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Abstract: With the rapid development of 5G communications, enhanced mobile broadband, massive
machine type communications and ultra-reliable low latency communications are widely supported.
However, a 5G communication system is still based on Shannon’s information theory, while the
meaning and value of information itself are not taken into account in the process of transmission.
Therefore, it is difficult to meet the requirements of intelligence, customization, and value trans-
mission of 6G networks. In order to solve the above challenges, we propose a 6G mailbox theory,
namely a cognitive information carrier to enable distributed algorithm embedding for intelligence
networking. Based on Mailbox, a 6G network will form an intelligent agent with self-organization,
self-learning, self-adaptation, and continuous evolution capabilities. With the intelligent agent,
redundant transmission of data can be reduced while the value transmission of information can be
improved. Then, the features of mailbox principle are introduced, including polarity, traceability, dy-
namics, convergence, figurability, and dependence. Furthermore, key technologies with which value
transmission of information can be realized are introduced, including knowledge graph, distributed
learning, and blockchain. Finally, we establish a cognitive communication system assisted by deep
learning. The experimental results show that, compared with a traditional communication system,
our communication system performs less data transmission quantity and error.

Keywords: cognitive computing; distribute algorithm; 6G network

1. Introduction

With the development of wireless communication technology, the requirements for
intelligent computing have significantly increased. This can be attributed to the explosive
popularity of wireless mobile terminals and further results in an extensive integration of
various sensors in mobile devices, thus providing the powerful sensory and computing
ability of devices. Under such conditions, the transmission of data, including images and
videos, requires wide frequency bandwidth [1]. The related studies have proven that data
transmitted in this way contains a large amount of repeated and useless information, such
as videos with limited motion activity captured by a traffic camera at a certain moment.
Therefore, it is urgently needed to develop a mechanism to cognize data of interest to be
transmitted [2].

Fortunately, extensive research has been conducted on learning the network’s trans-
mission data using artificial intelligence (AI) algorithms to realize intelligent networks [3].
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Existing studies have focused on data analysis by AI algorithms using data acquired by a
network for the purpose of further optimizing communication, computation, and storage
resources. For instance, the software can be used to define a network and realize network
self-learning control strategies. However, enormous resources are required to acquire and
transmit network data [4].

Furthermore, when making decisions on network and intelligent applications, it is
required to offload massive differentiated data to the cloud where data are processed by
AI algorithms (e.g., deep learning) to obtain an optimal decision. However, a centralized
model of cloud-related decision-making not only severely increases the pressure on tradi-
tional networks, but has also made it difficult for a cloud server to handle such complicated
and differentiated multi-dimensional environmental information.

Due to different requirements of AI services, the demands for network latency and
resources also differ. Thus, the future network needs to deploy communication, computing,
and storage resources of the network in a dynamic and intelligent way. Using a multi-time
scale, deployment and scheduling of a network can be realized with the resources including
all smart terminal devices, edges, and cloud-computing servers in the network [5]. Service
cognition engines and resource cognition engines can be used to realize the cognition of
business services and network resources, respectively.

Currently, it is still challenging to share and distribute multidimensional resources
when a network is heterogeneous and business requirements are real-time and dynamic.
According to existing studies, AI can better realize management of communication, com-
putation, and storage resources, so it will be an important part of future 6G networks [6].
Moreover, along with the development of intelligent devices, edge devices require the
interaction of massive data and model parameters, which proves the bright future of
distributed AI.

Moreover, in a 5G communication network, information exists in the form of codes.
For instance, a large-scale MIMO antenna [7] can better handle capacity, reduce latency, and
enhance the transmission reliability. However, this system still requires man-make designs,
which makes it difficult to realize the initial interaction of information. Therefore, in a 6G
network, it is necessary to realize an initial interaction of information [8]. Namely, in a
6G communication system, intelligent devices should cognize a user’s demands using AI
algorithms and collect valuable information of the user, and finally realize initial interaction
with the user.

Thus, the future network will have the following features: (i) customized services:
demands on network resources can be customized based on the needs of an intelligent
service; (ii) value transmission: the future network is capable of realizing the transition
from content transmission to value transmission; (iii) proactive interaction: the network
system in the future will analyze human needs and interact with humans proactively and,
thus, transmit both information and value while interacting.

However, the question is how to realize transmission and interaction of information
value. The transmission of information can be realized based on the traditional Shannon
information theory, i.e., the original information is transmitted after being coded, and it is
decoded into the original information after being transmitted. Next, the question of how
to realize the transmission of information value arises. Thus, it is necessary to measure
information value.

To address these challenges, in this paper we propose the 6G MailBox Theory, namely,
a cognitive information carrier to enable distributed algorithm embedding for intelli-
gent networking, as shown in Figure 1. There are some variations that include the word
“cognitive information” and/or the word “mailbox”. Therefore, Cognitive Information
Theory and Mailbox Theory are widely accepted too.Compared with the traditional mail-
box, our proposed mailbox is an intelligent agent carrying information. Using MailBox
theory, a smaller amount of data is required for transmission and higher reliability of
decision-making can be achieved. Thus, with the information cognition based on the
mailbox theory, the network will not only overcome the time and space constraints for
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information transmission in a traditional network, but will also realize the optimal joint
decision-making.
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Figure 1. 6G Mailbox theory: cognitive information carrier to enable distributed algorithm embedding for intelligence networking.

In summary, the contributions of this paper are included as follows:

• 6G Network Architecture: In order to meet the requirements of intelligence, customiza-
tion, and value transmission of a 6G network, a new type of network integrating
distributed intelligent network, active interactive network, and cognitive information
transmission have been proposed. The distributed intelligent network, proactive
interaction network, and cognitive information transmission are introduced in detail.

• 6G Mailbox Theory: We propose the 6G mailbox theory and introduce its features,
including polarity, traceability, dynamics, convergence, figurability, and dependence.
Furthermore, the key technologies in realizing 6GMT are introduced, including extrac-
tion of information value based on knowledge graph, information cognition based on
embedding distribution learning and blockchain-based safe transmission of cognitive
information.

• Performance Evaluation: In order to verify the proposed 6G mailbox theory, we establish
a cognitive communication system assisted by deep learning, and the information is
cognized and encoded by it with deep learning. The experimental results show that,
compared with encoding of a traditional communication system, less data can be trans-
mitted with the proposed cognitive communication system, while the transmission
error is not large.

Driven by the three design issues of 6G cognitive information theory, the follow-
ing sections are associated with three contributions of this article and are organized as
Figure 2. Sections 2 and 3 summarize the evolution of 5G and 6G networking. On this basis,
Sections 4 and 5 propose an integration network architecture of distributed intelligent,
active interact, and cognitive information transmission. Based on the new designed 6G
network architecture, we introduced our novel 6G MailBox theory. Section 6 proposes a
concept of information fusion for data life cycle extensions. Section 7 proposes information
measurement based on cognitive computing, which is the central idea of 6G MailBox theory.
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Section 8 introduces new technologies for information cognitive. Section 9 presents the
limits of cognitive information from the aspect of energy efficiency optimization. Based
on the above theoretical and technique basis, our 6G MailBox theory will be realized as a
cognitive information carrier to enable distributed algorithm embedding for intelligence
networking. Finally, Sections 10–12 introduce the establish and assessments of cognitive
communication system, as well as some cognitive information applications for future usage
of the mailbox theory.

Section 2:

Network, Algorithm and Information 
intelligence for 5G

6G Cognitive Information Theory

Design Issue 1:

Cognitive Services

Design Issue 2:

Data Value Cognition

Design Issue 3:

Proactive Interaction

Contribution 1:
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Information Communication System

Section 12:
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Figure 2. Organization of the article.

2. Related Work

In this section, some relevant research on the evolution of the 6G network, including
the evolution of communication networks, is introduced. 5G networks, mobile edge
computing, and the application of intelligent algorithms in networks and information with
the development of artificial intelligence are introduced as well.

2.1. The Evolution of 5G

Wireless-communication technologies for different application scenarios can be roughly
divided into short-distance communication technologies and wide-area network commu-
nication technologies (e.g., cellular networks and low-power WAN). These technologies
have promoted the development of mobile edge networks. The explanations of how tech-
nologies are fused, as well as the role that data-transmission can play, are elaborated in
the following.

From the perspective of transmission distance, multi-scale sensor communication can
be divided into two types: short distance communication and wide-area network (WAN)
communication. The former includes Zigbee, Wi-Fi, Bluetooth, and Z-wave technologies,
which are widely used in wireless access networks; whereas the latter include wide-area
network (WAN) communication technology with low-rate service demand. The low-
power WANs (LPWANs) [9] can be divided into two categories: LPWANs, which work
in an unauthorized spectrum, such as LoRa and SigFox, and the 2G/3G/4G cellular
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communication technologies, which are supported by 3GPP and work in an authorized
spectrum, such as EC-GSM, LTE Cat-m, and NB-IoT [10]. The data-transmission rates
of these technologies are different, but they are all far lower than that of the current
commercial 5G, which makes them suitable for applications with low transmission rates,
such as smart electricity meters and large-scale sensor communications.

Currently, the emerging fifth generation of mobile communication (5G) network [11]
faces the challenging tasks of supporting thousands of users with a transmission rate
of nearly 10 Mb/s. More specifically, the linking of hundreds of thousands of mobile
devices for the deployment of large-scale sensor networks would require stronger spec-
trum efficiency, wider coverage, reinforced signaling efficiency, and significantly reduced
communication distance compared to 4G networks.

Further, 5G applications can be divided into the three following categories:

• Enhanced broadband mobile communication enables better user experience and access
with wider bandwidth in order to support higher quality multimedia services and
more living experience than 4G;

• Massive IoT communication provides signaling control with a higher connectivity den-
sity and better real-time optimization and supports efficient access and management
of massive IoT devices at low cost and power consumption;

• Ultra-latency and ultra-reliability communication provides users with millisecond-
level end-to-end latency and nearly a 100% guarantee for business reliability.

To satisfy the requirements of 5G for better performance, faster speed, better connec-
tion, higher reliability, shorter latency, and specific topological structures in application
scenarios, many designs and techniques have been presented. For instance, for the purpose
of improving the transmission rate, it has been proposed to spread the spectral range
(e.g., millisecond-level communication) to deliver more information while improving the
transmission rate. In addition, in order to enhance the spectral efficiency, the upper limit of
transmission rate under the unit spectral resource of plots has been recommended using
massive MIMO technology [7] and high-order modulation technology.

Moreover, in order to enhance data traffic, it has been suggested to adopt a more
compact plot arrangement and deploy more plots in each unit area to provide more capacity
and more spectrum reuse. In addition, the full-spectrum access adopted by 5G involves the
hybrid networking of 6 GHz and lower frequencies with higher frequencies, in which low
frequencies are essential to 5G for seamless coverage, while higher ones are supplementary
for the enhancement of rate at hot spot areas [12]. These frequencies are combined to fully
make use of their advantages and jointly satisfy the needs of 5G for seamless coverage, fast
speed, and great capacity.

Further, to achieve the demands for ultralow latency, ultra-high reliability, and in-
telligence, 5G uses three main techniques in the wireless access network: separation of
the control plane and the data plane based on a software-defined network, separation
of up and down paths, elastic matching of wireless resources, and content distribution,
and network integration in the core network. Furthermore, to make network services
satisfy the needs and individualized services required by users, realize deep integration
of networks and businesses, and provide better services, the network slicing technique
has been proposed. To be specific, multiple end-to-end virtual sub-networks will be built
pertinent to the actual needs in different business scenarios, and network slicing techniques
can be used to virtualize network functions so that one or more network services can be
provided neatly to meet the needs of the party requiring such slices [13].

Moreover, for tasks characterized by extensive computation, extensive data, and
latency sensitivity, such as the visual services of a wearable camera, using the mobile
edge cloud computing has been recommended to move the business platform to the
network edge and thus provide nearby mobile users with additional capacity for business
computing and data caching.

Based on the presented analysis, the introduction of 5G technology will change our
lives significantly [14]. First, it will enhance the data transmission rate significantly while
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guaranteeing data reliability. Second, it will integrate more IoT devices, including different
types of information devices, such as new-type sensors, embedded sensors, edge computing
units, biosensors, and braincomputer interaction, and finally it realizes the automation and
intelligent service in the physical world.

2.2. Mobile Edge Computing

It is anticipated that future wireless communication networks should be able to handle
an unprecedented amount of big data, so it will be necessary to employ data-driven
approaches to optimize new technologies towards improving performance.

The guaranteed growth in the amount of big data and mobile traffic is undoubtedly a
great challenge to the existing communication technologies and frameworks, since it could
lead to a shortage of computing and network resources. However, if data analysis and
control logic are implemented on the cloud, it will be difficult to meet all business require-
ments for resource allocation and transmission delay. Namely, mobile edge computing is
capable of supporting services with high performance, low delay, and high bandwidth,
so it can accelerate the downloading speed of various contents, services, and applications
on a network where users can enjoy an uninterrupted high-quality web experience. With
the introduction of an MEC (Mobile Edge Computing), the effective fusion of wireless net-
works and Internet technology functions [15], such as computing, storage, and processing,
have been added to the wireless-network side to establish an open platform for embedded
applications. The information interaction between a wireless network and a business server
is performed through a wireless API by fusing the wireless network and business, thus up-
grading the traditional wireless base-stations into intelligent base-stations. For the business
level (e.g., IoT, video, healthcare [16], retail, etc.), the MEC can provide customized and
differentiated services to the industry, thus improving the network’s utilization efficiency
and added value. Simultaneously, with strategical deployment (especially geographic
location) of mobile edge computing, the advantages of low delay and high bandwidth can
be achieved. The MEC can also obtain real-time wireless network information and accurate
location information, therefore providing more accurate services.

2.3. Intelligent Algorithm for Network

By being based on artificial intelligence (AI), deep learning, as a method that has
been studied extensively, can realize the learning process using neural networks. The-
oretically, deep learning can operate in a data-driven way to relieve system designers
from mathematical modeling and expert supervision [17]. In addition, when massive data
are available, deep learning can be used for image classification, speech recognition, and
unmanned driving [18]. The deep learning-based networks have a layered architecture
and simulate the human brain’s functions when processing information. This enables
the learning of data characteristics without requiring prior design of the original data
characteristics. Under such conditions, massive original data, layer-by-layer extracted
characteristics, and learning architecture can be used to establish a complicated non-linear
mapping relation between input and output data. Through massive data training, a deep
learning network adjusts the parameters of each network layer. It enables understanding
an effective character representation of the data and improves the accuracy of classification
or forecasting.

Furthermore, as the complexity of 5G networks is continuously increasing, making the
development of theoretical models more difficult, so does the modeling and optimization
of standard mathematical tools. Furthermore, with a rapid increase in the number of
connected devices to the 5G network, more and more data needs to be processed, which
can impact the design of communication networks [19]. Nonetheless, recent progress in
advanced techniques and the rapid acceleration of dedicated hardware facilities (e.g., GPU)
for data processing, have made it practical to apply deep learning algorithms to wireless
network optimization.
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Bear in mind that deep learning has been widely used to enhance network perfor-
mance [20]. However, when deep learning is used in specific wireless communication
businesses, it not only needs the high-speed processing required by network changes, but
also faces complicated and diversified sources of data. Thus, to establish a deep learning
model, it is needed not only to take reference from massive multi-type data to improve
the prediction ability, but also to recognize and understand massive data to acknowledge
the correlation between data elements. Nevertheless, due to the complexity and the large
amount of data, such models and correlations are always ignored. Thus, deep learning
algorithms are highly dependent on data. On the one hand massive data are required for
training deep learning models; on the other hand, data quality is critical to the quality of
the training model. Therefore, it has still been challenging to improve the quality and value
of data simultaneously.

2.4. Information Intelligence

Based on the previous discussions, 5G communication using AI technologies can
achieve fast transmission of information and processing where AI can be effectively utilized
to extract wanted information from the massive data. Communication technologies and
AI can integrate information from different regions, making the information and values
more diversified. However, due to the improvement in digital communication systems
in the physical world, it is necessary to interpret and use information transmitted by a
communication system in a more profound way [21]. The information carried by physical
substances (such as sound, light, electricity, energy, and disk), has its own value.

In view of this, exploring the information value not only will relieve the burden of
a communication system, but will also deliver the information of better value, which
will bring a brand-new experience to the user [22]. Moreover, the success of the digital
information era is mainly attributed to Shannon’s information theory, which quantizes
the information amount into entropy value based on the statistical probability of an event
without taking into consideration the context of the information.

In the real world, the production, transmission, and application of information value
are all affected by the intelligence and educational level of people. For instance, the hu-
man brain can have different connections and imaginations toward different things and
information. However, by being limited by physical conditions, the processing of informa-
tion value by humans is restricted by both time and space. In terms of time, people can
hardly learn and summarize knowledge ceaselessly, and in terms of space, restrictions from
physical and cultural differences make efficient and large-scale interaction of knowledge
impossible. Hence, the main question is whether the existing communication systems and
AI algorithms can realize the transmission of information value and knowledge.

