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Abstract: Identifying and anticipating potential failures in the cloud is an effective method for
increasing cloud reliability and proactive failure management. Many studies have been conducted to
predict potential failure, but none have combined SMART (self-monitoring, analysis, and reporting
technology) hard drive metrics with other system metrics, such as central processing unit (CPU)
utilisation. Therefore, we propose a combined system metrics approach for failure prediction based
on artificial intelligence to improve reliability. We tested over 100 cloud servers’ data and four
artificial intelligence algorithms: random forest, gradient boosting, long short-term memory, and
gated recurrent unit, and also performed correlation analysis. Our correlation analysis sheds light
on the relationships that exist between system metrics and failure, and the experimental results
demonstrate the advantages of combining system metrics, outperforming the state-of-the-art.

Keywords: failure prediction; fault tolerance; cloud computing; artificial intelligence; reliability

1. Introduction

Cloud computing has emerged as the fifth utility over the last decade, and is a back-
bone to the modern economy [1]. It is a model of computing that allows flexible use of
virtual servers, massive scalability, and management services for the delivery of informa-
tion services. With the low-cost pay-per-use model of on-demand computing [2], the cloud
has grown massively over the years, both in terms of size and complexity.

Today, almost everyone is connected to the cloud in one way or another. This is
because of cost effectiveness with a pay-as-you-go or subscription-based service model for
on-demand access to IT resources [1,2]. Industries rely on the cloud for their operations,
academicians to accelerate and conduct scientific experiments, and ordinary end-users
by using cloud-based services knowingly or unknowingly, such as Google Drive, Gmail,
Outlook, and so on. Furthermore, the cloud today is more important than yesterday, as
it supports smart city construction [3], enterprise business [4], scalable data analysis [5,6],
healthcare [7,8] and also new evolving computing paradigms, such as fog and edge com-
puting [9].

To date, despite the significant improvement in the performance of the hardware
elements of the cloud infrastructure, the failure rate remains substantial. Moreover, the
cloud is not as reliable as the cloud service providers, such as Amazon AWS and Ali Cloud,
claimed, which is more than 99.9% [10]. For example, multiple instances of failure have
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been reported, such as the failure of Amazon’s cloud data servers in early October 2012,
which resulted in the collapse of Reddit, Airbnb, and Flipboard, the loss of Amazon AWS
S3 on 28 February 2017, and the crash of Microsoft cloud services on 22 March 2017 [10].
Such failures show that cloud service providers are not as reliable as they claim [10,11].

The public cloud vendor revenue is forecast to be around 500 billion by 2026 [12].
The majority of this revenue goes to platform-as-a-service (PaaS) and infrastructure-as-a-
service (IaaS), 298.4 and 126 billion, respectively. Any occurrence of the cloud’s failure,
therefore, impacts the cloud-based environment and services it supports, its users, and
the economy. As a result, maintaining reliability is essential, and failure prediction is one
of the mechanisms to obtain it. In this study, taking advantage of the advancement in
artificial intelligence (AI), we focus on failure prediction based on AI techniques of random
forest (RF), gradient boosting (GB), long short-term memory (LSTM), and gated recurrent
unit (GRU).

AI has the ability to learn patterns and make future predictions accordingly. AI can
be manifested as a machine exhibiting human intelligence [13] and is utilised in diverse
domains, such as healthcare, autonomous systems, monitoring applications, and predictive
maintenance, because it allows solving problems that, before, seemed to be unsolvable by
computational processes alone [14]. The tremendous advancement in AI today has resulted
in state-of-the-art performance for many practical problems, especially in areas involving
high-dimensional unstructured data, such as computer vision, speech, and natural language
processing [15]. This ability of AI to make future predictions based on learned patterns and
advancement is applied in our study.

