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Abstract: Automatically estimating the number of people in unconstrained scenes is a crucial yet
challenging task in different real-world applications, including video surveillance, public safety,
urban planning, and traffic monitoring. In addition, methods developed to estimate the number
of people can be adapted and applied to related tasks in various fields, such as plant counting,
vehicle counting, and cell microscopy. Many challenges and problems face crowd counting, including
cluttered scenes, extreme occlusions, scale variation, and changes in camera perspective. Therefore, in
the past few years, tremendous research efforts have been devoted to crowd counting, and numerous
excellent techniques have been proposed. The significant progress in crowd counting methods in
recent years is mostly attributed to advances in deep convolution neural networks (CNNs) as well
as to public crowd counting datasets. In this work, we review the papers that have been published
in the last decade and provide a comprehensive survey of the recent CNNs based crowd counting
techniques. We briefly review detection-based, regression-based, and traditional density estimation
based approaches. Then, we delve into detail regarding the deep learning based density estimation
approaches and recently published datasets. In addition, we discuss the potential applications of
crowd counting and in particular its applications using unmanned aerial vehicle (UAV) images.

Keywords: density estimation; crowd counting; deep learning; CNN; UAV

1. Introduction

In recent years, great efforts have been devoted to counting people in crowd uncon-
strained scenes due to its importance in applications, such as video surveillance [1], traffic
monitoring [2], etc. The increasing growth of the world population and the development
of urbanization has resulted in frequent crowd gatherings in numerous activities, such
as stadium events, political events, and festivals (See Figure 1). In this context, crowd
counting and density estimation are crucial for a better control & management and to
ensure the security and the safety of the public.

Crowd counting remains a challenging task due to different difficulties related to the
unconstrained scenes, such as extreme occlusions, variation in light conditions, changes
in scale and camera perspective, and non-uniform density of people (See Figure 2). The
aforementioned issues motivated many research communities to consider crowd counting
as their main research direction, and attempted to develop more sophisticated techniques
to deal with limitations in crowd counting.

In particular, with the recent progress in deep learning, convolution neural networks
have been widely used to address crowd counting and made significant progress owing to
their capacity of effectively modeling the scale changes of people/heads and the variation
in regions’ crowd density. The developed people counting techniques can be extended and
applied to related tasks. Therefore, a section in this paper is dedicated to reviewing the
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most important techniques that can be extended to develop potential applications using
unmanned aerial vehicle (UAV) images.

Figure 1. Illustration of various unconstrained crowded scenes (a) Politics, (b) Public, (c) Concert,
(d) Stadium.

Figure 2. Examples of unconstrained crowd scenes limitations: changes in perspective, scale and
rotation variation of people/heads.

This work reviews papers that were published in the last decade and is organized as
follows: Section 2 is dedicated to reviewing the traditional crowd counting and density
estimation methods. In Section 3, we review the previous related surveys. In Section 4,
we review, in detail, the CNN-based density estimation methods. Section 5, we discuss
the most important public datasets along with the results of the state-of-the-art methods.
We also present crowd counting applications that are based on Unmanned Aerial Vehicles
(UAV) images in Section 6. Finally, we conclude our survey in Section 7.
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2. Related Work and Motivation

Different approaches have been proposed to tackle the problem of crowd counting
in images and videos. These approaches can be mainly divided into four categories:
detection-based, regression-based, traditional density estimation, and recent CNN-based
density estimation.

The scope of this survey is to focus on modern CNN-based density estimation and
crowd counting approaches and review the most important techniques that can be extended
to develop real-world applications using UAV images. However, first, we briefly review
the detection and regression approaches using hand-crafted features.

2.1. Detection-Based Approaches

Early work on crowd counting adopted a detection framework [3–6]. Given a crowded
situation, these approaches used a sliding window to detect the most visible parts of the
body, which are mainly the head and the shoulders. Recently, various CNN-based object
detectors have been proposed, which lead to a higher object detection performance as
compared to systems based on simpler hand-crafted features [7]. In this context, we note
the two-stage detectors, such as RCNN [7], Faster-RCNN [8] and Mask-RCNN [9], and
the one-stage detectors, such as YOLO [10] and SDD [11]. Despite their high accuracy
detection recorded in a sparse scene, these approaches do not perform well in the presence
of the visual occlusions and ambiguities in crowded scenes.

2.2. Regression-Based Approaches

To overcome the limitations of the detection-based approaches, researchers attempt to
formulate the crowd counting as a regression problem where they learn directly how to map
the appearance of the image patches to their corresponding object density maps [12–14].
These approaches operate mainly on two steps: feature extraction and regression modeling.
A variety of local features , such as SIFT [15], HOG [16], LBP [17,18], and global features,
such as texture [19] and gradient [18] have been used to encode the object information.
Learning a mapping from low-level features to the crowd count has been carried out using
Gaussian process regression [20], linear regression [21], and ridge regression [14]

2.3. Traditional Density Estimation Based Approaches

While earlier approaches were successfully dealing with occlusion and scene clutter-
ing, most of them regressed from global features directly to the number of objects and
discard any available spatial information. In contrast, Lemptisky et al. [22] first involved
spatial information in the learning process by adopting a linear mapping between local
patch features and corresponding density maps. Thereby, they avoided the complex task of
learning to detect and localize individual object instances and introduced a new approach
to estimate an image density whose integral over any image region gives the count of
objects within that region.