3. Intelligence Networking for 6G
3.1. The Evolution of 6G

After evolution and development, communication technologies have evolved from
human-body information transmission to simple signal communication via wired and
wireless communication systems. In the current situation of widespread mobile-device
usage, data transmission from devices to edge clouds mainly relies on the most widely
used wireless/mobile-communication technologies. From the perspective of transmission
fusion, existing technologies and related literature can be summarized in terms of which
tasks or data are transferred to which computing node, i.e., what, where, how, and when
to transmit. The question of how to transmit refers to determining what is currently the
most widely used wireless/mobile communication network and technology. The questions
of what, where, and when to transmit relates to the fusion and joint optimization of the
network communication model and resources.

Due to the requirements for power consumption, coverage, transmission rate, cost,
number of connected devices, and other related parameters, the IoT wireless communi-
cation technology has been a driving force in supporting different application scenarios,
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including short-range communication, low-power wide-area communication, and mobile
cellular network communications. The mentioned communication technologies, with mo-
bile cellular communication as the main research object, are established using multi-scale
intelligent sensors all over the heterogeneous IoT where a communication network with
the fusion application is gradually forming. As mobile cellular-communication technology
continues to evolve towards the sixth generation (6G), wireless access technologies have
followed different evolutionary paths.

These technologies focus on performance and efficiency in highly mobile environ-
ments. With the first generation (1G), the basic mobile voice-communication needs were
realized, while for the second generation (2G), capacity and coverage expansion was the
main motivation. The third generation (3G) technology opened the door to a mobile
broadband experience with higher data-exploration speeds. The fourth generation (4G)
technology provided a wide range of telecommunications services, including advanced
mobile services provided by mobile and fixed networks. The 4G also supported packet
switching with high mobility and high data rates. The fifth generation (5G) technology
aimed at changing the world by connecting everything. It not only focused on new fre-
quency bands, but also pursued requirements for higher performance, greater speed,
multiple connections, higher reliability, lower latency, higher universality, and specific
topological structures in application fields. As for the sixth generation (6G), pervasive
AI and edge intelligence will be redefined [23], i.e., an ultra-flexible architecture will be
designed and realized to introduce human-like intelligence to all levels of network systems.

In recent years, 5G has entered the fast track of commercial deployment, and 3GPP
has released the standard schedule of 5G. 5G has opened a new era of interconnectivity
of everything. It has also penetrated a variety of industries, including transportation,
agriculture, and energy. The 5G networks can realize ubiquitous information acquisition
and meet the requirements for key performance indicators under the scenarios of enhanced
mobile bandwidth, large-scale IoT, high reliability, and low latency. With the development
of 5G academia, industry, and other research communities have begun to look beyond 5G,
and it is expected that the key technologies of the 6G mobile communication networks will
be made available in 2023 [6]. 6G will have a brand-new architecture and the capability to
support the digitalization of the whole world [24]. Through the reconstruction of people
and scenes in the physical world to the digital world, 6G will give IoT cognitive devices
and strong intelligence and interactions in ubiquitous interconnection. While 6G research
is still in its infancy, researchers from Europe, the United States, and China have started
to study 6G networks. It has been recognized that each new generation of mobile global
standards appears every 10 years, and therefore 6G is expected to emerge around 2030.
Moreover, 6G will have features of on demand service, strong AI seamless embedding,
flexibility, and simplicity.

Table 1 summarizes the wireless technologies from 1G to 5G in terms of peak data
rates and presents driver applications used in 6G. The data rate of 5G mobile systems
increased from 1 Kbps to 10 Kbps, 10 Mbps, 100 Mbps, and up to 10 Gbps. It is expected
that the upcoming 6G systems will achieve the goal of increasing data rates by 100 times to
about 1 TBps or even higher. This expectation is based on the realization of edge intelli-
gent components, which will allow edge-computing networks to realize self-adaptation
and self-learning.

Table 1. Comparison between mobile cellular networks and communication technology.

Communication
Technology

Radio and Networking Technology Peak Mobile-Data
Rate

Driving Application

1G Analog cell phone, AMPS, TDMA 8 Kbps Voice communication

2G Digital telephone, GSM, CDMA 9.6–344 Kbps Voice/data communication

3G CDMA2000, WCDMA, TD-SCDMA 2 Mbps Multimedia communication
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Table 1. Cont.

Communication
Technology

Radio and Networking Technology Peak Mobile-Data
Rate

Driving Application

4G LTE, OFDM, MIMO, software-
operated radio

100 Mbps Broadband communication

5G LTE, cloud-based RAN 10 Gbps to 1 Tbps Ultra-high-speed communica-
tion

6G Edge intelligence, MIMO, spatial mul-
tiplexing

1 TBps Ultra-high-speed communica-
tion, AI-based self-learning

3.2. 6G Network Architecture

Based on above discussion, 5G mobile communication is getting faster and faster,
supporting the enhanced broadband mobile communication, massive IoT communication,
and ultra-latency and ultra-reliability communication. However, there are still challenges
in the way to realize 6G [25], as stated below:

• Intelligence requirements: In the future 6G network, with the development of the Inter-
net of Things (IoT), UAV communication, and satellite communication, the various
sensors that will be deployed in the space-are-ground integrated network and the
data collected by these sensors will need to be transmitted, analyzed, and processed
in real time. With the development of artificial intelligence (AI), sensing devices are
becoming more and more intelligent. Thus, in order to meet the requirements of the
space-are-ground integrated network, the network needs to be a distributed intelligent
network with connection, perception, transmission, storage and analysis;

• Customization requirements: With the constant development of new technologies, net-
work architectures will be more and more customized to meet the personalized needs
of users and applications. For example, with the development of industrial IoT, indus-
trial equipment has become more and more dependent on communication networks,
and different kinds of industrial equipment have different delay requirements for
specific tasks. Thus, the 6G network needs to meet the personalized needs of users and
different applications, and active cognition of the demand of users and applications
can be realized by a future network, and then active interaction can be realized;

• Transmission requirements: Demand for data traffic-based services is growing even
faster. It is predicted by International Telecommunication Union (ITU) that by 2030,
global mobile data traffic will be 100 times as much as current traffic. The deployment
of future intelligent applications, such as holographic-type communication and mixed
reality, will require higher reliability and lower delay. Therefore, in order to meet the
increasing demand of communication, the future communication mode needs to be
improved to realize the transmission of information value.

In order to meet the above requirements of 6G network, distributed intelligent net-
work based on cloud-edge-terminal, demand centered active interaction and value based
information transmission, are proposed:

(1) Distributed Intelligent Network. In the traditional communication systems, cen-
tralized control architecture is generally adopted, and there are problems in the scalability
and management for this type of architecture, especially in the allusion to massive ter-
minals and business requirements. Moreover, with the development of AI, terminals are
becoming more and more intelligent, and the existing network experiences difficulties in
supporting such applications. Therefore, in the 6G network, the following are required:

• Intelligence of communication infrastructure is necessary, that is, intelligence should
be embedded from access network to core network to meet the personalized access
and service of intelligent applications at any time and at any place;

• Intelligent management is needed. In consideration of more access equipment in a
6G network and wider network coverage area of a 6G network, how to manage these
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network resources is a challenging problem [26]. The introduction of a intelligent
network control and resource scheduling is an effective solution. It is predicted that
network autonomy and self-optimization can be realized with the introduction of AI
and digital twin technology;

• For perception, transmission, storage, and analysis of large scale data, the realization
of sinking from cloud centralized type to edge distributed type is required. Specifically,
(i) the integration of perception and transmission is required, that is, the integration
of data perception and transmission should be realized; (ii) the deep fusion of cloud
edge-terminal communication, computing, and caching resources should be real-
ized, that is, horizontal distributed collaboration, vertical hierarchical collaboration,
and hybrid collaboration should be realized through aggregation and decoupling of
communication, computing and caching resources.

(2) Proactive Interactive network. Traditional communication systems generally
focus on network functions. However, with the rapid growth of IoT devices, such network
architectures will become more and more complicated and it will be difficult for them
to expand. Moreover, it may be difficult for such architectures to meet the personalized
demand of users or services. Therefore, a personalized demand-centered network should
be established in the 6G era, to realize demand-driven control and management. For
example, for users’ personalized demand, a user-centered network can be established,
where users can define network functions to implement on-demand resource scheduling.
Moreover, in consideration of changes in user demand, the network will adjust dynamically
in real time according to the changes of user demand, thus to realize proactive interaction.
This design requires the use of AI technology to unify the network layout. However, this
design brings security concerns. As users pay more and more attention to personal data,
security, and privacy issues, the protection of user data should be realized in a 6G network,
and user data should be autonomous and controllable.

(3) Cognitive Information Transmission. Most traditional communication technolo-
gies are based on Shannon information theory, which excludes semantic modeling and
analysis of information. With such communication systems, the transmission of the number
of bits of information can be ensured, without concern for semantic characteristics or the
value of information. However, this kind of transmission may produce a large amount
of redundant data transmission, resulting in the waste of communication and computing
resources. Therefore, more attention should be paid to the content of the transmitted
information in the 6G network, and the semantic features of the information should be
extracted and transmitted. Furthermore, with the development of deep learning, feature
extraction technology is becoming more and more advanced. Therefore, different from
traditional encoding and decoding mode, the cognition of information can be realized by
extracting and mining the features of information content.

Based on the discussion above, we propose the 6G mailbox theory, i.e., a cognitive
information carrier to enable distributed algorithm embedding for intelligence. With
this network, value-centered transmission, service customization, and active interaction
can be realized. Specifically, the 6G network will become an intelligent agent with self-
organization, self-learning, self-adaptation, and continuous evolution capabilities. In-
telligent dynamic deployment and sharing of communication, computing, and caching
resources can be realized, data transmission can be secure and reliable, and differential
adaptation can be conducted based on user demand. Therefore, in a 6G network, with
a decentralized intelligent network architecture and transmission of information value,
transmission of signaling can be greatly reduced to meet the requirements of intelligent
services on ultra-low delay and ultra-high reliability.

4. Distributed Intelligent Network

In this section, we introduce the distributed intelligent network with a fusion of the
cloud-edge-terminal. With the rapid development of AI chips, embedding intelligent algo-
rithms in network infrastructures (access networks, edge infrastructures, core networks,
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and cloud infrastructures) is becoming a new reality. In a 6G network, the intelligence of
networks can be realized by making full use of the sensing, communication, computing,
and storage capabilities of network nodes. Unlike the traditional network, with separate
transmission and computing, 6G will be more complex and highly distributed. It will be
based on the integration of transmission, computing, caching, and intelligence. In this
network, the distributed communication, computing, and caching resources perceive and
transform into each other where cloud, edge cloud, and users are effectively collaborating
with each other intelligently. Thus, in this way, not only the utilization of network com-
munication, computing, and caching resources can be improved, but fast scheduling of
services and resources is also realized to satisfy users experience.

Specifically, the architecture can be divided into resource cognition engine, service cog-
nition engine, and network orchestration management layer. The resource cognition engine
is responsible for perception and forwarding of heterogeneous communication, computing,
and storage resources. The service cognition engine is responsible for the decomposition
and scheduling of general and intelligence services. Based on the resource cognition engine
and service cognition engine, the distributed intelligent control [27], layout, and scheduling
of the network are realized in a network orchestration layer. This aims to meet the demand
of users and also make use of the complicated network environment. For example, the
overall perception and measurement can be conducted by existing multidimensional com-
munication, computing, and caching resources in a 6G network according to the service
demand of users, so as to reasonably allocate and schedule services. Next, we introduce the
realization of transmission and computing integration with the fusion of communication,
computing, and caching resources through the cloud-edge-terminal collaboration.

As a supplement and extension of the limited terminal and spectrum resources, the
aim is to reduce the cloud service access and transmission delay. Under these conditions,
edge caching represents an efficient technology in the trade-off optimization scheme for
cost and storage resources. The edge caching focuses on the three following questions:
where to cache, how to cache, and what to cache. Specifically, to provide end-users with
more accurate real-time processing and high-quality services, the personalized intelligent
caching policy should be designed according to a user’s data as perceived and acquired
by an edge network. This includes personal information, business requirements, location,
mobility, epidemicity, and historical information. To achieve this, the most appropriate
content and optimal caching placement node (edge cloud) should be selected, where
caching content should be transmitted using the distributed data-transmission technology
and placed on the computing nodes of an optimal edge cloud. Therefore, this section
focuses mainly on the mainstream edge-caching strategies, which are as follows.

(1) Content caching and distribution: where content that can be cached and shared
is determined based on the popularity of the content requested, user mobility, and type
of content.

(2) Task caching [28]: in the current era hardware devices, AI, and 5G communication
technologies are becoming increasingly popular, and computing tasks frequently appear in
the request results and service process of terminals. If a user requests a computing task that
is not cached by an edge cloud, then it will be offloaded to the edge cloud to be completed
before returning to the user. If a computing task is cached, the edge cloud will execute it
directly and returns the result to the user. If results of the computing task have been cached
on the edge cloud, then the results can be returned directly to the user. Therefore, task
caching is often closely related to computing offloading.

(3) Collaborative caching: in a collaborative environment, users are served by a set of
collaborative caching servers, i.e., edge clouds, which can share user request information.
When the cooperating agents do not cache the user access request object, they obtain
the corresponding request object from the web server on behalf of the user. Therefore,
it is necessary to ensure that the acting caches in the caching architecture can effectively
cooperate to improve the performance of the caching system. This requires collaborative
filtering of content and tasks, data synchronization, and fusion storage technologies.
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4.1. Communication, Computing and Caching Integration

The main question that arises is how to understand the mailbox theory. According
to the aforementioned discussions, the mailbox theory should be applied to the entire
communication system. To simplify this explanation, consider the mailbox theory from the
aspect of terminals and communication, computing, and caching (3C) integration, as shown
in Figure 3. First, for terminal 3C integration, algorithms shall be embedded into terminals
and terminal business data. To be specific, for intelligent terminal services, key performance
indexes include capacity, latency, reliability, link count, and cost-effectiveness. The user
service quality refers to the user’s satisfaction at the network level. Such satisfaction is
associated with the realization status of the user’s expectation on a business, the user’s
personal preference and environment, and the business itself. Specifically, a model between
the user’s experience (service quality) and the network KPIs can be expressed as follows:
QoE = f (KPI1, · · · , KPIn), where f denotes a non-linear function that can be solved using
AI algorithms.
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Figure 3. Distributed intelligent network based on communication, computing, and caching integration.

The heterogeneity of services should also need to be considered, which means that
different services require different storage capacities and computing resources. For instance,
for simple push notifications, it is only needed to consider the communicating and comput-
ing abilities of a user’s device. However, in virtual reality (VR) games, the communicating,
computing, and storing abilities of devices are all critical. Thus, a model between service
KPIs and communicating, computing, and caching resources should be built.

For services, such as augmented reality (AR) games, the demands of services (i.e.,
the demand of the service for 3C resources) can be expressed as Q = (ω, s, o), where ω
denotes the required computation amount, s denotes the required transmission amount,
and o represents the caching amount. For instance, earlier caching can be made for scene
rendering of VR games. Thus, modeling between service KPIs and 3C can be expressed as
KPI = f (Q), hence the relation between the KPI and 3C can be obtained. However, the
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theories for explaining the integration of communicating, computing, and caching are yet
to be determined. The information theory should explain the integration of terminal 3C
businesses and limits of communicating, computing, and caching resources.

