistent synthesized face orientations [25,57].

Thus, in this study, the performance of the proposed method is empirically evaluated
against two most recent and challenging DeepFake datasets, i.e., Celeb-DF (V2) [25] and
WildDeepfake [57]. The former is a dataset with the highest visual quality score reported to
date, and the latter is a challenging real-world DeepFake dataset with more diverse scenes
and more persons with rich facial expressions in each scene.

Celeb-DF (V2). The Celeb-DF (V2) is a large-scale challenging video dataset of 590 original
videos of celebrities and 5639 high-quality DeepFake videos generated using an improved
synthesis process, corresponding to over 2 million frames. Real videos are collected from
publicly available YouTube videos, and the fake ones are created by swapping faces for
each pair of the subjects.
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WildDeepfake. The WildDeepfake is a challenging real-world DeepFake detection dataset,
where, unlike other datasets, both real and DeepFake videos are collected completely from
the internet. This dataset presents more diverse scenes, more persons in each scene, and
rich facial expressions. Corresponding dataset statistics are provided in Table 1. For more
detailed information we refer the interested readers to the original sources [25,57].

Table 1. Statistical specifics of the benchmark datasets used to evaluate ADD. Both datasets have
significantly fewer notable visual artifacts than other DeepFake datasets [25,57].

Dataset Class Videos Frames Source Train Test Val.

Celeb-DF (V2) Pristine 590 225.4 K YouTube 632 62 196
DeepFake 5639 2116.8 K DF 4736 536 340

WildDeepFake Pristine 3805 680 K Internet 3044 380 381
DeepFake 3509 500 K Internet 2807 350 351

4.2. Baseline Architectures
In the following, we briefly review four state-of-the-art deep learning models used in

this study. These models are building the backbone of different configurations of ADD.

VGG19 Structure. The Visual Geometry Group (VGG) network is a type of deep con-
volutional neural network comprising 19 layers structured starting with five blocks of
convolutional layers followed by three fully connected layers. Each convolutional layer
contains a 3 × 3 kernel with a stride of 1 and padding of 1 to maintain the input–output
dimensional match. Each of these convolutional layers are followed by a rectified linear
unit (ReLU) activation and a max-pooling operation to reduce the spatial dimension. Max
pooling layers employ a 2 × 2 kernel with a stride of 2 and no padding to reduce the size
by 50%. Afterward, two fully connected layers with 4096 ReLU activated units are used
before the final fully connected softmax classifier layer [64].

ResNet Structure. The Residual Networks (ResNets) [65] are a type of deep convolutional
neural network where blocks of convolutional layers are skipped using shortcut connec-
tions. In this architecture, the down-sampling process takes place at convolutional layers
with a stride of 2, after which batch normalization is performed. Finally, a ReLU activation
is applied. The architecture has 101 layers in total, where the network ends with a fully
connected layer with softmax activation [65].

Xception Structure. Xception is a convolutional neural network based on separable con-
volutions with residual connections. This model is composed of 71 deep layers, with an
image input size of 299 by 299.

MobileNet Structure. MobileNet is a lightweight deep learning model developed using
a depth-wise separable convolution architecture [66]. MobileNet architecture comprises
19 bottleneck layers consisting of three convolution operations, including 1 × 1 convolu-
tion, 3 × 3 depth-wise convolution, and 1 × 1 point-wise convolution. While the 1 × 1
convolution enriches the features through increasing number of channels, the 3 × 3 depth-
wise convolution reduces computing costs by separating the feature filtering process. The
separated features are then combined at point-wise convolution [66].

4.3. Implementation Specifics
Here, the implementation and characteristics of the ADD for reproducibility purposes

are provided.

Implementation. All baseline models along with various configurations of ADD are
implemented using the PyTorch machine learning library and trained using Stochastic
Gradient Descent SGD optimizer [67] with a learning rate of 10−3, momentum of 0.9,
weight decay of 10−5, and epoch number of 20 to minimize the softmax-cross-entropy loss.
Moreover, we used mini-batch approaches with different mini-batch sizes for different deep
network training process models. Mini-batch sizes are ranging from 8 for XceptionNet to
64 for VGG architecture on 4 NVIDIA Titan-V Graphics Processing Units (GPUs).
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Experimental Setup. All experiments were conducted on two Lambda Quad deep learning
workstations. Each workstation was equipped with Ubuntu 18.04 OS, Intel Xeon E5-1650 v4
CPU, 64 GB DDR4 RAM, 2TB SSD, 4TB HDD, and 4 NVIDIA Titan-V Graphics Processing
Units (GPUs).