1.1. Motivation

Today, the majority of businesses rely on cloud services to run their daily operations.
Any failure of cloud services directly impacts the business, and repeated failures result in
reputation damage. Reputation is an intangible asset that accounts for 85% of the value
of a business [16,17]. Significant effort has been made to increase the reliability of cloud
services. For failure prediction, the studies (see Section 2) either use hard drive SMART
(self-monitoring, analysis and reporting technology) metrics or other system metrics, such
as CPU and memory utilisation. However, despite the demonstrated ability of SMART hard
drive metrics and other system metrics, such as CPU and memory utilisation to predict
failures, to our knowledge, no study has combined both system metrics. We hypothesised
that combining both system metrics will give us more information and, as a result, can help
improve reliability further. The identified existing research gap on the combined use of
SMART hard drive metrics and other system metrics, which we in our study refer to as
combined system metrics, to improve reliability is the main motivation for this study. The
other motivation includes the limited number of studies in the direction of server failure
prediction, the use of a traditional rule-based tool, such as Prometheus [18]. Additionally,
there is little, if any, correlation analysis of such metrics, which could reveal critical patterns
for forecasting.

1.2. Goal

The ability to accurately predict failure is an essential factor for reliable performance.
This is because it allows us to take action that is proactive. The reliability of a process
depends on how well we predict failures. The aim of this study is to improve the reliability
of cloud services by improving cloud server failure prediction, using selected AI techniques
and the combined system metrics approach.

1.3. Contributions

Based on our motivation and goal to achieve, the main contributions of our study can
be summarised as follows.

• A novel approach to server failure prediction based on combined system metrics.
• Use of AI approaches to overcome the disadvantages of rule-based failure prediction.
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• A comprehensive evaluation of multiple AI techniques, such as RF, GB, LSTM and
GRU, with the use of real data from more than 100 cloud servers.

• To our knowledge, this work provides the first correlation analysis (see Section 4.4)
between SMART and other system metrics, such as memory utilisation.

The rest of the paper is organised as follows. In Section 2, we present a review of the
state of the art. In Section 3, we present our methodology, and in Section 4 we present the
performance evaluation. Finally, we conclude the paper in Section 5.

2. State-of-the-Art

In this section, we present a brief survey of recent works in failure prediction in
the domain of cloud computing. Section 2.1 provides an overview of the work related
to server (or server-level) failure prediction, which our work focuses on. Furthermore,
we also provide a brief overview of virtual machine (VM) and task failure prediction in
Sections 2.2 and 2.3, respectively. This is to provide an overview of the research on failure
prediction in the cloud domain. Finally, we provide a summary of the literature review in
Section 2.4.

2.1. Server-Level Failure Prediction

Mohammed et al. [19], Xu et al. [20], Lai et al. [21], Das et al. [22], Chigurupati et al. [23],
Tehrani et al. [24], and Adamu et al. [25] carried out a study on server (or server-level) failure
prediction. The research by Mohammed et al. [19] focused on the prediction of containerised
high-performance computing (HPC) system failures using failure information, such as
hardware, software, network, undetermined, and human error. Furthermore, support
vector machine (SVM), RF, k-nearest neighbours (KNN), classification and regression trees
(CART), and linear discriminant analysis (LDA) were used in the study. However, we
cannot tell if the system failed or if there was human intervention based on information such
as human errors. Furthermore, the scope of the unidentified error source is unclear. Unlike
Mohammed et al. [19], Xu et al. [20] used a ranking based machine learning approach
and SMART hard drive information for failure prediction in cloud systems to improve the
service availability of Microsoft Azure by migrating VMs from failing to healthy nodes.

Similar to Xu et al. [20], Das et al. [22] also focused on migrating computation from a
failing node to a healthy node. However, Das et al. [22] focused on using a deep learning
(i.e., LSTM) approach, compared to Xu et al. [20], who used a ranking-based approach. On
the other hand, Lai et al. [21] used techniques such as KNN and hard drive data from the
SLAC Accelerator Laboratory [26] to predict server failure within 60 days and introduced a
derived metric time_since_prev_failure for server failure prediction. Furthermore, the study
by Lai et al. [21] made use of failure logs that were kept for a period of 10 years. Based on
their experience, Lai et al. [21] also recommended using an RNN-based technique, such
as LSTM.