The learning process to estimate such density is formulated as a minimization of a reg-
ularized risk quadratic cost function, where a new appropriate loss function is introduced.
Thus, the entire learning process is posed as a convex quadratic program solvable with
cutting-plane optimization. To alleviate the difficulty of linear mapping, Pham et al. [23],
proposed a non-linear mapping between local patch features and density maps through a
random forest regressor. They obtained satisfactory results by introducing a crowdedness
prior to tackle the large variation in appearance and shape between crowded image patches
and non-crowded ones.

In addition, they proposed an effective forest reduction method to speed up estimation
and met the real-time requirement. This method requires relatively less memory to build
and store the forest. These methods incorporate the spatial information in the learning
process, which improves the counting accuracy compared to the regression and detection-
based approaches. However, they only used traditional hand-crafted features to extract
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low-level information from local patches, which can lead to estimating a low-quality
density map.

2.4. CNN-Based Density Estimation

CNN-based approaches have demonstrated a good performance in numerous com-
puter vision problems, thus, motivating more researchers to use their ability to estimate
a non-linear function mapping from crowd images to their corresponding density maps.
In this context, numerous techniques have been proposed, which can be categorized into
five groups according to the network architecture and the inference algorithm process, as
depicted in Figure 3.

Figure 3. Taxonomy of CNN-Based density estimation.

3. Related Previous Surveys

Researchers have attempted to review the techniques of density estimation and crowd
counting. Notably, Junior et al. [24] were among the first to provide a comprehensive study
of the existing techniques for crowd counting. Li et al. [25] reviewed various methods for
the crowded scene analysis, which covered different tasks, such as crowd motion, pattern
learning, and anomaly detection in crowds. In [26], Zitouni et al. reviewed the existing
visual crowd analysis techniques based on different key statistical evidence, which was
inferred from the literature, and provided recommendations toward the general aspects of
techniques instead of focusing on a specific algorithm.

In [27], Loy et al. provided a study that evaluates and compares the state-of-the-art
techniques of visual crowd counting using the same protocol. Saleh et al. [28] presented
a survey on crowd counting methods used in video surveillance and categorized the
existing algorithms into two main approaches: direct and indirect. While these surveys
provide detailed and comprehensive studies of the existing density estimation and crowd
counting techniques, they all reviewed the traditional methods based on the hand-crafted
features. Recently, Sindagi et al. [29] provided a survey of advances in CNN-based
density estimation and crowd counting from a single image, published up to the year 2017.
Guangshuai et al. [30] put forward a survey on CNN-based density estimation and crowd
counting where over 220 papers have been reviewed up to the year 2020.

Though the last survey [30] covers the most recent CNN-based crowd counting ap-
proaches, as with the previous surveys, it focuses only on the statistical evaluation and
comparison between different approaches without analyzing the importance of extending
the approaches used for counting people in crowds in order to develop real-world applica-
tions in various areas. In this paper, we survey various papers that adapt crowd counting
approaches to counting different objects from UAV images.

4. Taxonomy for CNN-Based Density Estimation

In this section, we review different CNN-based density estimation and crowd counting
methods in view of the network architectures and the training and inference paradigm
of the methods. Table 1 summarizes a categorization of different CNN-based crowd
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counting and density estimation methods according to the network architecture and the
inference process.

4.1. Typical CNN Architecture for Density Estimation and Crowd Counting

Based on the type of the network architecture, we classify the approaches into three
major categories (see Figure 3):

4.1.1. Basic Network Architecture

These architectures are among the first deep learning approaches applied to density
estimation and crowd counting. They are basically composed of convolution layers, pooling
layers, and fully connected layers.

Fu et al. [31] and Wang et al. [32] were among the first researchers that attempted
to use a convolution neural network in the context of crowd density estimation. Wang
et al. [32] proposed the first end-to-end deep convolution neural network regression model
for counting people in images of extremely dense crowds. The proposed architecture is
composed of five Conv-layers and two fully connected layers, where its output is the
estimated people counts in the input image. In addition, to reduce the false positive errors,
which are mainly caused by the existence of trees and buildings in the background, training
data are augmented by adding negative samples whose ground truth count is set as zero.