In the field of wireless-communication systems, network optimization problems have
been extensively studied using an appropriate network configuration or a method of
maximizing system performance. The network-optimization problem involves a wide
range of wireless network-related research. Typical applications include resource allocation
and management, system reconfiguration, task scheduling, and user QoS optimization. As
shown in Figure 4, a typical network-optimization process in a wireless-communication
system includes the five following steps:

• Network-resource perception. The transmission data fused in the network-optimization
process includes: communication resources, such as channel state information, inter-
ference, noise, user or sensor position, spectrum, and time slice occupancy information;
QoS information, such as delay and energy consumption rate and mobile state; com-
puting resources; and storage resources at the node, edge cloud, remote cloud, and
so on;

• Network-status analysis. The optimization objective and model to be adopted can
be determined by analyzing the perceived network-resource data. Currently, the
most widely used analytical methods include human analysis and intervention, and
automatic analysis and prediction based on AI. However, artificial analysis by domain
experts is both costly and inefficient. In contrast, if an AI-based automatic-analysis
method is adopted, then the network-optimization process becomes more intelligent,
and this method is also conducive to the establishment of effective models with low
complexity in various unmeasurable environments;

• Mathematical representation and establishment of the model. Through the analysis of
network resources and conditions, mathematical formulas can be derived to express
the index data that needs to be optimized in the future, i.e., an optimization model
containing objective functions and several constraints can be developed. The opti-
mization objectives of the model can be, for instance, throughput, spectrum utilization,
user-perceived delay, energy consumption and gain, facility deployment costs, or
other parameters;

• Collaborative optimization and algorithm execution. Collaborative optimization can be
achieved using multiple performance-index parameters. Currently, the most com-
monly used methods for solving optimization problems are mathematical derivation-
based methods, heuristic algorithms, and self-learning algorithms based on machine
learning. The former adopts a mathematical derivation process, such as the Lagrange-
multiplier or gradient-descent methods. These methods are ideal for solving prob-
lems involving explicit and convex objective functions. Heuristic algorithms adopt
the heuristic neighborhood search process to find an optimal solution. Heuristic
algorithms include the genetic algorithm, simulated annealing, particle swarm opti-
mization, and the firefly algorithm. These algorithms do not require a derivative of
an objective function. However, if the optimization complexity is sufficiently high,
then they can usually provide high quality solutions to complicated optimization
problems. In the case of self-learning algorithms that are based on machine learning,
the game-theory technologies, such as the noncooperative game, cooperative game,
and Bayesian game, have been successfully used to solve optimization problems using
interactive learning with functional nodes and automatic configuration strategies;

• Performance evaluation and decision making. Depending on the optimization results,
settings and operations can be reconfigured by the system to adjust the performance.
Possible configuration actions and decisions can include computation offloading,
content caching, network sharing, task scheduling, routing planning, resource allo-
cation, etc. After the configuration is completed, data perception and analysis are
conducted based on decision execution results by the system to evaluate the algo-
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rithm’s performance. Then, the optimization process is repeated to keep the system in
an appropriate working state.

In the following, we present a brief overview of existing research covering: fusion and
joint optimization of caching at different nodes, communication, and computing (3C fusion)
at the forefront of network communication and transmission fields from the perspectives
of traditional algorithms and AI technologies.
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Figure 4. Wireless-communication enabling technology, transmission fusion, and optimization process.

4.2. Fusion of Terminal Caching, Communication and Computing

The fusion of terminal caching, communication, and computing is also known as
terminal 3C fusion. This means that data fusion and analysis are conducted on caching,
communication, and computing resources on the user side (sensors and devices), which
provides the best resource-allocation scheme to achieve the optimal network experience
to users. Since the terminal devices are dispersed, two scenarios (i.e., single end-user and
multiple end-users) are considered, and either a distributed or centralized 3C fusion model
is established when the data transmission or network communication is conducted.

(1) 3C fusion for a single terminal. In 3C fusion for a single user device, computing
tasks or services are targeted. First, a task that a user is executing is described at the
current moment, and then 3C resource modeling is optimized based on the task data. For
intelligent services, the key performance indicators include channel capacity, transmission
delay, transmission reliability, number of connected devices, and the cost-effectiveness
of the transmission. The user’s service quality refers to the user’s satisfaction with a
certain service. However, the satisfaction level depends on the user’s expectation of the
service, which is related to the user’s personal preferences, environment, and data related
to the task.

Specifically, the 3C fusion process for a single terminal can be divided into the follow-
ing steps: (1) User experience and service modeling. The modeling function between the
user’s experience (quality of service) and services provided by the edge-cloud server is a
non-linear function, which can be modeled by a neural network. (2) Service and 3C fusion
modeling: The demand for a service (i.e., requirements of computing tasks on caching,
computing, and communication resources) can be described as a relation function between
the service and amount of computation, transmission, and caching. At this point, the
relationship between each of the key performance indicators of a task (such as transmission
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delay) and 3C can be obtained. (3) Optimal 3C fusion and configuration: The configuration
problems of terminal 3C resources, computing, storage, and communication resources are
allocated to the terminal to make the service quality at the terminal as high as possible.
To achieve this goal, a mathematical description of the terminal performance (e.g., com-
munication capacity, computing capacity, storage capacity, service demand, dump energy,
and user data) should be determined first. In practice, due to the wide time variability and
complexity in the service demand, link state, channel capacity, equipment load, and other
parameters of a terminal, an on-line dynamic adaptive algorithm can be adopted in the mo-
bile terminals to realize real-time configuration of caching, communication, and computing
resources. Specifically, the goal of optimal 3C fusion and configurations is to minimize the
task delay. The constraint is that the energy consumed by a terminal should not exceed
the battery capacity, caching should not exceed the caching capacity, and the computing
capacity should not exceed the remaining maximum amount of computing. To ensure the
user experience in the process of iterative optimization, the pre-computing mechanism
can be used; the requirements of a task and ability of network node for 3C resources at
the next time can be predicted according to the status of the terminal equipment at the
current time, and then the preliminary matching can be performed. (4) 3C offloading at a
single terminal. When a terminal fails to meet the requirements of a task, a collaboration
between the fusion of 3C terminal resources and edge cloud should be considered, i.e., the
terminal meets the requirements through the transformation of caching, communication,
and computing resources. Specifically, to achieve a collaborative optimization between the
terminal and edge cloud, the goal of the single terminal 3C offloading is to minimize the
user’s delay. This delay consists of three parts: wireless-transmission delay, computing
delay, and delay in the optical transmission. Then, the energy consumption at the terminal
can be obtained, including the energy consumption of data transmission and energy con-
sumption of local computing. Using a combination with the corresponding offloading and
caching strategies, the constraint conditions are the same as those in an optimal 3C fusion
and configuration. For this optimization problem, a stable caching, communication, and
computing resource-allocation scheme for a single terminal is given.

(2) 3C fusion for multi-terminal. In a multi-terminal scenario, if collaboration between
terminals is not initiated, a model similar to the single-terminal model should be consid-
ered; otherwise, a mobile device can share the communication, computing, and storage
resources with another device through collaboration between their terminals, such as a
D2D connection between devices, which is conducive to an increase in the overall system
throughput and reduction in delay.

Specifically, research on multi-terminal 3C fusion has several main directions, which
are as follows. (1) Multi-user modeling and collaborative optimization of 3C resources. In
a multi-terminal collaboration scenario, the offloading of resources to other terminals via
D2D communication increases the delay in data transmission. Therefore, it is necessary
to study a trade-off between transmission, computing, and caching, i.e., the trade-off
between the collaboration gain and overhead. (2) Adaptive collaborative optimization
of 3C resources based on AI. For realizing the collaboration of caching, computing, and
communication resources in a multi-terminal scenario, not only should the resources of a
terminal be considered, but also the resources of other devices that are connected to the user.
If the mobility of a terminal is high, then its connection with other terminals can be broken,
resulting in dynamic changes in the caching, computing, and communication resources,
which makes the configuration of resources more difficult. However, this problem can
be solved using AI technology to predict terminal mobility from two perspectives, the
spatial information and terminal context information, and then applying reallocation to
3C resources. (3) 3C collaborative optimization with a combination of multi-dimensional
perception and AI. More data can be perceived by decentralizing the caching, computing,
and communication to a mobile terminal. Specifically, two types of data, the business
data and terminal data, can be perceived. The business data includes the data content,
such as AR game or HD video, and type and size of the business data. The terminal
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data includes the communication ability, computing, and storage ability of a terminal
device, as well as the context data of an end-user, including age, occupation, and social
information. Considering that the optimization problem of the user’s context information
is generally non-convex and non-linear, using the traditional optimization scheme to solve
it will result in high complexity and time consumption. Therefore, a method of reinforced
deep learning can be adopted, and an offline deep neural network and on-line reinforced
learning can be combined to obtain an optimal 3C resource allocation. (4) 3C offloading for
multiple terminals. Through cooperation between terminals, the caching, computing, and
communication resources of the terminals can be reasonably allocated to achieve a better
service quality at the terminals. Since centralized algorithms consume more 3C resources,
a distributed algorithm can be used to achieve optimal collaboration between terminals.
However, a scheme for 3C fusion of a single terminal can be adopted in a distributed
single-terminal computing offloading algorithm.

4.3. Fusion of Edge Caching, Communication and Computing

In recent years, edge-cloud computing has provided users with short-delay and high-
performance computing services by deploying computing nodes or servers on the network
edge to meet the computing requirements of delay-sensitive tasks. There are two main
advantages of using the edge cloud. First, compared to local computing, the limited
computing capacity of mobile devices can be overcome using edge-cloud computing.
Second, compared to offloading computing on a remote cloud, in edge cloud computing,
excessive delays caused by offloading task content on the remote cloud can be avoided. As
a result, edge cloud computing commonly achieves a better trade-off for delay sensitive
and computing-intensive tasks.

In a MEC system, an increase in the number of user devices and diversity of applica-
tions lead to the exponential growth of mobile services. Therefore, the ability to effectively
offload large amounts of raw data in a communication system is essential. However, the
computing, storage, and communication capabilities of MEC nodes are limited, and thus
the fusion and configuration of 3C edge resources should be considered to achieve an
optimal offloading strategy. Currently, the main types of 3C edge fusion methods are;
(1) Traditional pattern-recognition methods. In these methods, description and modeling
are conducted based on 3C resources on the edge cloud and terminal devices, and opti-
mization is conducted to perform the computing-offloading. (2) 3C edge fusion based
on AI. Since AI can provide analysis, training, and learning abilities for making network-
transmission decisions, machine learning (ML) can be applied to 3C fusion at an intelligent
edge. In the following, several mainstream 3C edge fusion and offloading methods are
briefly introduced.

(1) Traditional 3C edge fusion and optimization methods: At present, existing studies on
3C edge-cloud fusion using the traditional modeling method focus on the four follow-
ing aspects. (1) Content unloading or edge caching. Various caching strategies have been
proposed to reduce delay and energy costs when a user obtains the request [29,30]. (2) Com-
puting offloading. The main design problem is to decide when and how to offload the
user’s tasks from the user’s device to the edge cloud and which tasks should be offloaded
from the user’s device to the edge cloud to save energy and reduce computing delay [31].
For instance, in [32], the authors propose a task-scheduling scheme for edge–cloud comput-
ing when a user is mobile. (3) Mobile edge computing and offloading. The main concern is
the deployment of edge clouds near base-stations [33] and design of optimal solutions to
reduce energy costs and delays while simultaneously considering the communication and
computing resources [34]. (4) 3C edge fusion and optimization. In [28], a new concept of
computing task caching was proposed, where joint optimization of edge-cloud computing,
caching, and communication resources was achieved, and an innovative caching scheme
and an offloading scheme for computing tasks were developed.

(2) 3C edge fusion and offloading based on machine learning: To obtain an effective inference
function from a labeled 3C resource data for training, statistical rules can be used in a
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3C edge fusion method based on supervised learning [35]. Its purpose is to develop
an analysis method that can predict output results based on the input 3C resource data.
Supervised learning consists of two steps: learning and prediction. First, an analysis
method is established by supervised learning, and then classifier parameters are optimized
to obtain the optimal global prediction solution. The support vector machine (SVM)
and support vector regression (SVR) are typical representatives of supervised learning
algorithms, which are commonly used for discrete value classification and continuous
value regression, respectively.

In the 3C edge fusion method based on unsupervised learning [36], a label of input
data is unknown, and the goal is to determine features and structures hidden in the data to
achieve prediction and reasoning functions. One of the most widely used unsupervised
learning algorithms is the K-means algorithm, which attempts to divide data of unknown
classes into several disjoint clusters. These methods are relatively simple and suitable
for practical applications, but their performances are dependent on training data. For
instance, mobile users can form clusters based on location, service requirements, available
resources, and other functions. The MEC server selection and offloading decisions are
made by clusters rather than individuals, which can significantly reduce the number of
participants more effectively.

(3) 3C edge fusion and offloading based on deep learning: Deep learning is a representation
(or feature) learning method based on a multi-layer neural network that allows computing
models to automatically extract features required for prediction or classification from a
large amount of raw data. By using multilayer concatenation for feature extraction and
transformation, deep learning can discover complex structures and learn hidden features
from a large amount of the original data. However, deep learning is regarded as a black
box, so certain training skills and experience are needed in the practical model training
because there is no complete theoretical guidance for model training. It is necessary to
use computing offloading of an edge cloud in a 3C fusion scheme based on deep learning
because a large amount of data is necessary for training with complicated computing, and
a MEC server can provide available computing resources and raw data [37].

(4) 3C edge fusion and offloading based on reinforcement learning: Reinforcement learning
focuses on how to learn from own experience and chooses the best behavior through
continuous interactions with the system environment [38]. The Markov decision-making
process is a simple reinforced learning method that can be used for offloading decisions in
a stochastic dynamic environment, such as the decision on whether to offload and which
MEC servers to select. When considering mobile users, their energy can be saved, and their
computing power can be enhanced by using offloading. However, the additional overhead
caused by the allocated workload transmission and computing resource consumption
should also be considered. Therefore, the first query should be whether to offload. If the
decision is yes, then an appropriate MEC server should be selected, and the workload for
offloading should be determined [39].

(5) 3C edge fusion and offloading based on deep reinforcement learning: Traditional rein-
forcement learning requires handcrafted features to learn about optimal decision making,
as well as low dimensional state spaces. However, with the implementation of deep
learning, useful features can be directly extracted by learning high-dimensional raw data.
Thus, reinforced deep learning can be used to make optimal decisions in the context of
real-world complexity. The Deep Q network was proposed as a typical form of reinforced
deep learning [40]. By using end-to-end reinforced learning and deep learning, the deep
Q network can directly learn about the optimal decisions from high-dimensional raw
data. Thus, reinforced deep learning can be used to learn successful strategies directly
from higher-dimensional raw data generated from edge networks without handcrafting
features. It can acquire real-time transmission data for training within the edge network.
This computing-intensive learning method can be executed in an edge-cloud server to
expedite the training process.
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4.4. Cloud-Edge-Terminal Caching, Communication, and Computing

Terminals such as smartphones, robots, wearable devices, and other local devices can
acquire AI-application data. Due to the relatively low computing and storage capacity
of a terminal, when a user’s requests are too many, or a computing task is complex, it is
not appropriate to process data at the terminal. As an intermediate layer, the edge cloud
can handle part of a computing task. The cognitive computing layer at the edge consists
of several edge nodes with certain computing power. Edge nodes can be deployed on a
gateway, a router, and other servers. However, the computing power of the edge layer is
weaker than that of the cloud-computing layer. The cloud focuses more on inputting the
computing resources, realizing high-precision computing and analysis, and providing the
best computing services, rather than handling all the computing tasks [41].

Due to the different computing capabilities of terminal devices, edge-computing nodes,
and a cloud data center, the order of the computing delay for the same computing task at
these three locations in descending order is as follows: local terminal, edge node, cloud
center. However, although edge-computing nodes have higher computing power than local
devices, there are still computing bottlenecks when they are dealing with many concurrent
computing tasks or highly-complex computing tasks. To mitigate a sharp reduction in the
edge-computing speed, during 3C fusion and optimization, complex computing tasks can
be offloaded to a remote cloud for execution to reduce the computing delay. Besides, when
considering the communication delay (data volume and data-transmission rate), it is also
necessary to comprehensively select the destination of computing offloading. Therefore,
in a cloud-edge-terminal-based 3C fusion scheme [42], not only the performance limits of
terminals and edge cloud should be considered, but also the resources cognitive engine
and datacognitive engine of a cloud. Elastic matching is also conducted using network
resources according to the network resources, interference, energy demand, and load
conditions. Moreover, with the help of an historical data record, a prediction is conducted
for the edge-network data, such as user behaviors and data traffic, and network resources
or data are allocated in advance. This can effectively improve the efficiency of network
communication and transmission.

5. Proactive Interaction Network Based on Digital Twin

Furthermore, a new theory is needed to realize tight coupling between the communi-
cation system and AI and the change from data transmission to value transmission. The
future 6G should not only realize faster transmission, lower transmission latency, and better
reliability, with terahertz-order (THz) communication, integrated sky-earth communication,
visible light communication (VLC) and AI, but also the transmission of data value and
support for the interaction of values. Thus, it is necessary for 6G communication systems
to realize the integration of algorithms into data and computing platform (i.e., computing
power), that is, algorithms should be embedded into the generation, acquisition, transmis-
sion, integration, and visualization of data, to realize the transmission of data values. This
theory is described as the mailbox theory, that is, with the introduction of a mailbox, the
deep integration of algorithms, data, and computing powers in 6G communication systems
is realized.

Today, AI chips are more powerful than previously, and intelligent applications based
on deep learning are used more extensively. In addition, a larger number of devices are
accessing the network. The future network will introduce the seamless connection between
the network, the physical world, and humans, realizing the seamless connection between
the physical space, information space, and human world. Thus, future networks need to
integrate AI algorithms into the cloud-edge network; namely, they need to deploy an AI
algorithm not only at the cloud, but also at the edge cloud and terminal to realize better
real-time interaction between the physical and information spaces.