Similarly, Chigurupati et al. [23], Tehrani et al. [24], and Adamu et al. [25] used tech-
niques such as SVM for failure prediction. While the study by Chigurupati et al. [23] focused
on predicting communication hardware failure 5 min ahead, the study by Tehrani et al. [24]
focused on failure prediction in cloud systems in a simulated environment, using system
metrics such as temperature, CPU, RAM, and bandwidth utilisation. Adamu et al. [25], like
other previous studies, focused on failure prediction in a cloud environment using data
from the National Energy Research Scientific Computing Center’s [27] Computer Failure
Data Repository. The author separated the failures of a disc, a dual in-line memory module
(DIMM), the CPU, and other components. However, the scope of the failure, such as other
failures in the study, is unclear, and network information was not used, which is another
reason for the failure.

2.2. VM-Level Failure Prediction

A study on VM failure prediction was carried out by Meenakumari et al. [28],
Alkasem et al. [29], Qasem et al. [30], Liu et al. [31] and Rawat et al. [32]. The study by
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Meenakumari et al. [28] employed a dynamic thresholding approach to predict failure
based on system metrics such as CPU utilisation, CPU usage, bandwidth, temperature, and
memory. Similar to Meenakumari et al. [28], Alkasem et al. [29] also focused on VM failure
prediction. The study by Alkasem et al. [29] focused on the VM startup failure problem
by using system metrics such as CPU utilisation, memory usage, network overhead, and
IO (input/output) storage usage. Alkasem et al. [29] used Apache Spark [33] streaming
together with Naïve Bayes (NB). Both Qasem et al. [30] and Liu et al. [31] investigated VM
failure using recurrent neural networks (RNN). However, Qasem et al. [30] used simulated
data from Cloudsim [34], whereas Liu et al. used SMART hard drive system metrics.
Similar to Qasem et al. [30], Rawat et al. conducted a VM failure prediction study using
simulated data. However, unlike Qasem et al. [30], Rawat et al. [32] focused on using an
autoregressive integrated moving average and the Box–Jenkin method. Saxena et al. [11]
proposed an online model for VM failure prediction and tolerance. The study focused on
resource capacity utilisation-based failure prediction and classified virtual machines into
failure-prone and normal virtual machines based on their failure tolerance units. Following
the classification, the failure-prone VM was replicated into a new VM instance to be hosted
on other physical machines.

2.3. Task-Level Failure Prediction

Shetty et al. [35], Jassas et al. [36], Bala et al. [37], Rosa et al. [38], Gao et al. [39], and
Marahatta et al. [40] conducted a study on task failure (or job) prediction. The majority
of these studies, such as Refs. [35,36,38,39], made use of the Google cluster trace dataset
for their research, while the other studies, such as Refs. [37], used the simulated data from
simulators such as WorkflowSim [41]. Shetty et al. [35] focused on statistical resource usage
analysis as well as failure prediction using XGboost, whereas Jassas et al. [36] focused on
failure analysis to identify a correlation between the failure and the requested resource.
Bala et al. [37] focused on task failure prediction for scientific workflow applications,
employing techniques such as NB, random forest, logistic regression (LR), and artificial
neural networks (ANN).