In a different approach, Fu et al. [31] used the multi-stage ConvNet model proposed
in [33] to ensure better shift, scale and distortion invariance. To reduce the computation
time at both training and detection stages, they optimized the model by discarding all
similar features maps. In addition, two optimized multi-stage ConvNets are cascaded as
a strong classifier to achieve boosting in which the first classifier is trained to pick out
the hard samples, whereas the second one is trained to give them a final determination.
Yao et al. [34] fine-tuned several architectures of deep residual network (ResNet [35]) to
develop a cell counting framework.

Elad et al. [36] used a basic CNN and incorporated layered boosting and selective
sampling to enhance the accuracy and the training computation. The training process
is done in stages, where CNNs are iteratively added so that each new CNN is trained
on the difference between the estimation of its predecessor and the ground truth. The
selective sampling approach is used to speed up the training process by reducing the effect
of low-quality samples, such as trivial samples and outlier samples.

As stated by the authors, trivial samples are those that are correctly classified early on.
Feeding again these samples to the network tends to introduce a bias toward them, thereby,
affecting its generalization performance. On the other hand, the presence of outliers, such
as mislabeled samples, can affect the generalization of the model and, in particular, increase
the computation of the training time (i.e., due to the boosting technique).

These basic CNNs approaches are simple and easy to implement. However, their
performance is often limited due to the quality of the extracted features, which are usually
not invariant to perspective effect or image resolution.

Table 1. Categorization of existing CNN-based methods.

Category

Methods Network Architecture Inference Paradigm

Wang et al [32] Basic Patch-based

Fu et al [31] Basic Patch-based

Yao et al. [34] Basic Pacth-based

Elad et al. [36] Basic Patch-based

Zhang et al. [37] Multiple-column Patch-based

Boominathan et al. [38] Multiple-column Patch-based
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Table 1. Cont.

Category

Methods Network Architecture Inference Paradigm

Oñoro-Rubio et al. [12] Multiple-column Patch-based

Deepak et al. [39] Multiple-column Patch-based

Deepak et al. [40] Multiple-column Patch-based

Liu et al. [41] Multiple-column Patch-based

Zhang et al [42] Multiple-column Patch-based

Hossain et al. [43] Multiple-column Patch-based

Guo et al. [44] Multiple-column Patch-based

Jiang et al. [45] Multiple-column Patch-based

Li et al. [46] Single-column Whole-image

Zhang et al. [47] Signle-column Patch-based

Wang et al. [48] Single-column Patch-based

Cao et al. [49] Single-column Patch-based

Varun et al. [50] Single-column Patch-based

Xiaolong et al. [51] Single-column Patch-based

Mohammed et al. [52] Single-column Patch-based

Liu et al. [53] Single-column Patch-based

Zhang et al. [54] Multiple-column Patch-based

Tian et al. [55] Multiple-column Patch-based

Sajid et al. [56] Multiple-column Patch-based

Chong et al. [57] Multiple-column Patch-based

4.1.2. Multiple-Column Architecture

These network architectures incorporate multiple columns to extract multi-scale fea-
tures that allow generating high-quality crowd density maps.

Zhang et al. [37] were among the first to introduce the idea of using multiple-column
architecture for crowd counting. They proposed Multi-column Convolutional Neural
Network (MCNN) architecture to map the image to its crowd density map. As depicted
in Figure 4, MCNN incorporates different columns where each one adopts filters with
receptive fields of different sizes, so that the extracted features are adaptive to scene
variations (i.e., people/head size). In addition, they proposed a new large dataset with
around 330,000 head annotations and showed that MCNN is easily transferred for cross-
scene crowd counting.

In [38], the authors introduced CrowdNet, which combines deep and shallow net-
works at two different columns, so that the shallow network is used to extract low-level
features, whereas the deep network is used to extract high-level features. Both extracted
features are crucial for detecting people under large-scale variations and severe occlusion.
Hydra-CNN is introduced in [12]. It uses a pyramid of input patches so that each level
has a different scale. By doing that, Hydra-CNN extracts multi-scale features, which are
combined to generate the crowd density map.

Deepak et al. [39] developed a switching-CNN for crowd counting by training various
CNN crowd density regressors on patches from a crowd scene. The regressors were
designed to incorporate different receptive fields. In addition, a switch classifier was
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trained to select the best regressor that estimates the density map corresponding to the
crowd scene patch.

In another work, Deepak et al. [40] proposed a top-down feedback architecture that
carries high-level features to correct false predictions. This architecture has a bottom-up
CNN, which is directly connected to a top-down CNN so that the top-down generated
feedback to the bottom-up to help deliver a better crowd density map. In [41], Liu et al.
proposed a CNN framework to address the issues of scale variation and rotation variation
using the Spatial Transform Network [58].

Figure 4. The MCNN architecture proposed in [37].