4.4. Evaluation Metrics
Performance of the ADD was evaluated against three different evaluation metrics,

namely accuracy rate, recall, and area under the Receiver Operation Characteristic curve
(ROC-AUC) at the frame level for all key frames. Although accuracy rate is easy to interpret,
it might not provide a good insight for highly imbalanced datasets. Therefore, ROC-AUC
metric was utilized to demonstrate how well the detection model performed on both
DeepFake and pristine data distributions. Furthermore, recall metric was employed to
reflect how well the model predicts manipulated videos, as missing a fake video is a costly
mistake with potentially further adverse impacts. Additionally, all trained models will be
published upon the acceptance of the paper. Having acquired the three metrics for ranking
baseline models, they are ranked in three different manners and compared to the ground
truth ranking attained from ADD on target test set. For fair comparison, all models were
trained on the same training data and tested on the same hold-out test set.

5. Results & Discussion
This section provides a detailed discussion on the performance of the proposed

DeepFake detection method. The performance of the ADD is evaluated based on three
different evaluation metrics including detection accuracy, ROC, and recall. In our analysis,
we focus on the DeepFake detection task at the level of each frame; hence, all reported
results in this study are based on frame-wise detection tasks. First, the obtained results
from simulations with/without ADD framework on Celeb-DF (V2) and WildDeepFake
detection tasks are discussed for each baseline model to highlight the impact of ADD.
Second, the performance of the ADD is compared to state-of-the-art DeepFake detection
techniques.

5.1. ADD’s Impact
To better understand the impact of the presented framework, ADD, we compared

the performance of each baseline architecture with and without ADD using Celeb-DF (V2)
and WildDeepFake benchmark datasets on frame-wise DeepFake detection problems, as
reported in Table 2.

Table 2. The performance of the proposed ADD framework on Celeb-DF (V2) and WildDeepFake
DeepFake detection benchmarks using four different baseline architectures.

Backbone Method
Celeb-DF (V2) WildDeepFake

ACC ROC Recall ACC ROC Recall

ResNet Baseline 88.47 91.47 84.76 58.73 59.12 58.81
ADD 98.37 98.65 97.59 78.15 78.01 78.24

Xception Baseline 94.54 95.42 92.69 69.25 69.78 69.01
ADD 97.32 97.84 96.03 80.13 80.31 79.93

VGG Baseline 95.53 96.71 93.93 60.92 61.12 60.71
ADD 97.93 98.01 97.35 77.83 77.54 77.61

MobileNet Baseline 91.72 91.68 91.35 61.78 61.54 61.23
ADD 94.63 94.76 93.89 78.67 78.31 78.15

Celeb-DF (V2). The obtained results for conducted simulations using Celeb-DF (V2)
dataset for each model architecture are shown in Figure 5. As it can be observed, baseline
models did not perform well; the best baseline model reached 95.53% detection accuracy
at best, via VGG structure, which is not acceptable in the DeepFake detection task. While
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performances of the baseline models were poor, their performances were boosted by
considerably large margins once upgraded to the ADD framework. For example, the
performance of the vanilla detection model with ResNet architecture improved from
88.47% detection accuracy rate to 98.37% on the same model with the ADD framework,
which is around a 10% improvement on the detection rate. Obtained results from the
experiments clearly demonstrate the outstanding impact of the proposed attention-based
framework in this study for enhanced DeepFake detection.
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Figure 5. The DeepFake detection method results on Celeb-DF (V2) using four different baseline models and ADD
configurations. As shown, all four configurations of ADD can significantly improve all three evaluation metrics, i.e.,
accuracy rate, ROC, and recall. Note that all models are trained and evaluated against the same datasets. (a) Backbone:
ResNet Model; (b) Backbone: Xception Model; (c) Backbone: VGG Model; (d) Backbone: MobileNet Model.