Similar to the study of Shetty et al. [35] and Jassas et al. [36], the studies of Rosa et al. [38]
and Gao et al. [39] also used the Google cluster trace dataset for their study. The study of
Rosa et al. [38] also focused on job failure prediction, similar to other studies. However,
unlike other studies, Rosa et al. [38] characterised failure to identify key features contributing
to failure and employs techniques, such as LDA, quadratic discriminant analysis (QDA), and
LR. In order to improve task failure prediction further, Gao et al. [39] proposed a multi-layer
bidirectional long short-term memory (Bi-LSTM) and conducted a study, achieving an accu-
racy of up to 93%. Marahatta et al. [40], on the other hand, focused on energy consumption
in addition to task failure prediction (i.e., energy-aware task failure prediction). Marahatta
et al. [40] used deep neural networks to classify tasks (i.e., whether they are prone to failure
or not) in the first stage and then scheduled them in the second stage.

2.4. Summary

We provided an overview of the related work on cloud failure prediction. Based
on a review of the literature, we can see that the presented studies use system metrics,
such as CPU utilisation, memory utilisation, and SMART hard drive metrics, to predict
failure. However, none of the studies used those system metrics concurrently, as we did in
our study, so they did not benefit from the combined use of system metrics. Using only
SMART metrics, for example, excludes information from other system metrics, such as
CPU utilisation, which can also be a cause of failure (i.e., which can serve as a valuable
source of data for predicting failure). As such, it diminishes the potential accuracy of any
failure prediction method that can otherwise be achieved using the combined use of system
metrics. This phenomenon (i.e., the advantage of using multiple inputs (or metrics) over
a single input) has been observed in the field of machine learning, which is a sub-field
of artificial intelligence. Specifically, it was demonstrated that using multiple modality
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inputs (i.e., multi-modal, or in our case, multiple system inputs (or metrics)) produces more
accurate predictions than using a single modality input (i.e., uni-modal, or in our case,
single-system metric input) both in visual [42,43] and bio-signal analyses [44]. As a result
of this discovery, we chose to use multiple system inputs (or metrics) in order to improve
prediction accuracy, as we demonstrate later in the experiment results (Section 4.4.2).

3. Materials and Methods

This section details our approach. Section 3.1 contains information about data collec-
tion; Section 3.2 contains information about the data used in our study; and Section 3.3
contains information about data preprocessing. Similarly, Sections 3.4–3.6 discuss our
implementation of RF, GB, and LSTM and GRU algorithms. Before going into detail about
the implementation, Sections 3.4–3.6 provide an overview of the algorithms RF, GB, and
LSTM and GRU, as well as the rationale for their selection.

3.1. Data Collection

There are various datasets available, including the Google job failure dataset [45], and
the SMART hard drive dataset [46]. However, these datasets either contain information for
job failure or hard drive failure and lack information on other system metrics, such as CPU
utilisation for failure, necessitating data collection. Our data collection step entails down-
loading data from Prometheus [47]—monitored University of Tartu High-Performance
Centre [48] cloud servers. A Python [49] script converts the downloaded JSON [50] data to
CSV (Comma-separated values) format, the source code for which is available at [51].

3.2. Dataset Description

The dataset used in this study contains information about the system metrics collected
through the use of Prometheus and is publicly available at [52]. The collected system
metrics were chosen following a thorough assessment and analysis of their impact on
the system failure. Table 1 summarises the selected system metrics. In addition to the
selected system metrics, the dataset also contains the timestamp and anonymised server
information. The dataset contains a total of 7,371,203 samples. Furthermore, details on
target label generation and preprocessing are available in Section 3.3. Additionally, Table 2
summarises the dataset’s statistical information in terms of mean, standard deviation
(std.), and counts (or sample size). From Table 2, looking at the mean and the standard
deviation, we can observe that the data are not uniformly distributed. Furthermore, Table 2
demonstrates the uneven distribution of sample sizes for various characteristics (or selected
system metrics). This uneven distribution of sample sizes results in an empty value, which
has an effect on the learning of machine learning algorithms. Additionally, Figures 1–3 show
the visualisation of the data distribution of the system metrics memory utilisation, SMART
194, and SMART 3 (selected randomly). Figures 1–3 demonstrate a non-uniform data
distribution as indicated by the means and standard deviations. The detailed description
(or analysis) of the data is present in Section 4.4.1.
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Figure 1. Memory utilisation data distribution visualisation.
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Figure 2. SMART 194 data distribution visualisation.
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Figure 3. SMART 3 data distribution visualisation.