Zhang et al. [42] exploited the attention mechanism to address the limitations of
the pixel-wise regression technique, which is very popular for estimating the crowd den-
sity map. This technique assumes the interdependence of pixels, which leads to noisy
and inconsistent predictions. Thus, the proposed Relational Attention Network (RANet)
incorporates local self-attention (LSA) and global self-attention (GSA) to capture the inter-
dependence of pixels. In addition, a relational model is used to combine LSA and GSA to
obtain a more informative aggregated feature representation.

In the same context, Hossain et al. [43] proposed a CNN model based on the attention
mechanism to extract global and local scale features appropriate for the image. By combining
both local and global features, the model outputs an improved crowd density map. Guo
et al. [44] introduced a deep model called Dilated-Attention-Deformable ConvNet (DADNet),
which incorporates two modules: multi-scale dilated attention and deformable convolutional
DME (Density Map Estimation). The multi-scale dilated attention is based on using various
kernel dilation levels to extract different visual features of crowd regions of interest, whereas
the deformable convolution is used to generate a high-quality density map.

Observing that most of the existing techniques are susceptible to overestimate or
underestimate people counts of regions with different patterns, Jiang et al. [45], introduced
a new CNN model based on the attention mechanism, which consists of two components
Density Attention Network (DANet) and Attention Scaling Network (ASNet). DANet is
used to extract attention masks from regions of different density levels. ASNet, on the
other hand, outputs density maps and scaling factors and multiplies them by the attention
masks yielding separate attention-based density maps. These maps are then summed to
form that final density map.

Liu et al. introduced DecideNet [59], which consists of detection and regression based
density maps. These two count modes are used to deal with the crowd density variation
in the image regions. An attention module is used to adaptively assess the reliability of
the two count modes. Liu et al. [60] proposed a self-supervised method to improve the
training of models for crowd counting. This was based on the fact that crops sampled from
a crowd image contain the same or fewer persons than the original image.

Thus, crops can be ranked and used to train a model to estimate whether one image
contains more persons than another image. Fine-tuning the resulting model on a small
labeled dataset achieved state-of-the-art results. In [61], PACNN a perspective-aware CNN
was introduced. It is specifically designed to predict multi-scale perspective maps and to
deal with the perspective distortion problem.

Dingkang Liang et al. [62] introduced a weakly-supervised crowd counting in im-
ages by introducing TransCrowd, which is a sequence-to-count framework based on a
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Transformer-encoder. In the same context, Sun et al. [63] used transformers to encode fea-
tures with global receptive fields and proposed two modules: a token-attention module and
regression-token module. In [64], Gao et al. proposed a crowd localization network called
the Dilated Convolutional Swin Transformer (DCST). It provides the location information
of each instance in addition to counting the numbers for a scene.

Despite the significant improvement and the great performance recorded by the
multi-column architecture, they are still suffering from various limitations as detailed
in [46]. The multi-columns CNNs are difficult to train since they require huge computation
times and memory. Such architecture can generate redundant features since the columns
implement almost the same network architecture. Moreover, multi-column architecture
often requires a density level classifier before feeding the image to the network. However,
since the number of objects is varying widely in a congested scene, it is very difficult to
estimate the granularity of the crowd density maps. In addition, using crowd density level
classifiers leads to the implementation of more columns, which increases the complexity of
the architecture and yields more feature redundancy.

These limitations motivated some researchers to adopt single-column CNNs, which
are a much simpler yet efficient architecture to overcome these disadvantages and deal
with different challenging scenarios in crowd counting.

4.1.3. Single-Column Architecture

The single-column network architectures are based on deeper end-to-end CNNs.
This implements more specific features to deal with critical problems in crowd counting
and generate high-quality crowd density maps.

In [46], Li et al. proposed CRSNet, a CNN model for crowd counting in highly
congested scenes. This model consists mainly of a frond-end CNN used to extract 2D
features and a back-end dilated CNN, which uses dilated kernels to provide larger receptive
fields and to replace pooling operations. The dilated convolution layers expand the
receptive field without losing resolution and, thereby, aggregate the multi-scale contextual
information. CSRNet is an easy-trained end-to-end approach that generates high-quality
density maps and achieves state-of-the-art performance on four datasets.

Zhang et al. [47] proposed a scale-adaptive convolution neural network for crowd
counting. The proposed architecture is composed of a backbone, which is a fully convolu-
tion neural network (FCN) with fixed small receptive fields. It extracts feature maps with
different dimensions from multiple layers. The extracted feature maps are resized to have
the same output dimension and combined to calculate the final crowd density map. Two
loss functions have been introduced in the training process, density map loss and count
loss, to jointly optimize the model. The loss count is used to reduce the variance of the
prediction error and enhance the generalization performance of the model on a very sparse
scene. This architecture is illustrated in Figure 5.

Wang et al. [48] proposed SCNet, which is a compact single-column architecture for
crowd counting. It consists of three modules: residual fusion modules (RFM) to extract
multi-scale features, a pyramid pooling module (PPM) to combine features at different
stages, and a sub-pixel convolutional module (SPCM) followed by an upsampling layer to
recover the resolution. These three modules allow SCNet to generate multi-scale features,
which leads to generating a high-quality density map. In [65], Shi et al. proposed a learning
strategy called deep negative correlation learning (NCL), based on learning a pool of
decorrelated regressors.