As discussed above, if the function of proactive interaction is to be realized in 6G
networks, real-time interaction between physical space and information space is required.
In fact, it is difficult for devices in physical space to interact with information space in real
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time. In order to make the network have the function of proactive interaction, based on
digital twin technology, the digital twin network (DTN) is designed with four key elements
(network twin data, model, mapping, and interaction), to realize efficient interaction
between physical space and information space. 6G networks include three layers: (i) The
first layer is the physical communication layer, including the entity unit of the network,
that is, the network entity with communication, caching, computing, and intelligence
mentioned in intelligent networks. (ii) The second layer is a digital twin layer. Firstly, a
network entity unit operates data and historical data to form the data source of a digital
twin layer, then a model is established based on data source, and in combination with
application requirements, and interaction of the model are realized. (iii) The third layer is
the information layer, namely the information transmission in 6G network.

However, most of the existing AI algorithms have been deployed on the cloud, and
these algorithms have been designed by humans, which means that well-marked dataset
and training layers shall be established, but they have poor robustness and generalization
ability. Moreover, their training processes are conducted in a centralized way, and such
a cloud-based way can hardly meet the requirements of applications showing strong
interaction in the physical world. Therefore, deploying algorithms at the edge cloud and
terminals will not only provide better interaction with the physical world, but also better
adapt to the changes in the environment and to users relying on multi-agent learning.

6. Data Life Cycle Extensions for Information Value

There are many types of sensors, such as thermosensitive, photosensitive, gas-sensitive,
force-sensitive, magneto-sensitive, humidity-sensitive, acoustic, radiation-sensitive, color, and
taste sensors. Specifically, radar, sonar, other acoustics, infrared/thermal imaging camera, TV
cameras, sonobuoys, seismic sensors, magnetic sensors; electronic support measures (ESMs),
phased array, MEMS, accelerometers, and global positioning system (GPS) are included. These
sensors produce diversified types of data, such as text, video, infrared/image, ultrasonic,
two-dimensional radar scan, lidar point cloud, gas, and temperature and humidity.

After the sensor data are acquired, possible application scenarios can be smart electric-
ity meters, quality evaluation, security monitoring, and other services directly deployed
on edge network or intelligent services deployed in the cloud, including smart cities,
autonomous driving, knowledge mining, privacy protection, and pricing mechanisms.

However, to realize these services, the existing intelligent IoT architecture based on
data fusion is faced with the following challenges:

• Multi-modal data IntelliSense. Currently, optimization of the underlying data-acquisition
device is required by an increasing number of big-data platforms with the purpose
of using richer sensors to obtain more diverse data. A system that relies on a single
sensor for data acquisition is likely to have the following problems: (1) Due to the
limited sensor performance, the perception range is limited and the data type is sin-
gle. (2) There can be a loss of data due to the failure of a sensor at some perceptual
point. (3) There can be a system failure because a sensor is not available. (4) There is
one-sidedness for perception due to single-perspective information. Therefore, the
adoption of a multi-modal sensor would be essential to solve the above problems.
Compared with a single sensor, multi-modal sensors have the advantages of multi-
dimensional perception, multi-authentication, and enhanced information security [43].
Nonetheless, systems with multi-modal sensors also need to address the following
challenges: (1) How to expand the breadth and depth of the space coverage, mas-
siveness, and diversification of ready data. (2) How to enhance the robustness in the
architecture of the intelligent IoT, sensor reliability, and data security. (3) How to
ensure the time uniformity of data perception. (4) How to solve the computing and
communication complexity of the multi-dimensional perception system. (5) How to
avoid information uncertainty caused by multivariate data;

• Edge-network intelligence. The edge network is composed of smartphones, tablets,
computers, and various sensor nodes connected to the core network through the edge-
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computing carrier [44]. Heterogeneous edge-computing carriers include the edge
server, nanocluster, edge gateway, raspberry PI, base-station, and other access points.
The functions of the edge network include providing device access and network man-
agement for hardware facilities, providing data acquisition and storage for application
services, and providing model-based reasoning and algorithm decision-making for
local computing. To make the edge network more intelligent, a combination of AI
technology and edge networks is the future direction in intelligent edge networks.
Data generation, data acquisition, and data transmission are three important chal-
lenges for edge-network intelligence. (1) Data generation can be realized through the
fusion of multi-modal data IntelliSense and data-generation enhancement technology.
(2) Data acquisition includes necessary processes of sensor fusion, such as data clean-
ing, data filtering, data integration, data conversion, and data pre-processing [45].
(3) Communication challenges, such as efficient communication algorithms toward
limited resources, centralized and decentralized data-fusion-based edge-AI system
architecture, transmission clock synchronization, and transmission security should be
solved for data transmission [46];

• Cognitive computing and data intelligence. After ensuring safe and effective storage of the
data obtained from the edge network, the cognitive computing capability of the big-
data system of the intelligent IoT is reflected in a combination of edge computing and
cloud computing. Cognitive computing provides users with data intelligence, includ-
ing automatic labeling of data, fine-grained quality assessment, multi-dimensional
cross-domain semantic understanding, multi-model real-time scheduling, lightweight,
efficient and secure parallel computing, data security, and privacy protection. This
requires the system to provide large amounts of data, deploy machine-learning al-
gorithms, realize reliable industry models, and so on. Traditional data-analysis tech-
nologies include sketching and streaming, dimensionality reduction, numerical linear
algebra, and compressed sensing for sensor data. The emergence of AI technology
has also prompted the development of more advanced data-fusion algorithms, includ-
ing data association, state estimation, decision fusion, covariance consistency, and
distributed data fusion [43,47]. In summary, realizing cognitive computing and data
intelligence needs to address the following challenges: (1) Data integration, storage,
and synchronization. (2) Data security and privacy. (3) Data mining and information
value enhancement. (4) Multidimensional data fusion and decision fusion [48];

• Application and service intelligence. After the system has a large amount of data and
in-depth analysis results, the information needs to be fed back to the user. These
applications include data visualization, personalized service and recommendations,
information distribution and sharing, big-data control platforms, intelligent authority,
and exploratory analysis. With the development of human-computer interaction tech-
nology, the multidimensional visualization of data seems to be particularly important
in heterogeneous intelligent IoT applications, which is a service that is very friendly
to users. Moreover, reactions, experience, feelings, opinions, suggestions, and other
data generated by users in the service process can be used as a supplement to the
system’s perception data, and they are also the feedback of the system’s computing
intelligence. In this way, the three systems—infrastructure, AI, and visualization—are
closely integrated, and a virtuous cycle is formed [49]. To realize intelligent applica-
tions and services, the following challenges need to be addressed: (1) heterogeneous
smart IoT applications, (2) multi-dimensional visualization fusion for data display,
and (3) human-enhanced fusion.

6.1. Data Fusion for Data Acquisition

Data fusion for data acquisition refers to the combination of sensor data and data
generated from distributed data sources to make the integrated data more accurate, more
complete, and more reliable than the data acquired independently. Therefore, it is also
called multi-sensor data fusion. Note that the data sources for fusion processing are not



Big Data Cogn. Comput. 2021, 5, 56 21 of 54

specifically generated by the same sensor. A fusion process can identify direct fusion,
indirect fusion, and the fusion of the output of the first two. Direct fusion refers to the
fusion of a series of heterogeneous or homogeneous sensor data, soft measurements, and
historical values of the sensor data. Indirect fusion uses information sources, such as
the environmental and priori knowledge input by humans. Sensor fusion refers to the
integration of multimodal data into a unified format. Furthermore, the fusion of the output
resulting from multiple sensors is also known as “multi-sensor integration”. It means the
synergistic use of sensor data to accomplish a task with a system [50]. Sensor fusion refers
to the fusion of multi-modal data into a unified format. Multi-sensor integration means
the synergistic use of multi-modal data, in which case a unified format is not required. As
shown in Figure 5, data-acquisition fusion is summarized in this subsection based on three
technologies: data cleaning, data filtering, and data integration.
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Figure 5. Dynamic, multi-source, optimized, and intelligent acquisition fusion in a heterogeneous environment.

6.2. Data Fusion for Data Transmission

The technology with which data are transferred from one location to another is
called communication technology, and the process is called data transmission. After
many years of evolution and development, communication technology has evolved from
human-body information transmission to simple signal communication via wired and
wireless communications. For the current situation of widespread mobile-device usage, the
transmission of data from devices to edge clouds mainly relies on the most widely used
wireless mobile-communication technology. From the perspective of transmission fusion,
existing technologies and the literature can be summarized as when and how which tasks
or data are transferred to which node for computing, i.e., what, where, how, and when
to transmit. (1) How to transmit relies on what is the most widely used wireless mobile
communication network and technology at present. (2) What, where, and when to transmit
requires fusion and joint optimization of the network communication model and resources.

With the development of wireless-communication technology, popularization of the
mobile Internet has led to a growth in data volume, and unstructured data accounts for the
largest proportion. In data-transmission fusion, an efficient integration of massive amounts
of data is a necessary condition to realize real-time and fast transmission.

With the traditional transmission method, structured and unstructured data are pro-
cessed and transmitted separately with different transmission rates. However, in most
cases, the types of data describing the same scene and event are diversified, i.e., the data
perceived at the same time have a strong correlation and cannot be simply processed
separately. Therefore, it is necessary to design a new network architecture that can fuse a
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variety of data for transmission and analysis so that the data describing a single event at a
particular time can be synchronously transmitted and processed.

Specifically, the data generated by different subsystems or subnets are uniformly
extracted. Then, the features of the unstructured data are matched to the corresponding
fields in the structured data to generate compound fields. Then, the packet-length infor-
mation and encoding format are combined into a packet header, which is spliced with
structured and unstructured data to form semi-structured data for the transmission. When
the sync node receives semi-structured data, it parses the packet header and extracts each
compound field, in turn, to obtain two kinds of complete data in reverse. Thus, the fusion
and transmission of unstructured data and structured data are completed.

This new fusion-transmission mode is conducive to the unified extraction, processing,
and centralized storage of data that are scattered in various fields and systems, which
makes it very convenient for synchronous data transmission, synchronous processing, data
exchange, and data sharing.

6.3. Data Fusion for Data Storage

Multi-modal data acquired by sensors in the perception layer are transmitted to the
edge-cloud server through the network, processing, or computing, and integrated storage,
packaging, and uploading to the cloud data center are conducted to the multi-modal data
by the edge-cloud server, thus forming a complete closed-loop of data processing to ensure
high-quality data storage for data analysis. This process not only tests the storage resources
of these servers, but also relies on the data fusion and storage mechanisms deployed
by them.

As shown in Figure 3, data-fusion storage of the edge cloud and the cloud server
includes the following aspects: (1) Distributed fusion storage. This includes clock/data
synchronization between the sensor and the edge cloud and the clock synchronization
between sensors. Distributed fusion storage occurs in real-time with the acquisition
frequency of the sensor. (2) Edge caching and fusion storage. Collaborative caching
at the edge effectively optimizes offloading and sharing of computing tasks and the results.
(3) Centralized fusion storage in the cloud. Data fusion, synchronization, and applications
are conducted to cloud services as per the user’s requirements. The whole process, as
shown in Figure 6, guarantees that an efficient data-fusion storage is conducted by the
system in a secure, stable, and extensible environment.
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Figure 6. Proactive interaction network based on digital twin.

6.3.1. Data Synchronization

To realize collaborative caching and data updating at the edge, it is essential to realize
a data synchronization-and-sharing mechanism at the edge cloud. In addition to the use of
database-synchronization technology (full-volume synchronization, incremental synchro-
nization based on a trigger, full-volume synchronization based on a file-storage system, and
so on) on the server side, data synchronization in the era of big data shows more concern
for all-dimensional synchronization from the bottom to the top (from data acquisition
and perception to data transmission and then to data storage). The mainstream methods
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of data synchronization and sharing [51] are: (1) Timing-sync Protocol for Sensor Net-
works (TPSNs). (2) Flooding Time Synchronization Protocol (FTSP). (3) Continuous Clock
Synchronization (CCS). (4) Reference Broadcast Synchronization (RBS). (5) Asynchronous
Diffusion Protocol (ADP). (6) Average TimeSynch (ATS), and (7) Firefly-Based Synchro-
nization (FBS). These mechanisms focus on the trigger type, clock frequency, connection
type of the perception layer, mobility features, structure, and stability of the network layer,
and so on. Based on these mechanisms, updating data transmission and caching can be
better carried out between the edge cloud and the terminal devices in order to achieve an
efficient and timely data synchronization and sharing between the edge-cloud servers.

6.3.2. Fusion Storage

As shown in the previous subsections, after fusion of data acquisition and transmission,
the data acquired by sensors are stored in the cloud and edge cloud for further analysis.
However, storage resources are still limited on the server side. Therefore, fusion storage
should be conducted on the data, i.e., a distributed storage system should be adopted to
store high-quality heterogeneous sensor data in real time [52]. A distributed file system can
effectively solve the problem of data storage and management. It extends a fixed file system
to a multi-location multi-file system, in which many nodes form a file system network. Each
node can be distributed in different locations, and communication and data transmission
between the nodes can be conducted through the network. A distributed storage system is
based on stream data access mode, and can process large-size data files. Furthermore, with
this system, a one-time writing, a multiple-times reading, and processing of unstructured,
semi-structured, and structured data can be realized. This method of data storage and
management is very suitable for edge-cloud servers and cloud data centers distributed
around the world; and, with the advent of 5G and the era of the Internet of everything, it
is more suitable for future terminal requirements. Currently popular distributed storage
systems include Google File System (GFS), Hadoop Distributed File System (HDFS), Lustre,
Ceph, GridFS, mogileFS, Taobao FileSystem (TFS), and FastDFS. In the distributed storage
system, the data cleaning and data integration technology can also be used to conduct
further fusion on the data acquired at terminals to save storage resources and to improve
the quality of the data.

6.4. Data Fusion for Data Analysis

For IoT applications, the best manifestation of service intelligence is the ability to ana-
lyze and process massive amounts of heterogeneous data. As an information-processing
technology, the function of data-fusion technology in the data-analysis stage is embodied
in the use of computers to automatically analyze and synthesize certain observation in-
formation obtained as per time sequence under certain criteria to complete the required
decision-making and evaluation tasks. Therefore, data fusion is an indispensable and
effective means for data analysis and intelligent decision-making in heterogeneous envi-
ronments.

With the development of 5G technology, edge intelligence (edge cloud and terminal
intelligence) has become an important evolutionary direction to improve service quality.
The real-time analysis and mining of data are pushed in the direction of depth by edge
intelligence and cloud intelligence. Therefore, research on data analysis and fusion can
be summarized in four aspects: (1) what to fuse (data type and fusion type), (2) where
to fuse (fusion location), (3) when to fuse (fusion target), and (4) how to fuse (fusion
technologies). As shown in Figure 7, we review existing data-fusion technologies according
to the above four aspects: (1) data type (structured data, unstructured data, and semi-
structured data), (2) fusion target (improving data quality, multi-source data integration,
in-depth information mining, and enhancing decision making and evaluation), (3) fusion
technologies (the statistical method and the deep-learning method in machine learning),
(4) fusion location (terminal fusion and analysis, edge cloud fusion and analysis, cloud
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fusion and analysis), (5) fusion type (data in data out, data in feature out, feature in feature
out, feature in decision out, and decision in decision out).
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Figure 7. Data type, fusion technology, fusion target and fusion type of data analysis.

6.4.1. Data Types

At present, the amount of unstructured and semi-structured information is becoming
increasingly large (according to statistics, semi-structured and unstructured data account
for more than 80% of all information). A feature of semi-structured data is that they
have a certain structure, but the semantics are not quite certain (for example, tags in web
pages can indicate some incomplete structured information). Unstructured information
(such as large-scale text information, corpus, picture, video, and audio) mostly refers to
the information that users are interested in, which is not organized and is scattered in
various parts of the text. Users must review and understand the information to mine
the hidden meaning of the information. Generally, unstructured information cannot be
clearly expressed with a unified structure, and thus it is difficult to conduct information
structuring and information extraction following a unified pattern, which is fundamentally
different from the information organization and management based on structured data.
Therefore, in the research on data analysis and mining, the data type greatly influences the
choice of the fusion technology. The fusion and analysis based on different data types are
divided into the following three aspects in this paper:

• Fusion and analysis for structured data: Structured data refers to the data logically
expressed and realized by a two-dimensional table structure. They strictly follow
the data format and length specification and are mainly stored and managed by a
relational database. The general feature is that the data are with a row as a unit. A
row of data represents the information of an entity, and the attribute of each row of
data is the same. Application scenarios of fusion and analysis for structured data
include Enterprise resource planning (ERP), financial system, medical HIS database,
education all-in-one card, administrative approval of the government, and other core
databases. Structured data are mainly divided into numerical value data and type
data. The fusion of structured data mainly relies on statistical methods and tree-based
algorithms (such as the decision tree, Bayes, support vector machine, and random
forest). This is because there is no need for tree-based algorithms to assume that type
variables are continuous, and there is no need to make any assumption at the level of
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type variables. Branching can be conducted with them as required to find out each
state. There are also some studies exploring how to separately handle the numerical
value variable and the type variable. The use of neural networks is suggested to learn
these features.