Table 1. Selected metrics (features).

SN Metrics Description

1 CPU utilisation Host CPU usage in %.
2 Memory utilisation Memory usage in bytes
3 Network overhead Network usage in bytes
4 IO utilisation IO usage in time (seconds)
5 Bits read Data written out from disk in bytes
6 Bits write Data written into disk in bytes
7 SMART 188 Command time out
8 SMART 197 Current pending sector count
9 SMART 198 Uncorrectable sector count
10 SMART 9 Power-on hours
11 SMART 1 Read error rate
12 SMART 5 Reallocated sectors count
13 SMART 187 Reported uncorrectable errors
14 SMART 7 Seek error rate
15 SMART 3 Spin up time
16 SMART 4 Start/stop count
17 SMART 194 Temperature
18 SMART 199 UltraDMA CRC error count

3.3. Data Preprocessing

Machine learning and, particularly, deep learning algorithms are highly dependent
on data to function properly. The quality of the data affects the accuracy of the algorithm.
However, the real-world data are often noisy, inconsistent and incomplete. In order to
improve the result, better data are needed, or the quality of the data has to be improved.
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Therefore, in an attempt to improve the quality of the data, we preprocessed the data. To
compensate for the missing failure information, we performed label generation as the first
data preprocessing prior to any other preprocessing, as Das et al. [22], Jassas et al. [36],
and Qasem et al. [53]. Algorithm 1 was utilised to generate the target label. Table 3 shows
the threshold value in our target label generation algorithm. The threshold was defined
using information available from hardware manufacturers as well as findings from the
state-of-the-art. As shown in Algorithm 1, when the value of the metrics is within the
threshold, we represent it as 0; otherwise, we represent it as 1. The 0 denotes that there is
no failure, whereas the 1 denotes that there is a failure. The value 0 or 1 is then appended
to the list targetValue via the AppendTotargetValue. The targetValue is then used to create
a new target column, which is then combined with existing data columns and returned.
Further, the preprocessing techniques that handle missing values and non-standard values
were employed. Missing values and non-uniform values were handled by applying the
scikit-learn [54] preprocessing module.

Table 2. Summary of the data distribution (mean and standard deviation).

Metrics Count/Sample Size Mean Std.

CPU utilisation 142706.0 32.692094581900854 234.5717231968353
Memory utilisation 1.120550e + 05 1.317217e + 11 3.324901e + 11
Network overhead 4.033200e + 06 1.912711e + 13 2.121486e + 14

IO utilisation 7.371203e + 06 1.922319e + 05 6.152595e + 05
Bits read 7.371203e + 06 9.706407e + 12 3.816525e + 13
Bits write 7.371203e + 06 3.710902e + 12 1.555608e + 13

SMART 188 19, 722.0 100.0 0
SMART 197 62, 289.0 100.0 0
SMART 198 25, 372.0 100.0 0

SMART 9 73, 554.00 93.173940 15.601556
SMART 1 31, 005.00 105.236413 20.515879
SMART 5 73, 554.0 100.0 0

SMART 187 51, 027.0 100 0
SMART 7 8447.00 89.884101 0.923522
SMART 3 8447.00 94.834142 2.034239
SMART 4 2814.0 100.0 0

SMART 194 66, 529.0 76.037563 28.240802
SMART 199 51, 029.0 105.514511 22.826553

3.4. Random Forest

Random forest (RF) is an ensemble learning method and learns using the randomised
decision tree. Breiman [55] defines random forest as a classifier consisting of a collection of
tree-structured classifiers {h(x, θk), k = 1, . . .}, where the {θk} are independent identically
distributed random vectors, and each tree casts a unit vote for the most popular class at
input x. The best split is chosen by optimising the classification and regression trees (CART)
split criterion, which is based on the Gini impurity for classification and prediction squared
error for regression [56,57].
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Algorithm 1: Label generator
Data: ipData← input data without target label in dictionary format
Result: Data with target label