In a different approach, Cao et al. [49] proposed an encoder–decoder based on the
inception network [66] called SANet for crowd counting. The encoder is used to extract
multi-scale features, whereas the decoder used transposed convolution layers to upscale
the extracted features and generate the final crowd density map. In addition, unlike most of
the existing approaches, which use only Euclidean loss that ignores the correlation between
pixels of the density, they introduced a new training loss that combines the Euclidean loss
and local pattern consistency loss.
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In [50], Varun et al. extended the U-Net [67] by adding a decoding reinforcement
branch to accelerate the training of the network and using Structural Similarity Index to
maintain the local correlation of the density map in order to generate a good crowd density
map. Xiaolong et al. [51] proposed a new trellis encoder–decoder architecture, which
consists of multiple decoding paths and a multi-scale encoder. The multiple decoding
paths are used to hierarchically aggregate features at different decoding stages, whereas the
multi-scale encoder is incorporated to preserve the localization precision in the encoded
feature maps.

In recent years, models based on attention mechanisms have demonstrated significant
performance in different computer vision tasks [52]. Instead of extracting features from the
entire image, the attention mechanism allows models to focus only on the most relevant
regions. In this context, Mnih et al. [52] used the attention mechanism to introduce a
scale-aware attention network to address the scale variation in crowd counting images.
Due to the attention mechanism, the model can automatically focus on the most important
global and local features and combine them to generate a high-quality crowd density map.

Liu et al. also proposed the ADCrowdNet [53], which is an attention-based network
for crowd counting. ADCrowdNet consists of two concatenated networks: an Attention
Map Generator (AMG), which first estimates crowd regions in images as well as their
congestion degree, and a Density Map Estimator (DME), which is a multi-scale deformable
network that uses the output of AMG to generate a crowd density map.

Figure 5. Illustration of scale-adaptive CNN for crowd counting proposed by Zhang et al. [47].

Due to the simplicity of their architectures and their effective training process, single-
column network approaches have received more attention in recent years.

4.2. Typical Inference Paradigm

Based on the inference methodology, we can categorize the crowd density estimation
techniques into the following two categories:

4.2.1. Patch-Based Inference

The patch-based model is trained on random crops from the original image. During
the inference, a sliding window is applied to the test image, and the prediction is obtained
for each crop. The total count is obtained by summing the counts over all the crops.

In [54], the model is trained on random patches extracted from the input images so
that every crop cover 3 by 3 m square in the actual scene. The patches are then resized to 72
× 72 pixels (see Figure 6) and fed as input to the CNN model to obtain the corresponding
crowd density map. The number of objects in every patch is obtained by integrating over
the crowd density map. In [55], a new CNN model called PaDNet was proposed.

It consists of three modules as follows: (1) the Density-Aware Network (DAN) incor-
porates multiple CNN sub-networks, which are pre-trained on images with different crowd
density levels, and used to capture the crowd density level information; (2) the Feature
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Enhancement Layer (FEL) generates weighted local and global contextual features; and
(3) the Feature Fusion Network (FFN) is used to combine these contextual features. The
network is trained on patches so that nine crops are taken from every input image.

In [56], Sajid et al. proposed a plug-and-play-based patch rescaling module (PRM)
to address the problem of crowd diversity in the scene. As shown in Figure 7, the PRM
module takes a patch image as input and then rescales it using the appropriate scaler
(Up-scaler or Down-scaler) according to its crowd density level, which is computed by
the classifier before using PRM. In this approach, the low-crowd and high-crowd regions
pass directly through the Up-scaler or Down-scaler, the Medium-crowd bypasses the PRM
without rescaling, whereas the no-crowd regions are automatically discarded.

Figure 6. The patched-based inference approach proposed in [54].

Figure 7. The PRM module presented in [56].

In [68], Sam et al. proposed a hierarchical CNN tree where the CNN child regressors
are more accurate than any of their parents. At test time, a classifier guides the input image
patches to the appropriate regressors.

4.2.2. Image-Based Inference

By taking random patches from the input image, patch-based methods ignore the
global information and also require a huge computation during the inference due to the
use of a sliding window. Training with the whole image help exploit the global information.
However, it is still dependant on the resolution of the image, which is often very large in
the context of crowd counting.

In [57], Chong et al. proposed an end-to-end CNN model that takes the whole image
as input and directly produces the final count. First, the image is fed into a pre-trained
CNN to obtain high-level features, which are then mapped to local counting numbers
using a recurrent neural network with memory cells. In addition, sharing computation
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over overlapping regions leads to a reduction in model complexity and allows the model
to incorporate contextual information when predicting both local and global counts.