• Fusion and analysis for semi-structured data: Semi-structured data are a form of struc-
tured data, but they do not comply with a relational database or the structure of the
data model associated with the form of other data tables. However, they contain
relevant tags that are used to separate semantic elements and to conduct the layer-
ing for records and fields. Therefore, it is also called a self-describing structure. In
semi-structured data, entities belonging to the same type can have different attributes,
and the sequence of these attributes is not important after data fusion. Common semi-
structured data include XML, JSON, mail, HTML, statements, resource library, and so
on. Typical scenarios of fusion and analysis for semi-structured data include mail sys-
tems, WEB cluster, teaching resource library, data-mining systems, and archive system.
The fusion for semi-structured data mainly depends on data-integration technology,
model-extraction technology, and the data-description pattern (tree-based description,
graph-based description, relation-based description, logic-based description, and
object-based description).

• Fusion and analysis for unstructured data: Unstructured data refer to data with an irregu-
lar or incomplete data structure, data without a predefined data model, and data that
are not easily represented by a two-dimensional logical table of the database. These
data mainly include video, audio, picture, image, document, text, etc. Technically, it is
more difficult for unstructured information to be standardized and understood than
for structured and semi-structured information. Therefore, the application fields of
fusion and analysis for the unstructured data are also more abundant and diversified,
such as medical imaging systems, educational video on demand, video monitoring, file
servers, media resource management, intelligent retrieval, knowledge mining, content
protection, and the value-added development and utilization of information. Un-
structured data fusion mainly relies on semi-supervised machine learning, reinforced
learning, representation learning, deep learning, and tagless learning due to their
complex characteristics and performance requirements on data-mining technology.

6.4.2. Data-Fusion Technologies

In previous subsections we have shown that data-fusion technologies can be diversi-
fied for different data types and fusion targets. They can be divided into nine categories
from two perspectives of low-level and high-level information fusion: data association,
state estimation, decision fusion, classification, prediction, unsupervised machine learning,
dimension reduction, statistical inference, analysis, and visualization [47]. Discussion
on the advantages and disadvantages of mainstream data-fusion technologies (includ-
ing K-Means, probabilistic data association (PDA), joint probabilistic data associations,
distributed multiple hypothesis tests, state estimations, covariance consistency methods,
decision fusion techniques, and distributed data fusion) was conducted in a previous
study [43].

Summarization is conducted for data-fusion technology in this paper with two major
categories (statistical methods and deep-learning methods) in machine learning as shown
in Table 2, and the following methods/technologies are introduced: statistical method
(clustering, correlation analysis, dimension reduction, regression analysis, decision tree,
Bayesian network, and support vector machine), deep learning, reinforced learning, and
label-less learning technology.

(1) Data fusion and analysis based on statistical methods:
1) Regression analysis: A regression algorithm is a combination method that constantly

reduces the gap between the predicted value and the actual value to obtain the optimal
input characteristics. Here, a linear-regression algorithm is used in the model training of
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continuous values, and a logistic regression algorithm is used in the model training of a
discrete value or category prediction.

2) Instance-based learning: The final model of the instance-based algorithm is highly
dependent on the original data. In the process of prediction, the similarity criterion is
generally used to find similarities between data of the sample to be predicted and the
original sample, and, finally, the prediction result is obtained.

3) Rule-based algorithm: This classification method is an extension of regression
analysis and can play an important role in solving some problems.

4) Decision tree: With the decision-tree algorithm, a tree containing many decision
paths is established according to the eigenvalues of the original data. For the sample to be
predicted, the path decision is made according to each node in the tree, and the prediction
result is finally obtained.

5) Bayes: This is an algorithm to solve classification and regression problems using
the Bayes theorem, and it can be used for decision fusion.

6) Cluster analysis: The clustering algorithm divides the input sample data into
different core groups and then discovers some rules among the data according to the
results.

7) Correlation rules: The correlation-rules algorithm refers to obtaining a rule that can
explain a certain association relation in the observed training sample, i.e., obtaining the
relevant knowledge on the dependent relation between events and time and correlation
and fusion of multi-source data.

8) Dimension reduction: To some extent, the dimension-reduction algorithm is like the
clustering algorithm, with both aiming to discover the structure in the original data. The
difference is that the dimension-reduction algorithm tries to summarize and describe most
of the content represented by the original information with lower-dimensional information.

9) Support vector machine (SVM): A commonly used supervised-learning algorithm
maps data from a low-dimensional space to a high-dimensional space so that linear non-
fractional data in a low-dimensional space can be dividable in a high-temperature space,
which is mainly used to solve classification problems.

10) Decision fusion: This is an optimization means or strategy, which usually combines
several simple machine learning algorithms for reliable decision-making. As an example,
for classification problems, multiple classifiers are established, and then methods, such
as adopting a voting mechanism, are used to avoid unreliable results. In this way the
reliability and accuracy of the algorithm can be effectively improved.

Table 2. Data fusion technology based on machine learning.

Data-Fusion
Technology

Description Fusion Target Literature

Regression Linear, polynomial, logical, stepwise, ex-
ponential, multiple adaptive regression
spline

Strengthening prediction and
decision-making

[53,54]

Classification K-proximity, proximity, decision tree,
Bayes, Support vector machine, Learning
vector quantization, self-organizing map-
ping, local weighted learning

Multi-source data integration, deep in-
formation mining

[55,56]

Bayesian network Bayes, Gauss, polynomial, average depen-
dence estimation, Bayesian belief, Bayesian
network

Multi-source data integration,
strengthening decision-making and
estimation

[57,58]

Decision tree Decision tree, random forest, classification
and regression number, ID3, automatic in-
teraction detection of card room

Strengthening prediction and
decision-making

[59]
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Table 2. Cont.

Data-Fusion
Technology

Description Fusion Target Literature

Cluster Cluster analysis, K-mean value, hierar-
chical clustering, density-based clustering,
grid-based clustering

Deep information mining [60,61]

Dimension reduc-
tion

Principal component analysis, multidimen-
sional scaling analysis, singular value anal-
ysis, principal component regression, par-
tial least squares regression

Improving data quality, deep informa-
tion mining

[62,63]

Correlation analy-
sis

Correlation rules Multi-source data integration [60,61]

Decision fusion Neural network, bagging, lifting, random
forest

Deep information mining, strengthen-
ing decision-making and estimation

[64,65]

Neural network Artificial neural network, perceptron, back
propagation, radial basis function net-
work, convolutional neural network, recur-
sive neural network, stacked auto-encoder,
deep belief network

Deep information mining, strengthen-
ing decision-making and estimation

[60,61]

Reinforcement
learning

Monte-Carlo learning, Q-learning, strategy
gradient algorithm, reinforced deep learn-
ing

Deep information mining, strengthen-
ing decision-making and estimation

[66,67]

Label-less learning Mixed tagless learning, reinforced mixed
tagless learning

Multi-source data integration, deep
information mining, strengthening
decision-making and estimation

[68]

(2) Data fusion and analysis based on deep learning:
Deep learning can learn data characteristics, and the performance is more prominent

when processing unstructured data, such as image data, text data, and voice data. In
heterogeneous IoT, fusion and analysis are performed on a large amount of structured and
unstructured data, and the corresponding pattern can be established.

1) Artificial neural network (ANN): An ANN is a mathematical model abstracted
with inspiration from the structure and function of the human brain. It has been widely
used in the field of pattern recognition, image processing, intelligent control, combinatorial
optimization, robotics, and expert systems. Specifically, there are many similarities between
an ANN and the human brain. The basic structure has a set of connected input and output
units with several hidden layers in the middle, and the nodes between each connection are
associated with weights. In the training and learning stages, these weights can be adjusted
according to the class label of the predicted input tuples and the correct class label.

2) Convolutional neural network (CNN): A CNN is a kind of feedforward neural
network. Compared with a traditional feedforward neural network, a method of weight
sharing is adopted to reduce the number of weights in the network and reduce the com-
plexity of the computing. The structure of this network is similar to that of biological neural
networks. As a supervised learning method, CNN is widely used in voice recognition and
image detection and recognition. CNN is a good choice for data-fusion technologies that
need to understand data, describe characteristics of a data set, discover relationships and
patterns existing in the data, establish models, and make predictions.

3) Recurrent neural network (RNN): Each time point of the RNN corresponds to a
three-layer ANN, and thus the training of the RNN is similar to that of the ANN. RNN is a
neural network where the data characteristics of a time sequence are considered, where
information remembered from the past can be used in the computation of output data at
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the current time. This method is suitable for applications where data fusion and prediction
are required.

4) Stacked auto-encoder (SAE): The auto-encoder can be regarded as a special ANN.
There are only input sample data during the network-training stage, but there is no
corresponding tag data. The input data is reconstructed by using the output data of the
auto-encoder, and a comparison is made with the original input data. After many iterations,
the objective function value is gradually minimized, i.e., the reconstructed input data is as
close as possible to the original input data. An auto-encoder is self-supervised learning
and is categorized as unsupervised learning. An SAE is a neural network consisting of
several hidden layers between the input layer and the output layer where each hidden
layer corresponds to an auto-encoder.

5) Reinforcement learning: Reinforcement learning is a method where the model gives
some feedback when the data input is conducted. The supervised learning algorithm
simply determines whether the input data obtains the correct output to evaluate the model.
In contrast, with reinforced learning, users are expected to take appropriate action to
extract useful information from the input data to improve accuracy. Under reinforced
learning, it is necessary to formulate a strategy that can correlate with the prediction model
and corresponding actions will be taken with that strategy. Input data directly affects the
model after feedback, and associated adjustments are made by the model according to
the feedback results. Some application scenarios are dynamic systems and robot behavior
controlling. Common deep learning algorithms include Monte Carlo learning, Q-L, strategy
gradient algorithm, reinforcement deep learning, and so on.

6) Label-less learning: A new fusion method is proposed in [68] for a large amount of
emotion-recognition applications with label-less data, i.e., label-less learning technology.
For a small amount of multi-modal data with labels, the principle of entropy is applied
to supplement automatic label data without human intervention in the model’s training.
Based on the low entropy multimodal data mutual authentication algorithm, the unlabeled
data is tagged independently and added to the training model, which further improves the
accuracy of the model and realizes the utilization of unlabeled data.

6.4.3. Data-Fusion Targets

Diverse intelligent IoT applications need to rely on the analysis and mining of het-
erogeneous multi-source data sets. The data fusion targets for these applications are
summarized and mainly include the following aspects:

• Improving data quality: Preprocessing (with the data cleaning and filtering technolo-
gies) is applied to various quality related problems caused by the environment and
hardware, such as data loss, errors, redundancy, noise, etc.; and the data integrity,
reliability, and analyzing efficiency are improved;

• Multi-source data integration: Multiple segments of information from a single sensor or
information provided by different types of sensors are fused (with the data-generation
and integration technology), redundancies and contradictions of information that may
exist between multiple sensors are eliminated, and complementation is conducted to
mine the correlation between the data and deep meaning of data;

• Deep information mining: Data types include structured, semi-structured, and unstruc-
tured data. For semi-structured and unstructured data, which account for 80% of all
data, there is still a lot of room for the adoption of more intelligent algorithms to con-
duct deep analysis and mining. This is more dependent on strong feature-extraction
support provided by data-fusion technology based on AI;

• Strengthening decision-making and evaluation: For intelligent IoT, distributed hardware
and software systems lead to a condition where each subnet or each layer of the
computing unit has its own analytical and decision-making capabilities. However, for
decisions or services provided by the system to really meet the needs of users is still a
very difficult challenge. Therefore, reinforced learning or tagless learning schemes
can be adopted to conduct fusion for historical decisions and remarks, or centralized
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fusion can be conducted to distributed decision-making. Both methods can effectively
enhance the decision-making effect, and the service quality can be better evaluated.

The appropriate fusion algorithm can be intelligently selected according to the fusion
target and fusion level, fusion can be conducted for multi-source data, and more efficient
deep information mining and analysis can be done on this basis to obtain a more accurate
representation or estimation for the specific target and application.

6.4.4. Data-Fusion Locations

Due to the development of hardware foundation, communication technology, and
computing technology, data intelligence shows the development from cloud intelligence to
edge intelligence and then to terminal intelligence. Different fusion technologies provide
data-preparation functions with different performances for different levels of data analysis.
The data-fusion location is taken as the classification standard in this paper, and the
following three aspects are discussed.

• Terminal data fusion and analysis: Terminal devices are the important hardware founda-
tion of data generation and acquisition. As a computing unit exposed to data for the
first time (although its storage, communication, and computing capacity are limited),
the amount of data can be enriched with the use of data perception and generation
technology, while the quality of data can be improved by data-cleaning and data-
filtering technologies. On this basis, some analysis models established at the cloud
can be used to obtain computing results efficiently and be put into the application as
soon as possible;

• Edge-cloud data fusion and analysis: The edge cloud is the computing and resource
storage unit nearest to the IoT terminals. As a higher-level management system, the
edge cloud can provide higher computing, storage, and communication capabilities.
Therefore, with the edge cloud, fusion and analysis can be conducted to more data, and
data-integration technology provides strong support for the integration and fusion of
distributed data sources. In addition, the edge cloud can prepare better quality data
for the cloud and more efficient services for terminals based on data-transmission
fusion (3C resource fusion) and data-fusion storage;

• Cloud data fusion and analysis: Because there are massive historical data and a large
amount of real-time data in the cloud, in addition to using statistical methods or
supervised machine-learning algorithms for the fusion and analysis of structured
data, a greater proportion consists of conducting deep information mining for a large
number of semi-structured and unstructured data based on AI technologies such as
deep learning, reinforced learning, and label-less learning. Moreover, feature-level
fusion for different data and decision-level fusion based on computing results also
provide stronger decision-making and service for terminals.

6.5. Data Life Cycle Extensions

Based on the application of data fusion for data life cycle extensions in the previous
six subsections, a general architecture of data fusion for an intelligent infrastructure-AI-
visualization integration system is proposed in this paper, as shown in Figure 8. In the
future, this cross-domain fusion system will be one of the development directions of the
new generation of AI+IoT. In this system, users are no longer only exposed to hardware
devices and invisible and intangible algorithm modules, but can feel the overall system
intelligence and personalized applications on the service side. The general architecture
proposed in this paper mainly includes the following important modules:

• Data fusion: As a module that can play an important role from low-level to high-level,
it can provide three subsystems of infrastructure, AI, and visualization with different
degrees of diverse data;
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• Infrastructure system: This subsystem is used as the hardware foundation of the
edge-computing network, and is responsible for providing the other two subsystems
with real-time and efficient multi-source data-acquisition functions;

• AI system: As the intelligence center of the whole system, this subsystem can provide
the edge-computing network and cloud-based visualization and application system
with algorithms, including statistics, machine learning, and deep learning, and can
assist in realizing deep information mining and analysis;

• Visualization and application system: The function of this subsystem is to visually
display the data of the infrastructure system to the users. This subsystem can do
more prediction, simulation, and visualization based on the analysis results of the
AI system. It is an important user-interaction interface that provides personalized
services and contains feedback results;

• Edge-computing network: The function of this module is to push the AI intelligence
closer to the users, i.e., to achieve more efficient data acquisition and analysis at the
IoT edge. With the help of other modules, it can provide edge intelligence to provide
a highly efficient, self-learning, and human-in-the-loop system;

• Goal and state transition: In general, the goal of this cross-domain fusion system
is to achieve real-time data acquisition (infrastructure system and edge computing
network), deep data analysis (AI system), visualization and simulation (visualization
and application system), real-time prediction (AI system), decision making (AI sys-
tem), and intelligent services (visualization and application system). The function of
data-fusion technology in the system is data fusion for data generation, acquisition,
transmission, storage, analysis, and application. On this basis, the state transitions
between each module include multi-modal data perception and preparation, edge net-
work intelligence, human-computer interactions and feedback, cognitive computing
and data intelligence, and application and service intelligence.

Figure 8. A generalized data-fusion model for infrastructure-AI-visualization-based smart system.

7. Information Measurement Based on Cognitive Computing

In 5G communication networks, information exists in the form of codes, while in
6G communication networks, the transmission of information will change from the tra-
ditional transmission of data to the transmission of values. More details are provided in
the following.

7.1. Value Transmission Based on Semantic Information

In current information systems, information exists in the form of codes and bits. A bit
can be stored directly using a semiconductor device or can be modulated and transmitted
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directly as an electromagnetic wave. With the development of communication technol-
ogy, including the application of massive multiple-input and multiple-output (MIMO)
systems and usage of terahertz or higher frequency spectrum, network throughput has
been improved, the reliability of communication transmission has been enhanced, and
communication delay has been reduced. Nevertheless, there are still problems in the trans-
mission process, including those related to a great proportion of data transmission and
difficulty in proactive interaction with humans. In the future, communication networks
will not only transmit data but also provide users with messages of the best value. Next,
future communication networks need to recognize in advance a user and the environment
to collect data proactively and transmit useful information in advance.