1 data← ipData;
2 targetValue← Initialize with an empty List;
3 resultdata← Copy of data;
4 N← len(data);
5 for i = 0 to N do
6 if selected metrics within defined threshold then
7 AppendTotargetValue(0)
8 else
9 AppendTotargetValue(1)

10 end
11 end
12 resultdata← add targetValue to new target column;
13 return resultdata;

Table 3. Metrics and threshold used in algorithm.

SN Metrics Threshold

1 CPU Utilisation >101
2 Memory Utilisation >1,000,000,000
3 Network Overhead > 5000
4 IO Utilisation >16,089,590,032,253,278.0
5 Bits Read >38,775,016,960.0
6 Bits Write >3,189,693,620,224.0
7 SMART 188 <10
8 SMART 197 <10
9 SMART 198 <10

10 SMART 9 <10
11 SMART 1 <51
12 SMART 5 <10
13 SMART 187 <10
14 SMART 7 <10
15 SMART 3 <21
16 SMART 4 <10
17 SMART 194 >96
18 SMART 199 <10

RF, due to its ensemble nature, provides higher accuracy and is also robust against
overfitting. Furthermore, RF is capable of dealing with higher-dimensional data. RF is one
of the robust general-purpose algorithms. Studies such as [56,58–60] have demonstrated the
robustness of RF in different domains. We chose RF in our study because of its robustness
against overfitting, outliers, and ability to produce better results.

In our study, we used the scikit-learn library to implement the RF algorithm [61]. The
scikit-learn implementation, on the other hand, differs little from Breiman’s [55] original RF.
Instead of allowing each classifier to vote for a single class, the scikit-learn implementation
of RF combines classifiers by averaging their probabilistic predictions [62].

Furthermore, the scikit-learn GridSearchCV [63] was used to optimise hyperparame-
ters, which also use the K-fold cross-validation technique to control overfitting. Data were
divided into k disjoint folds of approximately equal size to the K-fold cross validation, with
each fold used once as validation and the remaining k-1 fold used as training [64,65]. In our
RF experiment, a value of 3 for K-fold cross validation yielded the best result. Table 4 dis-
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plays the selected hyperparameter and its value. Similarly, Table 5 displays the optimised
values for the selected RF hyperparameters after experimenting.

Table 4. Random forest hyperparameter.

Parameter Name Value

n_estimators [100, 200, 300, 500]

max_features [‘auto’, ‘log2’, ‘sqrt’]

criterion [‘gini’, ‘entropy’]

min_samples_split [3, 5, 8, 9, 10, 30, 50]

Table 5. Tuned random forest hyperparameter.

Parameter Name Value

n_estimators 300

max_features ‘auto’

criterion ‘gini’

min_samples_split 8

3.5. Gradient Boosting

Gradient boosting (GB) is another tree-based ensemble method that we used in our
research due to its superior performance in a variety of domains, including medicine for
predicting RNA protein interactions, flight delays, and sentiment analysis [66–69].

GB applies the boosting principle by shifting the focus to problematic observations
that were difficult to predict in previous iterations and executing an ensemble of weak
learners, typically decision trees [67,69]. The GB model is built iteratively, with each new
model relying on the previous one. Figure 4 depicts a visualisation of the GB algorithm,
learning a weak learner. The GB algorithm consists of three major components: (i) a loss
function, (ii) a weak learner, and (iii) an additive model [69]. The loss function optimises
the loss, which is deviance by default in scikit-learn, also known as negative log-likelihood
loss [70,71]. For making predictions, the decision tree is used as a weak learner. The
additive nature of the algorithm adds trees sequentially on each iteration, minimising loss.