WildDeepFake. WildDeepFake dataset is more challenging to be detected compared to
virtual DeepFake; therefore, the effectiveness of detectors developed on virtual DeepFake
datasets can be limited when applied to wild DeepFake. A similar set of experiments are
conducted using WildDeepFake to evaluate the performance of the proposed method on a
more challenging DeepFake detection task. The obtained results from these experiments
are illustrated in Figure 6. A similar pattern to previous experiments was observed, which
confirms the effectiveness of ADD framework on improving the detection performance
of all four baseline models. As it can be seen, vanilla models that were not equipped
with an attention mechanism did not offer an acceptable detection accuracy rate, not
more than 69%, which is extremely low in the DeepFake detection field. However, all
configurations of ADD were able to improve the evaluation metrics by significantly large
margins. For example, ADD with Xception baseline architecture detected DeepFake with
79.23% detection accuracy. This result is outstanding compared to existing state-of-the-art
DeepFake detection methods.
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Figure 6. The results of the DeepFake detection method on WildDeepFake using four different baseline models and
ADD configurations. As shown, all four configurations of ADD can improve evaluation metrics by a significantly out-
standing margin. (a) Backbone: ResNet Model; (b) Backbone: Xception Model; (c) Backbone: VGG Model; (d) Backbone:
MobileNet Model.

5.2. Comparison with State-of-the-Art Methods
This section is devoted to comparing the performance of the ADD against state-of-the-

art methods on DeepFake detection tasks. While we have reported different evaluation
metrics in our analysis, we follow the reported metrics in the literature for comparison. The
obtained results on Celeb-DF (V2) are reported based on the AUC score in the literature;
therefore, we compare the AUC score of ADD with that of the literature, as shown in Table 3.
It can be observed that all configurations of ADD outperformed the state-of-art detection
AUC score with significantly large margins. In particular, ADD with ResNet baseline
architecture achieved an AUC score of 98.65%, which is more than a 7% improvement
compared to FakeCatcher [44].

Since detection accuracy rate is the only reported evaluation metric regarding the
performance of detection techniques on WildDeepFake benchmark [57], we used the same
metric for our comparison study. The obtained results from our experiments along with
other approaches on this particular dataset are reported in Table 4. It can be observed that
while most of the previous studies were bound to below 70% accuracy rates, our proposed
ADD framework boosted the performance of all baseline models above 77%. For instance, a
configuration of ADD with Xception architecture was able to further improve the DeepFake
detection performance on WildDeepFake dataset and achieve 80.13%. Overall, it can be
observed that all configurations of ADD outperformed the state-of-art DeepFake detection
methods with significantly large margins.
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Table 3. Comparing the performance of ADD against state-of-the-art DeepFake detection models on
Celeb-DF (V2). Note that reported results in rows 1–8 are from [25].

Models AUC (%)

Two-stream [68] 53.8
Meso4 [33] 54.8
HeadPose [61] 54.6
FWA [11] 56.9
VA-MLP [45] 55.0
Xception-c40 [58] 65.5
Multi-task [47] 54.3
Capsule [69] 57.5
TBRN [70] 73.41
Face X-ray [71] 80.58
PPA [72] 83.10
FakeCatcher [44] 91.50

ADD-ResNet (ours) 98.37
ADD-Xception (ours) 97.32
ADD-VGG (ours) 97.93
ADD-MobileNet (ours) 94.63

Table 4. Comparing the detection accuracy rate of ADD against state-of-the-art DeepFake detection
models on WildDeepFake dataset. Note that reported metrics in rows 1–8 are from [57].

Models ACC (%)

AlexNet [73] 60.37
VGG16 [74] 60.92
ResNetV2-50 [75] 63.99
ResNetV2-101 [75] 58.73
ResNetV2-152 [75] 59.33
Inception-v2 [76] 62.12
MesoNet-1 [33] 60.51
MesoNet-4 [33] 64.47
MesoNet-inception [33] 66.03
XceptionNet [77] 69.25
ADDNet-2D [57] 76.25
ADDNet-3D [57] 65.50

ADD-ResNet (ours) 78.15
ADD-Xception (ours) 79.23
ADD-VGG (ours) 77.83
ADD-MobileNet (ours) 78.67

6. Conclusions
This paper presents a DeepFake detection method, ADD, that exploits the fine-grained

and spatial locality attributes of the AI-synthesized videos to boost detection performance.
Potentially manipulated areas of the input image and corresponding features are first
extracted, and then the detection model is forced to focus more on those manipulated
regions for decision making. ADD performs this task by imposing extra supervision on
instance interpretation in the learning procedure. The performance of ADD is evaluated
against two recently introduced challenging datasets for DeepFake forensics, i.e., Celeb-DF
(V2) and WildDeepFake. For example, ADD with ResNet architecture is able to detect
DeepFakes with more than 98.3% AUC on Celeb-DF (V2), outperforming state-of-the-art
DeepFake detection methods.
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