5. Datasets and Results

With the increasing development of crowd counting approaches, numerous datasets
have been proposed over the last decade to drive research on crowd counting and develop
models to deal with various limitations including changes in perspective and scale, varia-
tion in light conditions, crowd density, cluttering, and severe occlusion. Table 2 summarizes
the most popular datasets, which can be categorized into three different groups according
to the view type: free view, crowd surveillance view, and drone view.

Some images of these categories are depicted in Figure 8.

Figure 8. Sample images from various datasets.
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• UCSD [69]: It was among the first datasets to be collected to count people. It was
acquired with a stationary camera mounted at an elevated position, overlooking
pedestrian walkways. The dataset contains 2000 frames of size 158 × 512 along with
annotations of pedestrians in every 1/5 frames, while the other frames are annotated
using linear interpolation. It provides also the bounding box coordinates for every
pedestrian. The dataset has 49,885 person instances, which are split into training
and test subsets. UCSD has a low-density crowd with an average of 25 pedestrian
instances, and the perspective across images does not change greatly since all images
are captured from the same location.

• Mall [70]: This dataset is collected from a publicly accessible webcam in a shopping
mall. The video sequence of the dataset contains over 2000 frames of size 640 × 480
in which 62,325 heads were annotated with an average of 25 heads per image. By
comparing to UCSD, the Mall dataset was created with higher crowd densities as well
as more significant changes in illumination conditions and different activity patterns
(static vs. moving people). The scene has severe perspective distortion along the
video sequence, which results in large variations in scale and appearance of objects.
In addition, there exist severe occlusions caused by different objects in the mall.

• UCF_CC_50 [13]: It is the first challenging dataset, which was created by directly
scraping publicly web images. The dataset presents a wide range of crowd densities
along with large varying perspective distortion. It contains only 50 images whose size
is 2101 × 2888 pixels. These images contain a total of 241,677 head instances with an
average of 1279 heads in each image. Due to its small size, the performance of recent
CNN-based models is far from optimal.

• WorldExpo’10 [54]: Zhang et al. [54] remarked that most existing crowd counting
methods are scene-specific and their performance drops significantly when they are
applied to unseen scenes with different layouts. To deal with this, they introduced the
WorldExpo’10 dataset to perform a data-driven cross-scene crowd counting. They col-
lected the data from Shanghai 2010 World-Expo, which contains 1132 video sequences
captured by 108 cameras with an image resolution of 576 × 720 pixels. The dataset
contains 3980 frames that contain a total of 200,000 annotated heads for an average of
50 heads by frame.

• AHU-Crowd [71]: It is composed of diverse video sequences representing dense
crowds in different public places including stations, stadiums, rallies, marathons, and
pilgrimage. The sequences have different perspective views, resolutions, and crowd
densities and cover a large multitude of motion behaviors for both obvious and subtle
instabilities. The dataset contains 107 frames whose size is 720 × 576 pixels, and
45,000 annotated heads.

• ShanghaiTechRGBD [72]: It is a large-scale dataset composed of 2193 for a total of
144,512 annotated head count. The images are captured by a stereo camera with a
valid depth ranging from 0 to 20 m. The images are captured in very busy streets of
metropolitan areas and crowded public parks, while the light conditions vary from
very bright to very dark.

• CityUHK-X [73]: It contains 55 scenes captured using a moving camera with a tilt
angle range of [−10◦, −65◦] and a height range of [2.2, 16.0] meters. The dataset is
split into training and test subsets. The training subset is composed of 43 scenes for a
total of 2503 images and 78,592 people, while the test subset is composed of 12 scenes
for a total of 688 images and 28,191 people.

• SmartCity [47]: It consists of 50 images, collected from 10 different cities for outdoor
scenes of different places, such as shopping malls, office entrances, sidewalks, and
atriums.

• Crowd Surveillance [74]: It is composed of 13,945 high-resolution images. It is split
into 10,880 images for training and 3065 images for testing for a total of 386,513
head count.
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• DroneCrowd [75]: It was captured using a drone-mounted camera and recorded
at 25 frames per second with a resolution of 1920 × 1080 pixels. It contains 112
video clips with 33,600 frames. The annotation was performed by over 20 experts for
more than two months so that more than 4.8 million heads are annotated on 20,800
people trajectories.

• DLR-ACD [76]: It is a collection of 33 aerial images for crowd counting and density
estimation. It was captured through 16 different flights and over various urban scenes
including sports events, city centers, and festivals.

• Fudan-ShanghaiTech [77]: It is a large-scale video crowd counting dataset, and it
is the largest dataset for crowd counting and density estimation. It is composed of
100 videos captured from 13 different scenes. It contains 150,000 images for a total of
394,081 annotated head count.

• Venice [78]: It is a small dataset acquired in Piazza San Marco in Venice (Italy).
It contains four different sequences for a total of 167 annotated images with a resolu-
tion of 1280 × 720 pixels.