Based on the above discussion, as opposed to traditional information transmission,
future networks need to recognize information and realize the conversion from information
to knowledge and from knowledge to value. In the traditional Shannon information theory,
correct transmission of information can be achieved based on a uniform channel coding
scheme, i.e., by using the channel coding information can be delivered from the sending side
to the receiving side. In future systems, the value of information should be transmitted, in
contrast to traditional information transmission. Thus, it is necessary to recognize that the
information. values, and knowledge can be easily understood in the real world, but there are
no universal standards to measure the implied knowledge and values behind the information.

Particularly, information is analyzed first. Information consists of the motion states of
things and the way the state changes. In this regard, information is specific, general, extensive,
effective, and time-sensitive. Further, information can be divided into three information layers:

• Grammar information: This information consists of information on the state and logical
structure of the expression of information. Information represented by the motion of
things exists objectively and can be observed by everyone in a proper form, such as a
picture, a paragraph, or a string of codes, and such an expression can be entirely seen
by everyone;

• Semantic information: This information consists of the digestion of connotation or
messages represented by a state or a logical structure of a thing that can be digested by
people having such cognition or comprehension. For instance, the meaning of certain
words or messages of codes is not understandable to everyone;

• Pragmatic information: This is the much deeper information level, and people know
not only the meaning of information, but also its function and know how to use it.
For instance, personnel use such a function; personnel definitely know the structure,
connotation, application, and purpose of information and can develop an application
or use such information to realize the goal.

7.2. Data Transmission Centered on Information Value

Next, the measurements of information value are explained. To measure the informa-
tion value, it is needed first to consider the value of data. It has been proven that Shannon’s
three theorems can be used to develop a limit coding method and determine the rate of
data transmission in a communication system. With the development of 5G networks, the
upgrading of communication technology and devices has been approaching Shannon’s
limits. However, as the number of IoT devices increase, it becomes a great challenge to
import massive data into the core network, and network blocking and service quality
declination can easily occur.

To further optimize the network performance in the next generation communication
networks, it is necessary to determine how to choose and transmit data with the best
value among all massive data. Consequently, this paper proposes using data-value-based
information cognition, and the essential idea is to conduct modeling analysis of data
transmitted through the communication network to obtain the value properties of each
data package; thus, it is needed not only to consider the effectiveness and reliability of data
transmission but also to evaluate the contribution of user data on the demanded task, i.e.,
the information value.
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Therefore, the transmission of cognitive information should be considered. In order to
transmit such information in a distributed intelligent network, we propose a 6G mailbox,
as shown in Figure 9. It can be simply understood as a twin intelligent agent that integrates
communication, computing, and caching capabilities, and it is an intelligent agent with
self-organization, self-learning, self-adaptation, and continuous evolution capabilities.
The communication system based on the Mailbox does not simply encode or decode
information anymore; it is encoding and decoding based on information value. Next, the
characteristics of mailbox theory will be introduced.

7.3. The Features of the Mailbox Theory

In this paper, the mailbox theory is used to realize the assembly process from infor-
mation to value and, in the process where the value takes shape, time, and energy will be
consumed. As soon as data have been generated, the abundant information contained in
these data will be extracted constantly (based on the mailbox theory and along with the
packing, transmission, digestion, and evolution of data). Different cognitive abilities of sub-
jects provide a diversified interpretation of information, and thus endow diversified values
to the original data. As shown in Figure 10, in the process of interpreting information,
data show different attributes, including polarity, dependence, figurability, convergence,
dynamics, and traceability, whose details are introduced next:
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Figure 10. The features of the mailbox theory.

Polarity: This information indicates positive or negative polarity in the view of
impact. Positive information makes people excited and promotes the progress of people,
while severely negative information depresses people and even makes them anxious or
depressed. In our previous work [69], mental health data of the public in the pandemic
period were collected using Jin Dong’s health platform. The results have found that more
than 50% of people who browsed negative news and paid close attention to the pandemic
showed depression symptoms. This represents the negative polarity of information. In
contrast, moderately negative information can stimulate the potentiality of people. So,
when determining the attributes of information, polarity shall be considered to relieve the
impact of negative information and promote its conversion toward positive information.

Dependence: This information shows two dependences. The first is the dependence
on the carrier. Information is not a real object and thus needs to rely on media or another
material carrier for expression, but does not exist independently. Additionally, dependence
can be found between different parts of information. For instance, multiple conclusions
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can be extended or derived from one principle, and principles can be generated from each
other. In the process of cognition, new information can be generated from old informa-
tion, and a dependence network can take shape among different pieces of information
and get connected with each other to make information stronger and more stable when
being transmitted.

Figurability: Information can turn into knowledge after being processed and vali-
dated. Information can be treated in different ways when being transmitted and interpreted
by different people; it can gain different values and create different results. For instance,
when facing a historical building, scientists may think about its structure and mechanical
analysis and bring new thoughts to the laboratory, while artists will analyze its aesthetic
values and get inspiration for future paintings. Therefore, the information shows the prop-
erty of figurability, and an information block can, after being commented and analyzed,
be built into multiple information blocks; the more it is built, the more expanded values it
will inspire.

Convergence: The sharp increase in data size brings the exponential growth of data
value, and such a value is kept in the memory of people based on their cognitive ability.
Analysis of the cognitive ability of humans has proven that the human brain can effectively
eliminate redundant data and convert it into limited knowledge and then obtain a value
based on that knowledge. A reflection on the cognitive process of information in the
communication network shows that although massive data are accepted by physical space,
the knowledge contained in information in the same dimensional and scale space constantly
converge with the increase in data size. When data are extracted, in a higher space, into a
knowledge of higher value density, the knowledge converges into the expression of value.
Special attention should be paid to the convergence of information that will not develop
toward infinite high value density or low storage density, and convergence realizes the
cognition toward redundant data while guaranteeing the intrinsic value of information.

Dynamics: At the beginning, when data are generated from information to the ex-
tracted knowledge, and finally, manifested as a value, the data change dynamically. First,
cognitive information has multiple viewing angles, a subject of cognition directly deter-
mines the dynamics of information in the process of comprehension and transmission.
Intrinsic value, based on such information, changes while staying constant and hence
influences the shaping of knowledge. Then, due to the real-time attribute of a communica-
tion network and variation characteristics of the information flow, knowledge extracted
from data in the process of cognizing such data shows real-time performance, and the
knowledge keeps upgrading. Finally, in view of intrinsic characteristics of information,
including polarity, dependence, convergence, and figurability, knowledge will not only be
fixed when being generated, but will also be updated in real-time when being cognized by
different subjects, so that the cognition will be realized by different subjects.

Traceability: Based on the mailbox theory there are certain problems, such as problems
where the information and data cannot be determined, and no validation or protection
mechanism exists when the information is being packed or transmitted. To validate the
identity of a sender and protect knowledge privacy, the existing blockchain technology
is used to realize the credit mechanism guarantee system in the process of information
cognition. On the one hand, blockchain technology can realize the tracking of data and
information source and thus shows great significance in defending the communication
network safety and guaranteeing the data value. On the other hand, for a subject issuing
such information, effective privacy protection is critically important. Using a distributed
memory database, the security level for data protection can be improved significantly.
Tracking the data can be expanded to the verification of data value, which can guarantee a
safe network communication environment.

8. Key Technology for Information Cognitive

According to the above analysis, the mailbox theory needs to cognize information as
the principle shown in Figure 11. However, how to cognize the information and extract the
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value of that information is still challenging. To solve this problem, this paper recommends
the following three possible technologies.
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Figure 11. The cognitive information.

8.1. Extraction of Information Value Based on Knowledge Graph

A knowledge graph can be used to find delivered information and realize the con-
version from information to knowledge. To be specific, a knowledge graph is used to
describe objective things in the real world by using a graphic structure consisting of many
nodes and edges. Nodes denote entities (namely, concrete things) or concepts (namely,
abstract things), while edges represent internode relations that connect things or concepts.
Particularly, nodes can save the value of their own attributes, which are used to record
the internal characteristics of things, while the inter-edge relations are used to reflect the
external connection of things.

In the knowledge graph, the triple of node-relation-node can be deemed as a data
record, where the first node represents a subject, the edge denotes the predicate, and the
end node stands for an object. The subject, predicate, and object constitute a record, and the
set made of massive records includes the knowledge graph. Generally, the transformation
process from the original data to the knowledge graph includes steps of knowledge ac-
quisition and extraction, knowledge fusion (including entity dis-ambiguity and anaphora
resolution), knowledge representation, and knowledge reasoning.

Knowledge acquisition is used to acquire knowledge about related entities and rela-
tions from different sources [70]. Particularly, the original data constituting the knowledge
graph generally come from three sources: structured data, semi-structured data, and non-
structured data. Different knowledge acquisition methods can be adopted for different
sources. Structured data are stored in a relational database and have a certain data structure
and relation name and inter-project correspondence, so it is needed only to convert the data
into the resource description framework (RDF). The semi-structured data generally have
a certain data structure but need to be further extracted and organized due to irregular
formats. For instance, for web data, specific text contents can be extracted from web data
and stored as structured data.

Knowledge acquisition of non-structured data can be divided into three steps gen-
erally: (i) entity extraction or entity identification. Here, an entity represents a concept,
thing, human, or place name in the objective world. (ii) Relation extraction, which is
to analyze the relation of entities based on the text data using multiple techniques; (iii)
Attribute extraction, which is to identify the attribute information of an entity or relation.
As for the identification of an entity, traditional algorithms mainly rely on statistical models.
Today, many algorithms are using LSTM to realize the further acquisition of semantic
information. As for relation extraction, automatic extraction of specific semantic relations
between different entities can be realized to compensate for missing relations in the graph.
However, an error can easily be made when the aforementioned extraction methods are
used. To solve this problem, an end-to-end neural network model has been proposed to
identify entities and extract relations and attributes.
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Knowledge fusion is to recognize the same entity from different knowledge bases and
thus solve the integration problem of multi-source heterogeneous data. Particularly, the
same entity will most likely show different attributes and relation descriptions for different
knowledge bases, and two knowledge bases may differ from each other in all aspects.
Knowledge fusion is used to unify multiple descriptions of an entity to obtain complete
information about the entity. The fusion process generally includes extraction and fusion
of things-in-itself, entity alignments, entity linking, and attribute fusion.

Entity alignment is the core of knowledge fusion. It needs to compute the similarities
between entities by methods that include clustering and knowledge embedding. In these
methods, knowledge embedding is used extensively. It trains, with models, entities, and
relations in the knowledge base so that all the information about the entities and relations
can be expressed by vectors, and then mathematical methods can be used to compute the
similarity between entities. Entity alignment realizes the only entity in the knowledge
graph and, using the many-to-many mapping tables between entities, the entity connection
matches the corresponding entities in the knowledge graph and further learns the real
information expressed by the user. There have been many knowledge fusion methods,
such as open source knowledge fusion, multiple knowledge graph fusion, multimode
knowledge fusion, and multi-source knowledge cooperative reasoning.

Knowledge representation refers to the description and convention of data with
the purpose of enabling a computer to understand knowledge like a human by using
the knowledge graph in all fields. Knowledge representation has been widely studied,
such as the word vector embedding, which means the purpose of learning is to express
specific information (such as semantic information) as a lower-dimensional vector using a
certain method so that it can be used in all algorithms. Knowledge representation learning
can, for the purpose of the triple information (entities and relations included) in a large
knowledge base, conduct iterative training on entities and relations with models, manifest
all semantic information with lower-dimensional vectors, and At present, algorithm models
that conduct representation learning on entities and relations in a knowledge graph can
be roughly divided into two types: (i) distance-based translation models, where an end
entity is considered as a vector path of the first entity and relation, and a scoring function
is set up by computing the Euclidean distance and other vector distances. Generally, the
smaller the vector distance is, the higher the value of the scoring function will be, and the
higher probability that the triple is correct will be. This type of model is generally Trans
algorithms. (ii) Semantics-based matching model represented by a structure-mapping
engine, and this type of algorithm constitutes a classification model.

Knowledge seasoning is to further explore the tacit knowledge based on the existing
knowledge graph to enrich and expand the knowledge base. Generally, in the process of
seasoning, support of associated rules is required. New knowledge can be obtained from
knowledge seasoning. Since entities, entity attributes, and relations are diversified, people
can hardly fully list all the seasoning rules, and some of the complicated seasoning rules
are always summarized manually. The exploration of seasoning rules mainly depends
on the abundant co-concurrences among entities and relations. The object of knowledge
seasoning can be an entity, entity attribute, inter-entity relation, or hierarchical structure of
concepts in the ontology base. The seasoning of the knowledge graph can be divided into
symbol-based seasoning and statistics-based seasoning.

The symbol-based seasoning is generally used to apply seasoning rules to the knowl-
edge graph to derive a new entity relation by triggering the antecedent of rules. In this
work, seasoning rules are considered to be owned by a knowledge seasoning language,
set by humans, or obtained by a machine learning technique. Although symbol-based
seasoning includes all types of optimization methods to improve seasoning efficiency, it
cannot keep pace with the speed of data growth, especially when the data size is beyond
the handling capacity of the memory-based server. To cope with this challenge, researchers
combined description logic and seasoning to improve the efficiency and expandability of
seasoning, and many achievements have been realized. For instance, the Cloud SEC is
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a real-time lateral movement test method that was proposed for the evidence seasoning
network of the edge cloud environment.

The symbol-based seasoning is generally used to apply seasoning rules to the knowl-
edge graph so as to derive new entity relations by triggering the antecedent of rules. In
this work, seasoning rules are considered to be owned by knowledge seasoning language,
set by humans, or obtained by a machine learning technique. Although symbol-based
seasoning includes all types of optimization methods to improve seasoning efficiency, it
cannot keep pace with the speed of data growth, especially when the data size is beyond
the handling capacity of the memory-based server. To cope with this challenge, researchers
combined description logic and seasoning to improve the efficiency and expandability
of seasoning, and many achievements have been realized. For instance, the CloudSEC is
a real-time lateral movement test method that was proposed for the evidence seasoning
network of the edge cloud environment.

Statistics-based seasoning can be divided into learning based on the entity relationship
and induction based on models. The learning based on entity relationships is to learn the
relationship between entities in the knowledge graph using statistical methods or neural
network methods and has been studied extensively. The related research can be roughly
divided into two categories: methods based on representation learning and methods based
on graph characteristics. The methods based on representation learning map entities and
relations in the knowledge graph jointly combine into a low-dimensional continuous vector
space to depict their potential semantic features.

By comparing and matching the distributed representations of entities and relations,
relations between entities in the knowledge graph can be established, and a possible
edge can be predicted using the graph features observed in the knowledge graph by the
graph-features-based method. This method can explore seasoning rules automatically
from the knowledge graph and show a clear seasoning mechanism. The model induction
method is to learn the model-level information of the thing-in-itself from the knowledge
graph or to enrich the existing thing-in-itself, including the concept hierarchy and attribute
hierarchy. For instance, a knowledge bridge-map network model has been proposed. This
model bridges the cross-pattern semantic relations between vision and text knowledge
via the graph and with fine granularity and searches for the required knowledge via the
self-adaptive information selecting model.

Based on the above descriptions, it can be concluded that the knowledge graph
cannot only describe the multi-dimensional features of entities, but can also reinforce the
comprehension of information in view of its rich content of semantic information. Therefore,
it has been widely used in personalized recommendations, information searching, and
smart question and answer systems. Take the recommendation system as an example. In
this system, entities can be searched via the knowledge graph based on a user’s preference
and relations of things in order to make things match the users’ preference. So, the
knowledge graph is a potential technology capable of cognizing information. Moreover, it
should be noted that in the mailbox theory, different applications need to acquire the data
of specific domains to extract and transmit data, and the shift learning based on knowledge
graph can be used to realize the shift between different entities. Thus, it is clear that using
the knowledge graph shows potential advantages in cognizing information.

8.2. Information Cognition Based on Distributed Learning

Traditional cloud-based learning needs to gather the information acquired from the
cloud dataset center for uniform training. By using distributed learning, such as federal
learning, not only will the learning and seasoning ability of the network and devices be
improved and the pressure of a cloud server and load of network flow be reduced, but
also data privacy can be protected. This is because federal learning uses the cloud network
only for simple network initialization and convergence and assigns other work to the
edge network server and nodes for completion. However, it is necessary to improve the
robustness of data in distributed learning and consider distributed resource allocation and
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scheduling. As a new learning method, federal learning has been extensively studied. It is
not only capable of realizing distributed learning, but can also protect a user’s data privacy.
Federal learning mainly includes two structure types:

(1) Server-Client structure: In this structure, clients denote slave nodes of a network
that hold and store data in their place, while the server represents a central node that does
not hold any private data of clients, but takes part in the computation of a model as a
convergence center of the slave node’s model, helps a client solve its data and network
heterogeneous problems, and accelerates the convergence of the model. Model learning
process of this structure consists of four steps:

• Initial nodes of the system. In this stage, a server initializes the distribution of its
model parameters, and clients establish a federal agreement with the server and reach
a consensus on the federal learning model. Then, the server broadcasts the initialized
parameters to establish the initial state of the whole system;

• Local shift of client nodes. After receiving model parameters from the server, the client
nodes use the local data training model to make the model learn the characteristics of
local data. Considering the heterogeneous characteristics of the client node system
and the diversified data characteristics, and learning effects of the model between
nodes, when the server node recycles the model, a client uses local data to make a
change in the consensus model status, that is, the client node realizes a local shift and,
in the process of state shift, the client node reports its model shift state to the server;

• Server convergence. Under the classification of the time length model or model data
quantity standard, the server converges the collected model parameters. Then, by
washing and analyzing massive model data of the node client, a convergence model
containing no private data of the client can be obtained;

• System state nodes shift. After combined convergence of models in the previous step,
the server rebroadcasts a new model and a client gets the new model sent by the
server and continues to use its local data for training. In this way, the overall shift
of the system’s state nodes is realized. The final results of federal learning can be
obtained as soon as the consensus model converges to the expected target.

(2) Peer-to-peer network structure: The peer-to-peer network structure has no obvious
central node as all nodes share equal rights of autonomy in the network and communicate
and exchange information on model parameters with each other directly. The scope of
the interaction between nodes can be deemed as their action scope and other nodes in the
action node are regarded as neighboring nodes. A node can be both a server and a client of
a neighboring node and thus has a great similarity with the server client structure. The
server-client structure can be considered as a special peer-to-peer network structure with a
large action scope. Without the support of a server, the peer-to-peer network has greater
difficulties and higher cost of internode communication, and more difficult convergence of
model compared to Server-Client structure.

Both of the above two models involve distributed learning of data. Using this learning
framework, communication efficiency is improved and the classification of data is involved.
To improve the communication efficiency of both the client and server in federal learning,
methods for structure upgrading have been proposed to reduce the communication cost. As
for the heterogeneity of data, different nodes in federal learning have different geographical
locations, so data samples can be different. Consequently, data held by different nodes
generally have different distribution characteristics.

Moreover, according to the distribution coincidence degree of data, federal learning
can be divided into horizontal federal learning and vertical federal learning. Data collected
by nodes establish a sample matrix space with sample ID and sample characteristics. When
the data of different nodes show low similarity in the sample ID but a high similarity in the
sample characteristics, federal learning will make a transverse alignment of characteristics.
When the data of different nodes show high similarity in the sample ID, but low similarity
in the sample characteristics, vertical alignment of sample IDs will be performed to expand
the characteristic dimensions of sample IDs. This federal learning is denoted as vertical
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federal learning. Both horizontal and vertical federal learning types aim to solve the
problems of network data heterogeneity and missing single-node data and to compensate
for the defects of sparse node information.

Moreover, with the development of AI chips, a large number of lightweight-class AI
models have been embedded into mobile devices and collaboration at the cloud has been
required for information processing. Collaboration at the cloud edge of the information-
based cognition is a challenging task. This is because storing the cognition of information
at the cloud edge requires balancing the energy consumption of edge devices, server load,
information cognition precision, cognition delay, and AI model. Moreover, to realize a
cognitive system capable of balancing the cloud and edges, it is necessary for the cognitive
system to support the granularity of the on-line classification of information.

8.3. Blockchain-Based Safe Transmission of Cognitive Information

Blockchain adopts a distributed storage and accounting method that consists of
multiple network nodes distributed at different geographical addresses. Moreover, data
sharing and synchronization in blockchain are decentralized [71]. The nodes do not
differentiate the server–client relation, and each node can demand or provide services.
Nodes can directly exchange resources with each other without bridging by a server, and
users can use and share resources with each other directly. That is, in the distributed
network of blockchain, all nodes have equal status, which is similar to the mailbox theory.
In the cognitive information theory, each piece of information is packed as a mailbox and
stored in a distributed way.

Blockchain is a dynamic network, where new nodes come all the time while the former
nodes exit. The constantly incoming new nodes bring new resources to the system and
thus, the entire network is built and developed, and abundance and diversity of resources
expand accordingly, while the dispersity, robustness, availability, and overall performance
of the point-to-point network increase with the increase in node numbers. In the cognitive
information theory, new cognitions can be added continuously to each mailbox to cognize
the information further.

The privacy in blockchain relates to data transaction and identity privacy. The most
common way used by transaction users to reinforce privacy is to hide transactions in a
group where users exchange their funds, making the attacker unable to judge the user
fund relation. Data transaction privacy protection includes all data-related processes in
blockchain, i.e., data generation, validation, storage, and usage. Special data structures and
consensus mechanisms are designed in blockchain to guarantee that data transaction is
reliable, tamper-proof, and distributed uniformly to protect transaction records kept in the
blockchain and information and value hidden behind such records.

The tamper-proof technology in blockchain is essential to build trust in a value internet.
Blockchain represents a tamper-proof database. For instance, a database built by blockchain
is a CRW database having only basic operations; create, read, and write. Take BitCoin as
an example. BitCoin stores transaction records generated since its very birth, i.e., whenever
a miner digs up the record of a block, or a user out-transfers or in-transfers a transaction,
the related information is kept in each block on the chain. If a single chain wants to modify
the record, no record can be generated since such modifications cannot be approved by
the other blockchain records. Therefore, false information generated by each mining node
cannot be recorded in the blockchain.

According to the characteristics of cognitive information, constant interaction with
a user is required in the process of information cognition to continuously improve the
value of information. However, in the process of this interaction, privacy information
exists, so a safe, distributed learning-based network is required. In recent years, the
blockchain has been widely studied, and it is distributed, tamper-proof, and capable of
providing a new approach for the interaction between cognitive information. Moreover,
the transformation process from information to value is similar to blockchain generation.
Due to the collaboration between mailboxes, information value can be extracted and such
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extraction can go beyond the difference in culture and nationalities and finally realize an
intelligent evolution of information cognition.

8.4. The Challenge of the Mailbox Thory

The proposed cognitive information shows polarity, dependence, figurability, con-
vergence, dynamics, and traceability. Moreover, extraction of information value based
on the knowledge graph, information cognition based on distributed learning, and safe
transmission of blockchain-based cognitive information are all provided. However, there
are certain challenges in the mailbox theory and they can be summarized as follows:

• The extraction of information value based on the knowledge graph is limited. Namely,
in the knowledge graph based information extraction, information value is extracted
based on semantic information, which results in restrictions on the extraction of
information value. Therefore, new information cognition theories are necessary to
realize the real extraction of information value;

• The direction of information value convergence is uncertain. Although it is expected that
information converges at the information of higher value, the extraction of information
value is still designed by humans, and the convergence direction is uncertain. Therefore,
it is necessary to design a learning-based direction for information convergence;

• Robustness of information value extraction. Generally, when distributed learning is
used to extract information value, specific scenarios are considered. Therefore, the
robustness of an algorithm for cognitive information is critically important in new,
unseen scenarios. Furthermore, the fact that the value of information cognition can be
used to create a new information value also deserves research attention.

9. Energy Consumption Optimization in Cognitive Information

In this section, the limits of cognitive information from the aspect of energy efficiency
optimization are presented. Since cognitive algorithms are embedded in a terminal, an edge,
and a cloud, cognitive information energy consumption and the terminal communication,
computation, and storage are analyzed.

9.1. Energy Efficient Cognitive Information

The optimization problems in cognitive information have been widely studied. In
traditional analysis, Shannon’s formula defines the theoretical limit of information trans-
mission, and Landauer’s principle defines the lower limit of energy consumption for
information processing. However, there have been no theories to explain the measurement
of value. Specifically, the process of information transmission follows Shannon’s signaling
capacity theory and, by measuring the changes in the information entropy in the process
of information transmission, Shannon expresses the transmission capacity of a random
signaling channel with a formula. In contrast, Landauer’s principle indicates that the micro
computation of information in computing chips will generate heat, i.e., it will change the
thermodynamic entropy of computing chips and the nearby region, there will be a lower
limit of computation energy consumption, and the computation of a piece of information
will be accompanied with specific minimum energy consumption.

Thus, according to the principle of thermodynamic entropy, the entropy increase of
computing chips and the nearby region results from the process of computing. This can
be realized through heat transfer, and thus the computing energy consumption can be
presented in the form of heat energy. However, the aforementioned computation does not
consider the value of information.

First, the energy consumed by transmission is calculated. According to Shannon’s
formula, the maximum transmission rate of information Ctran can be obtained as follows:

Ctran = W log
1+ ptranh

WN0
2 , (1)



Big Data Cogn. Comput. 2021, 5, 56 41 of 54

where W denotes the transmission bandwidth, ptran is the transmission power, N0 repre-
sents the noise, and h is the transmission distance. Therefore, the transmission power is
expressed as:

ptran =
(2

Ctran
W WN0)

h
. (2)

The energy consumption denotes the energy consumed when handling computing
information, and it mainly includes the energy consumed by the information processor.
According to Landauer’s principle, the minimum energy required to wipe off 1 bit of
information is obtained as:

Ecomp = kT ln(2), (3)

where k denotes the Boltzmann constant, and k = 1.38× 10−23 J/K; T is the temperature in
Kelvin degrees; thus, there is a lower limit in the processing of information. In addition,
there is a certain space for optimization in the development of chip technology. Besides,
there is a gap between the existing power consumption and Landauer’s limit.

Next, is the calculation of the computation energy consumption. It can be divided
into energy consumed for information processing (including the processing of information
value) and energy consumed by information communication. Therefore, the total computa-
tion amount for both processing and communication of information can be expressed as:

Ccomp = σ1Ctran + σ2Ctran, (4)

where σ1 is the logical operand corresponding to each bit of information in communication,
and σ2 is the logical operand corresponding to each bit of information in the processing
algorithm of computation. Thus, the computation energy consumption can be expressed as:

pcomp = CcompFαGsk ln 2, (5)

where F is the fan-out coefficient of the gate circuit, and α is the activator.
Based on the above discussions, in the process of wireless communication, the commu-

nication energy consumption when the channel capacity is reached can be measured using
the Shannon channel capacity formula. In the process of information computation, the
computation energy consumed in the process of information processing can be measured
using Landauer’s limits and transistor process technology. Although using the Shannon
channel capacity formula and Landauer’s limits, the energy consumed in the processes
of wireless communication and computation can be measured, the intrinsic relationship
between the communication energy consumption and computation energy consumption,
from the aspect of information value, is given. Finally, it is explained how to cognize the
value of information, which is to screen transmitted data in advance first to improve the
value density of data as much as possible and then transmit data of higher-value density
through the channel. The density of data is expressed as follows:

ρv =
|D|proc

|D|ori
, (6)

where |D|ori denotes the size of the original data, and |D|proc is the data size after data
are processed.

9.2. Energy Efficient Cognitive Information in Edge Device

The data-value-based information cognition is user-oriented data cognition, and it
describes the contribution of information to the completion of a task. For instance, in the
face cognition model, the evaluation of picture values is conducted at each user terminal,
and then the communication resources are distributed in an optimal way based on the
evaluation result. If the user data have contributed nothing to the training model, little
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communication resources will be assigned to the user, or reliable transmission will be
guaranteed as much as possible.

Therefore, the 6G network needs to comprehensively consider, the effectiveness, relia-
bility, and value indexes of a communication network. Thus, the existing communication
technology should change accordingly and the traditional optimization model should
change from the competition based on two indexes to that it is based on three indexes. In
addition, the proposed mailbox theory is an assembly process from information to value,
and this process exists in the whole communication network. The aforementioned terminal
3C integration is just a part of the information value chain.

Specifically, the communication system generally transmits information from a device
via a wireless access network and the core network to the target user. Thus, cognitive
information is processed as follows. The sending terminal roughly recognizes the data and
reduces the transmission amount based on the computing ability of the terminal. Next,
when the data are transmitted to the wired stage, data are further cognized where the
transmission amount can be further reduced. Then, when the data are transmitted to
the wireless network again, its amount reduces significantly so as the energy consumed
by transmission. The aforementioned discussion proves that the data cognition process
consumes the energy consumption of computing, improves the data value density, and
reduces energy consumption in communication. Thus, it can be concluded that complex
coupling exists between the value density of cognitive information, energy consumption of
transmission, and computation energy consumption of information cognition.

From the aspect of a mobile terminal, the relation between the cognitive information
value density, energy consumed by data transmission, and energy consumed by infor-
mation cognition is proposed. First, the energy consumed by information cognition is
determined. Namely, the more complex the cognitive computing, the denser the infor-
mation value will be. Thus, in this paper, for the purpose of simplification, it is assumed
that value density and computation complexity of data are positively correlated, i.e., the
more complex the computation, the denser the data value will be. However, when the
computing complexity reaches a certain value, the data value density drops. Therefore, the
data value density can be expressed as follows:

ρv = f (cv), (7)

where f () denotes a non-linear dull increasing function.
Further, assume that the complexity of computation adopted for data value is denoted

as cv, then, the computation for data value is as follows:

Epro = κ( fu)
2cv|D|proc, (8)

where κ denotes the energy coefficient associated with the chip structure, fu is the CPU
frequency of a mobile device, and |Du| is the data size. The communication energy
consumption, after data processing, is needed to transmit only the processed data |D|proc.
Assume that the transmitting power of a mobile device is denoted as pD, and the uploading
power is denoted as ru, then the energy consumption of data transmission is calculated by:

Etan = pD
|D|proc

ru
= pD

ρv|D|proc

ru
. (9)

Therefore, the main goal is to improve the value of information transmission to
the maximum extent under the minimum energy consumption (i.e., communication and
computing energy consumption), which is expressed as follows:

maximize
Ai ,ξr

i ,ξc
i

1
Q sup

∫
Q fi(Ai, ξr

i , ξc
i )

subject to C1 : 0 ≤ ptran
i ≤ ptran

i,limit
C2 : 0 ≤ pcomp

i ≤ pcomp
i,limit.

(10)
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Based on the above-described optimization problems, complex coupling relationships
among terminal communication, computing, caching, and data value.

10. Customized UAV Networking Enabled Edge Intelligence

As is well-known, there is a large amount of diversified data in the heterogeneous
Internet of Things, including the designed drone network. Multiple sensors indicate that it
is needed to conduct numerous analyses on massive data. Thus, is there a way to embed
distributed intelligent algorithms into a different stage of the data value chain? Multi-level
data fusion can be a potential research direction.

Section 6 proposes a brand new concept of data fusion for data life cycle extensions.
Using the deep fusion of the data value chain, applications, and human-machine interaction
as a motivation, a general architecture that uses different data-fusion technologies is
proposed. The authors believe that using data fusion for data life cycle extensions can help
to improve data intelligence from low level to high level in six aspects: data fusion for data
generation, acquisition, transmission, storage, analytics, and application. Thus, a new and
unique solution for a “people-oriented” user service and experience can be achieved.

This section gives an innovative enabling technology and application, i.e., customized
UAV networking enabled edge intelligence.

As an IoT equipment carried within computers and sensors, UAVs are widely used in
many fields, such as military, monitoring, logistics, aerial photography, smart city, and so on.
Compared with the traditional manned aircraft, UAVs have the advantages of small size,
good mobility, convenient secondary transformation, and low cost. Since the 1990s, UAV
technology has developed rapidly; new materials have increased the endurance of UAVs;
evolved communication technology has improved the data transmission speed of UAVs;
advanced flight control technology have enabled UAVs to fly completely or intermittently
according to a set program. However, in the above-mentioned UAV network functions,
UAVs are only used for cruising, monitoring, transportation and other simple aircraft
functions, and the surplus computing and storage resources of its airborne computer are
idle. As a mobile air IoT device, the UAV network is the most typical structure of the IoT-
Edge network extension. How to provide more computing, storage, and communication
resources for IoT devices when UAVs perform flight, monitoring, and edge services is an
important research topic to explore and inspire edge intelligence.

UAVs with mobile characteristics can become one of the potential choices of mobile
edge computing nodes. It is an extension function of a UAV network and it is compatible
with edge computing upwards and provides airborne resources downwards. In the new
MEC network architecture assisted by customized UAVs, the traditional MEC base station
can still exist, and UAVs can also be used as backup base stations when the fixed base
station is damaged. In the UAV cluster flight scenario controlled by a ground station and
with a change of UAV trajectory, it can also provide a higher-performance in computing
offloading or storage services. Therefore, there are more suitable and low-cost mobile edge
computing nodes in the key monitoring areas of complex terrain or crowd gathering places
such as desert, wilderness, and ocean.