• CityStreet [79]: It was collected from a busy city street using a multiview camera
system, which is composed of five synchronized cameras. The dataset contains a total
of 500 multi-view images in total.

• DISCO [80]: It was collected to jointly utilize ambient sounds and visual contexts for
crowd counting. The dataset contains a total of 248 video clips, where each clip was
recorded at 25 frames per second with a resolution of 1920 × 1080.

• DroneVehicle [81]: It consists of 15,532 pairs of RGB and infrared images for a total
of 441,642 annotated objects. The images were acquired by a drone-mounted camera
over various urban areas, including different types of urban roads, residential areas,
and parking lots from day to night.

• NWPU-Crowd [82]: It contains 5109 images for a total of 2,133,375 annotated heads
with point and box labels. Compared to existing datasets, it has negative samples and
a large appearance variation.

• JHU-CROWD++ [83]: It is composed of 4372 images and 1.51 million annotations and
acquired under various scenarios and environmental conditions. Labeling is provided
in different formats, including dots, approximate bounding boxes, and blur levels.

Table 2. Summary of various datasets, including free-view datasets, crowd-surveillance view, and drone-view.

Name Year Attributes Avg. Resolution No. Samples No. Instances Avg. Count

Free view datasets

NWPU-Crowd [82] 2020 Congested, Localization 2191 × 3209 5109 2,133,375 418

JHU-CROWD++ [83] 2020 Congested 1430 × 910 4372 1,515,005 346

JHU-CROWD++ [84] 2018 Congested 2013 × 2902 1535 1,251,642 815

ShanghaiTech Part A [85] 2016 Congested 589 × 868 482 241,677 501

UCF_CC_50 [13] 2013 Congested 2101 × 2888 50 241,677 1279

Crowd Surveillance-view

DISCO [80] 2020 Audiovisual, extreme conditions 1080 × 1920 1935 170,270 88

Crowd Surveillance [74] 2019 Free scenes 840 × 1342 13,945 386,513 28

ShanghaiTechRGBD [72] 2019 Depth 1080 × 1920 2193 144,512 65.9

Fudan-ShanghaiTech [77] 2019 400 Fixed Scenes, Synthetic 1080 × 1920 15,211 7,625,843 501

Venice [78] 2019 4 Fixed Scenes 720 × 1280 167 - -

CityStreet [79] 2019 Multi-view 1520 × 2704 500 - -

SmartCity [47] 2018 - 1080 × 1920 50 369 7

CityUHK-X [73] 2017 55 Fixed Scenes 384 × 512 3191 106,783 33

ShanghaiTech Part B [71] 2016 Free Scenes 768 × 1024 716 88,488 123
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Table 2. Cont.

Name Year Attributes Avg. Resolution No. Samples No. Instances Avg. Count

AHU-Crowd [71] 2016 - 720 × 576 107 45,000 421

WorldExpo’10 [54] 2015 108 Fixed Scenes 576 × 720 3980 199,923 50

Mall [70] 2012 1 Fixed Scene 480 × 640 2000 62,325 31

UCSD [69] 2008 1 Fixed Scene 158 × 238 2000 49,885 25

Drone-View

DroneVehicle [81] 2020 Vehicle 840 × 712 31,064 441,642 14.2

DroneCrowd [75] 2019 Video 1080 × 1920 33,600 4,864,280 145

DLR-ACD [76] 2019 - - 33 226,291 6857

6. Results and Discussions

We report results of recent traditional approaches along with the CNN-based methods
on the most popular datasets. The count estimation performance is reported directly from
the original public work. We compare different methods based on the following metrics:

Mean Absolute Error(MAE) =
1
N

N

∑
i=1
|yi − y′i| (1)

RootMean Square Error(RMSE) =

√√√√ 1
N

N

∑
i=1

(yi − y′i)
2 (2)

• N: is the number of test samples.
• yi is the ground truth result corresponding to sample i.
• y′i is the estimated result corresponding to sample i.

The comparison results are summarized in Table 3. In general, CNN-based methods
highly outperformed the traditional approaches. CNN-based methods showed effective
results in a very cluttered scene with large density crowds and under different scene
conditions (lighting, scaling, etc.). While the multiple-column techniques achieved state-
of-the-art results on three datasets: UCF_CC_50, ShanghaiTech Part A, and Mall, some
single-column techniques also achieved a high performance, such as [53], which obtained
state-of-the-art results on ShanghaiTech Part B.

In addition, CSRNet [46] and SaNet [49] showed comparable results on almost all
datasets. The single-column technique in [53], which involves the attention mechanism,
achieved state-of-the-art results on the WorlExpo’10 dataset. Finally, single-column tech-
niques, like [46,48,49], not only presented great performances but are also easy to imple-
ment and were applied in a real-time scenario.
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Table 3. Comparison of crowd density estimation on various datasets.