This section will discuss the above vision through the following two important re-
search directions:

(1) Path planning and obstacle avoidance of customized UAV networking enabled edge in-
telligence. As air flight equipment, safe flight is the primary premise and basic guarantee
for UAVs to provide many airborne services including computing and offloading. Among
them, there are three open problems that need to be solved: (1) In order to improve the
accuracy of obstacle recognition, many researchers use a variety of sensor devices to seek
higher perception efficiency, and propose a variety of pattern recognition algorithms for
target segmentation and location, (2) Considering the uncertainty of flight time, path length,
and flight energy consumption, path planning in multi obstacle environment is a typical
NP hard problem, (3) Achieving dynamic path planning and obstacle avoidance in the envi-
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ronment of coexistence of dynamic and static obstacles has high performance requirements
for the time precision and distance precision of path planning for UAV in flight.

(2) Dynamic path planning and computation offloading of customized UAV networking
enabled edge intelligence. Although the MEC network with UAVs has many advantages, there
are still some unavoidable challenges in its implementation and application. Specifically,
the traditional MEC network provides a computation offloading service through fixed
base stations that only need to consider the offloading characteristics and performance
indicators of IoT devices. In the UAV-assisted MEC offloading scenario, the characteristics
of IoT devices, UAV, and MEC networks need to be considered comprehensively. (1)
In the research of cooperative computing offloading between the UAV and MEC base
station, the design and implementation of network hardware and software architecture
of UAV-assisted new MEC computing offloading algorithm is a practical problem of
both engineering and academic research. (2) In order to meet the demand of computing
the offloading delay, the process of joint optimization of dynamically changing network
resources and states (the mobility characteristics of IoT devices and UAVs, trajectory
changes, offloading service times, task computation and data volume, computing and
communication resources of different computing nodes, etc.) is usually composed of
multiple sub-modal optimization problems, which cannot be modeled by traditional
centralized modeling. (3) Due to the limited energy of UAV, the system has to extend
the flight time of UAV and improve the energy efficiency by dynamically planning the
flight path and calculating the offloading strategy.

10.1. UAV-Assisted Data Value Cognition and Transmission

In order to validate the performance of the proposed mailbox theory described in
Sections 8 and 9, we use an UAV as an information carrier to do the data value cognition
and transmission in an edge computing environment.

In this experiment, a quadrotor UAV with a diagonal wheelbase of 600 mm, 6S FOC
governor, 4006 motor, and a maximum flight load of 4 kg is used. The airborne computer
is an Intel Core i7 mini computer with an Intel i7-8565u processor, four core eight thread
1.8–4.6 GHz, 8G memory, 128G storage, 2.4/5.8G dual band WiFi gigabit network card,
and Ubuntu 18.04 operating system. The edge server is equipped with Ubuntu 16.04.7 LTS,
32G memory, 3T storage, i7-7800X processor and two GTX 1080 Ti graphics cards.

First, the UAV equipped with an airborne computer is connected to the public network
through WIFI to realize data transmission to the edge server. Five shufflenet models with
different network complexities are deployed to the airborne computer to recognize the
value of edge devices. The parameter volumes of network models are 1030 K, 1122 K,
1162 K, 2093 K, and 2314 K, respectively. It will process the image data with data volumes
ranging from 61 KB to 2289 KB. Then, the UAV transmits the data to the edge server
after value cognition, and finally calculates the data transmission delay with or without
value cognition.

Figure 12 compares the delay of data transmission with or without value cognition.
When the data volume is small, the delay of data transmission without value cognition is
shorter; when the amount of data increases to 1099 KB, the data transmission delay after
value cognition is much shorter. Figure 13 compares the image value cognition time of
network models with different complexities. The model with low network complexity
performs shorter delay of value cognition while the model with high network complexity
performs longer delay. Furthermore, cognition delay increases with the increase of data
volume as shown in Figure 12.
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Figure 12. Delay of data transmission with or without value cognition.

Figure 13. Image value cognition time of network models with different complexity.

10.2. Case Study of Digital Twin

With the support of IoT, cloud computing and AI, “Digital Twin” is the future trend
of a smart city. It is the “clone” of a physical city in the digital world. This is based on
the sensor data of the IoT, accurately mapping and co-evolving with the physical city. To
realize the digital twin city, we need to obtain a 3D model of the physical world through
UAV tilt photography or lidar mapping, network GIS data or artificial modeling. On this
basis, real-time city state mapping and urban simulation can be carried out. Realtime city
state mapping needs to obtain location information of the crowd in the city through a
variety of sensors and AI technology, combined with edge computing and cloud computing,
and displays it in real time in its digital twin city. Urban simulation needs to run crowd
simulation and traffic flow simulation in digital city, which can provide reference for
various decision-making of governmental departments. In this section, we carried out the
campus crowd simulation experiment.

In the experiment, the downloaded GIS data are imported into the 3D modeling
software Blender to obtain the main campus 3D model for Huazhong University of Science
and Technology, including roads, buildings, and so on. On this basis, the crowd simulation
software MassMotion is used to simulate crowd activities in the real world, including
classes in the teaching building, sports in the playground, dining in the canteen, etc.
Figure 14 shows the experimental result of a digital twin. The bottom layer is the real
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photos and 3D model of the main university campus, and the top layer is the real photos
and simulation screenshots of the second floor of its canteen. The experiment simulates
the process of people queuing up for lunch. The orange models in the picture represent
the simulated people (agents). The color lines on the floor represent the total number of
people passing through this location during lunch time, increasing from dark blue, light
blue, green, yellow, orange to red.

Campus 3D Model of the Campus

Canteen in the campus          Crowd simulation of the canteen

3D 

Modeling

Crowd Simulation

Physical World

Digital World

Decision 

Support

Canteen Canteen
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Figure 14. Case study of digital twin.

11. A Deep Learning-Assisted Cognitive Information Communication System

In order to verify the 6G mailbox theory proposed in this paper, we establish a deep
learning assisted cognitive information communication system.

11.1. Traditional Communication System Architecture

The traditional communication system mainly includes the following five parts: infor-
mation source, transmitter, channel, receiver, and sink. The information source refers to
original data, such as sound signal, picture, audio and video that a user needs to transmit,
and corresponding preprocessing is required at the information source. The transmitter
mainly completes encoding and modulation of data, such as source encoding, channel
encoding, encryption, channel multiplexing and spectrum spreading, to improve the ef-
fectiveness, reliability, and security of data transmission. The channel is the physical
transmission medium of user data in nature, including wired and wireless channels. The
receiver completes a series of decoding processes completed by the user after receiving the
data, including despreading, demultiplexing, decryption, channel decoding, source decod-
ing, etc., and restores the transmitted original signals. Sink is the receiving end of signals.
Thus, in the whole communication process, the sending end mainly completes encoding
and modulation of signals, while the receiving end mainly completes the corresponding
decoding and demodulation.

11.2. Cognitive Communication System Architecture

We design the architecture of a cognitive communication system assisted by deep
learning, which includes encoder, channel, and decoder. Thus, the encoder cognizes
information and the decoder decodes the information that has been cognized. Specifically,
a cognitive communication system for image transmission based on U-Net architecture
has been designed. That is, the information transmitted by this system are images, and
encoding and decoding are conducted to the images.
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Encoder: The encoding part consists of a deep residual module and maximum pooling
layer. The deep residual module includes input, batch normalization (BN) layer, ReLU
activation function, two 3 × 3 convolution operations, identity mapping unit, and output.
By adding an identity mapping unit, the input of the deep residual module is directly
transmitted to the network layer in the back. This is to effectively reduce the influence of
gradient degradation in the process of network training and to promote the transmission
of information to solve the problem of information loss in traditional networks to a certain
extent. The maximum pooling layer is used for the down-sampling operation of images,
with a step size of 2. Its purpose is to reduce the size of the feature map as the number of
channels in the feature map increases with the decrease of the size. Specifically, the number
of channels for an input image is 32. Before entering the encoding part, the image will go
through a 3 × 3 convolution layer, BN layer and ReLu activation function, and the number
of its channels will become 64. In the encoding part, down-sampling is conducted three
times, and the number of channels is 64, 128 and 256, respectively. The size of the feature
map of the latter submodule is equal to 1/2 of that of the former, that is, the size of the
feature map is 160 × 160, 80 × 80, 40 × 40, 20 × 20, and 10 × 10, respectively.

Channel: Channel connects the encoder and decoder. In order to achieve uniform
training of cognitive systems, we define the channel as salt-and-pepper noise and uniform
training is carried out. In other words, the salt-and-pepper noise is added to the encoded
image after output.

Decoder: The decoder part contains the same four deep residual modules and up-
sampling operations. Up-sampling is conducted to the feature map from the channel part.
After each up-sampling, the number of channels in the feature map is halved, and the
size of the feature map is doubled. Finally, the feature map with the same size as the
original image is obtained. In the decoder part, up-sampling is conducted four times and
the number of channels is 256, 128, 64, and 32 respectively. The classifier is composed of
1 × 1 convolution layer and Sigmod activation function. The convolution operation of
1 × 1 is conducted on the feature maps from the decoder, to reduce the number of feature
maps. The Sigmod activation function is used to calculate the category of each pixel in the
feature map and finally the multi-channel feature map is mapped to the corresponding
categories.

Loss function: In this experiment, the loss function we used is cross-entropy loss
function, which is defined as follows:

L =
M

∑
i=1

N

∑
j=1
−[ fij log(pij + (1− fij) log(1− pij))], (11)

where M is the set of pixels in the segmentation image, N is the set of pixels in the labelling
segmentation tags, fij is the true category of pixel i in the segmentation image and pixel j in
labelling segmentation tags, pij is the predicted value of pixel i in the segmentation image
and pixel j in the labelling segmentation tags. In the process of network training, if cross-
entropy loss function is used for optimization, then the problem of gradient disappearance
in the network can be solved effectively, and the network can run stably.

11.3. Performance Analysis

Experiment setting: In this experiment, we use the Oxford-IIIT Pet dataset, which
contains 7390 images of dogs and cats, and use the dataset for segmentation of pet images.
Furthermore, the network parameters are set as follows; The encoder consists of three
deep residual modules and a maximum pooling layer. In the maximum pooling layer,
down-sampling is conducted with a step size of 2. In the process of each down-sampling,
the number of feature channels doubles. Each step of the decoding process includes a
depth residual module and up-sampling where the number of feature channels is halved.
In the last layer, 1 × 1 convolution and Sigmod function are used to map each eigenvector
to the required class number.
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Evaluating metrics: Cross-entropy loss and percentage of average pixel error are used
as evaluation indices. The percentage of average pixel error is the proportion of cases
where the predicted pixels of an image are different from the pixels of real labels. It can be
seen from the definition of the average error of pixels that the smaller the average error of
pixels, the more accurate the transmission.

Experimental result: In the experiment, all data sets have been used to divide training
sets and test sets. The training and testing situations with different numbers of images
have been compared and in each case, the ratio of training set to test set is 3:1. With the
well trained model, different numbers of images have been used as the input to predict
the results. As shown in Figure 15, the loss function of our cognitive system becomes
smaller with the increase of training pictures, indicating the stability of our cognitive
system. Moreover, Figure 16 also shows that our system is stable. Furthermore, compared
with traditional communication systems, less image data can be transmitted with our
communication system based on deep learning, but the transmission error is very small.
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Figure 15. The impact of the number image in training set on the loss function.
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Figure 16. The impact of the number image in test set on the pixel error.

12. Cognitive Information Applications
12.1. Wise Medical

With the maturity and commercial use of 5G technology shown in Figure 17, the real-
time and efficient application of wise medical has become the future development direction
in the health field. In wise medical, data-fusion technology is used for medical image
registration and retrieval [72], multi-source image-feature fusion, multi-sensor fusion of
medical apparatus and instruments or body area network, and multi-modal patient-data
fusion, diagnosis, and treatment. In [73], the authors studied multi-sensor fusion and
multi-modal image registration and used different data-fusion technologies to transform
the patient data and image features to identify organ structures. In [74], different methods



Big Data Cogn. Comput. 2021, 5, 56 49 of 54

were used for feature extraction and fusion, and the results were conducive to medical
image retrieval. Moreover, in [75], the authors used fusion technologies to conduct deep
information mining for multi-source medical images and obtained image data of high
quality. In [76], the medical-decision fusion for images of different forms of organs was
presented, and good qualitative and quantitative diagnostic results were achieved.
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Figure 17. Application scenarios of 6G network.

12.2. Industrial Applications

Complex industrial manufacturing, including industrial control [77], mobile robots,
and remotely operated robots, is one of the applications of data-fusion technology. It has
stipulated in Industry 4.0 [78] that information technology is used to promote industrial
transformation, i.e., industrial intelligence. In the face of such massive infrastructure con-
struction and production potential, the automation, intelligence, and safety of industrial
control systems denote important components to ensure national security and social liveli-
hood [79]. To obtain data, operation feedback, and system status of physical equipment
or sensors, the multi-dimensional data-fusion technology is applied to the quantitative
analysis, industrial prediction, safety monitoring, and system energy saving [80].

12.3. Traffic Control

Due to the widespread application of AI technology, highly complicated, diverse,
and automated unmanned operations have appeared in transportation systems. These
operations greatly rely on environmental data acquired by sensors. Therefore, data-fusion
technology can be applied to vehicle positioning, tracking, navigation, as well as ground
and air-traffic control [81,82]. Among them, the ground traffic control applications mainly
focus on an infrastructure’s data perception [83], autonomous vehicle navigation, and
traffic flow control [84]. The air traffic control applications include path planning [85],
obstacle avoidance, and 3D modeling. A typical application is Microsoft Bing 3D Cities,
established using UAV aerial photography technology and automatic data segmentation
and fusion technology [86].

12.4. Remote Sensing and Mapping

Remote sensing refers to non-contact, remote-detection technology [87]. In this
method, extraction, judgment, processing, analysis, and application are conducted on
electromagnetic-wave information, such as electric field, magnetic field, electromagnetic
wave, and seismic wave, of an object with sensors or remote sensors where target objects
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are detected far away from the target without any contact. With the introduction of multi-
modal data fusion, a remote-sensing and mapping technology can be used in 3D modeling
and classification [88] for topography [89], climate [90] ecology, species [88], and so on.

12.5. Military Applications

Thus far, data fusion has been widely used by the military, where it originated [91].
Military applications require dynamic target detection, identification, and tracking with
the properties of high accuracy, large scale, and automation. Due to the complexity
and uncertainty in scenes and military operations, it is difficult to accurately judge and
respond to real scenes or entities from a human perspective. Therefore, a large-scale,
multi-source data fusion [92] using sensors and computing nodes deployed by the military
for applications, such as battlefield situation assessment, combined heaven and earth
surveillance, target acquisition, strategic defense, early warning, battle-damage quantitative
measurement [93], army management and military decision making, and modernized
military information systems, has been used [94].

12.6. Smart Cities

The concept of a “Smart City” was proposed by IBM in 2010. The emphasis was put
on building people-oriented and sustainable cities based on IoT, cloud computing, and
AI technologies. The application of data-fusion technology in smart cities is diversified.
It includes smart living (e.g., smart health, smart homes, and smart communities) [95],
smart urban-area management (e.g., urban planning, smart municipal, and smart build-
ings), smart environment (e.g., climate monitoring, ecological protection, and urban waste
management), smart industry (e.g., smart manufacturing, smart maintenance, and smart
agriculture) [96], smart economics (e.g., intelligent commerce, intelligent supply chain, and
financial and security transactions) [97], smart human mobility (e.g., positioning services,
intelligent transportation systems, and management of big data on the population), and
smart infrastructure (e.g., urban infrastructure planning and management, intelligent IoT,
and intelligent communication) [47]. The main features of these applications are interdisci-
plinary, cross-time domain, cross-regional big-data fusion, and intelligent services.

12.7. 5G/6G+AIoT (AI+IoT)

In 2017, Legrand popularized the concept of combining AI and IoT technologies (AIoT)
and proposed the concept of intelligent IoT with AIoT as a core. In 2019, GSMA released a
report on intelligent connectivity [98], where it was pointed out that the fusion of 5G, AI, big
data, and IoT would lead to the development of the next generation of the super Internet.
With the advent of 5G/6G, AIoT is no longer a simple AI+IoT. It is rather an integrated
service [99] for data, knowledge, and intelligence based on AI+IoT with the basic support of
big data and cloud computing, a semiconductor as an algorithm carrier, network-security
technology as an implementation guarantee, and 5G/6G as a catalyst. Therefore, the
development of DF technology strongly promotes the deep cooperation of infrastructure,
AI, and application and provides a new cross-domain fusion perspective [100,101].

13. Conclusions

In order to meet the requirements of intelligence, customization and value transmis-
sion of 6G networks, we first propose a new network integrating distributed intelligent
network, active interactive network and cognitive information transmission. Based on
this, a 6G mailbox theory, i.e., cognitive information carrier to enable distributed algorithm
embedding for intelligence, has been proposed. Under the proposed mailbox theory, more
valuable data can be transmitted in 6G networks. Furthermore, we introduce the features
of the mailbox theory, including polarity, traceability, dynamics, convergence, figurability,
and dependence. Key technologies based on knowledge graph, distributed learning and
blockchain are introduced. Finally, we establish a cognitive communication system assisted
by deep learning to verify our scheme.
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