Approach
Type Dataset Mall UCF CC 50 WorldExpo 10 UCSD UCF-QNRF ShanghaiTech Part A ShanghaiTech Part B

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Traditional approach
Learning To Count Objects in Images [22] - - - - - - 1.59 - - - - - - -

COUNT Forest [23] 2.5 10.0 - - - - 1.61 4.40 - - - - - -

Multi-source Multi-scale Counting [13] - - 468.0 590.3 - - - - - - - - - -

Multiple-column approaches

MCNN [37] - - 377.6 509.1 11.6 - 1.07 1.35 - - 110.2 173.2 26.4 41.3

Cross-scene crowd counting [54] - - 467.0 498.5 12.9 - 1.60 3.31 - - 181.8 277.7 32.0 49.8

Hydra-CNN [12] - - 333.7 425.2 - - - - - - - - - -

Switching-CNN [39] - - 318.1 439.2 9.4 - 1.62 2.10 228 445 90.4 135 21.6 33.4

Crowd counting using deep recurrent net. [41] 1.72 2.1 219.2 250.2 7.76 - - - - - 69.3 96.4 11.1 18.2

RANet [42] - - 239.8 319.4 - - - - 111 190 59.4 102.0 7.9 12.9

DADNet [44] - - 285.5 389.7 - - - - - - 64.2 99.9 - -

DANet [45] - - 268.3 373.2 - - - - - - 71.4 120.6 9.1 14.7

Single-column approach

CRSNet [46] - - 266.1 397.5 - - - - - - 68.2 115 10.6 16

SaCNN [47] - - 314.9 424.8 8.5 - - - - - 86.8 139.2 16.2 25.8

SCNet [48] - - 280.5 332.8 8.4 - - - - - 71.9 117.9 9.3 14.4

SANet [49] - - 258.4 334.9 - - - - - - 67.0 104.5 8.4 13.6

ADCrowdNet (AMG-attn-DME) [53] - - 273.6 362.0 7.3 - 1.09 1.35 - - 70.9 115.2 7.7 12.9
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7. Potential Application of Crowd Counting

Crowd counting techniques have been applied to count and estimate the number of
persons in crowded and cluttered scenes to develop real-world applications, mostly related
to video surveillance and public safety. In addition, these techniques have been adapted
and applied to different related problems, such as traffic control, plant/fruits counting.
Different applications use different image sources, including a fixed camera, multi-cameras,
a moving camera, unmanned aerial vehicles (UAVs), etc.

In this section, we review the crowd counting applications developed using unmanned
aerial vehicles (UAV). In [86,87], the authors introduced an automated vehicle detection and
counting system in high-resolution aerial images. The proposed method used a convolution
neural network to generate a vehicle spatial density map from the aerial image.

Jingyu et al. [88] introduced an efficient convolution neural network called Flounder-
Net, which used aerial images captured by a drone (See Figure 9), to count crowd people
for a security purpose. Flounder-Net architecture (See Figure 10) involves an interleaved
group convolution to eliminate the redundancy of the network, and the rapid shrink of
feature maps in order to tackle the high-resolution problem. The model is implemented
and integrated into the embedded system of the drone. In the same context, Castellano
et al. [89] introduced a light-weight and fast fully-convolutional neural network to regress
a crowd density map on aerial images captured by a drone.

Recently, crowd counting techniques have been applied in the agriculture domain.
In [90], Jintao et al. developed and implemented an automatic counting of in situ rice
seedlings in the field using a basic fully convolution neural network to regress a crowd
density map. The system takes, as input, aerial images captured by an UAV equipped with
RGB cameras. Sungchan et al. [91] implemented an automatic cotton plant counting by
adapting the Yolo3 [92] deep learning algorithm. In the same context, Kitano et al. [93]
used a fully convolution neural network to develop an application that captured images
using a UAV and returned the number of corn plants.

The technology of crowd counting is being increasingly adapted to agriculture, which
facilitates the decision-making of the farmer and the management process of work-labor
and products.

Figure 9. Crowd counting using a drone.



Big Data Cogn. Comput. 2021, 5, 50 17 of 21

Figure 10. Flounder-Net architecture as presented in [88].

8. Conclusions

In recent years, the need for crowd counting in many areas has greatly boosted
research in crowd counting and density estimation. With the development of deep learning,
the performance of crowd counting models has been remarkably improved, and the real-
world applications scenarios have been expanded. This paper presented a survey on
the recent advances in convolution neural network (CNN)-based crowd counting and
density estimation. We explored the existing approaches from different perspectives,
including the network architecture and the learning paradigm. We presented a description
of the most popular datasets that are used to evaluate the crowd counting models. In
addition, we conducted a performance evaluation for the most representative crowd
counting algorithms. Finally, we reviewed the potential applications of crowd counting in
the context of unmanned aerial vehicle (UAV) images.
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