In our study, we used the scikit-learn library to implement GB, as we did in RF.
GridSearchCV was used to optimise hyperparameters in the same way that RF was used.
Table 6 displays the selected hyperparameters for the GB algorithm, while Table 7 displays
the value of the optimised hyperparameter. Interestingly, similar to RF, we achieved the
best results for GB using K-fold cross validation, with k = 3.
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Figure 4. Visualisation of gradient boosting algorithm.

Table 6. Gradient boosting hyperparameter.

Parameter Name Value

loss [‘exponential’, ‘deviance’]

learning_rate [0.001, 0.01, 0.0001]

max_features [2, 3, 5, 7]

min_samples_split [3, 4, 5, 7, 9]

n_estimators [100, 200, 300, 500]

Table 7. Tuned gradient boosting hyperparameter.

Parameter Name Value

loss deviance

learning_rate 0.01

max_features 5

min_samples_split 3

n_estimators 500

3.6. Recurrent Neural Network

Over the years, deep learning technology has advanced significantly, outperforming
cutting-edge machine learning techniques. Deep learning is now used to solve complex
tasks in areas such as computer vision, autonomous systems, and climate analysis due
to its performance [72]. However, the neural networks assume data independence and
break with sequential data [73]. As a result, the standard neural network is incapable of
accounting for temporal conditions and, thus, of making accurate predictions in situations
involving sequential data, such as weather forecasting or time-series events [74]. Recurrent
neural network (RNN), on the other hand, incorporates a new design architecture with
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hidden state or memory to account for missing dependency in standard neural networks.
As a result, RNNs are preferred to conventional neural networks in situations involving
temporal events. For example, Aspandi et al. [75] used LSTM, a variant of RNN, to improve
facial tracking because of the involved temporal conditions. Similar to Aspandi et al. [75],
our data also involve temporal events and, therefore, we use RNN in our study.

Figure 5 illustrates the RNN structure. Similarly, Equations (1) and (2) mathematically
represent RNN, where U is the input weight, W is the recurrence weight, and V is the output
weight. In equations, ht and xt represent the hidden vector h and the input x at time t. Tanh
is a nonlinear activation function that aids in overcoming vanishing gradients, and yt is
the output vector obtained by using the softmax activation function. The RNN, however,
still suffers from the problem of vanishing and exploding gradients as the sequential
dependency grows larger. RNN is only concerned with learning and not with selective
forgetting [74]. The vanishing and exploding gradient issues occur when |W| < 1 and
|W| > 1 or eigenvalue ρ < 1 and ρ > 1 for the scalar and matrix representations of the
weight W, respectively [76]. The exploding gradient problem occurs when the accumulation
of the gradient becomes so large that it exceeds the range. As a result, the weights become
NaN and can no longer be updated. Additionally, as the gradient decays over time and
becomes very small, it is overshadowed by the most recent gradient, rendering it unable to
look back and remember the past efficiently.

Figure 5. Recurrent neural network.

LSTM and GRU are specialised RNN techniques that were developed specifically to
address the RNN problem of vanishing and exploding gradients. As a result, our study
used LSTM and GRU. Sections 3.6.1 and 3.6.2 discuss the details of how we used LSTM
and GRU.

ht = tanh(W × ht−1 + U × xt + bh) (1)

yt = so f tmax(V × ht + bv) (2)

3.6.1. LSTM

Figure 6 depicts the architecture of the LSTM, and Equations (3)–(8), the computation
steps involved in the LSTM [77]. The Ct in Figure 6 represents the cell state, which is an
additional computational unit that LSTM uses to solve the RNN problem. The other gates
are input gate, output gate, and forget gate, denoted by it, ot and ft, respectively. The t
represents the time.
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Figure 6. LSTM.

The forget gate is used to forget information, deciding whether to keep or remove
information from the cell state based on the activation function sigmoid value. Tanh, on
the other hand, is an activation function that is used to add nonlinearly. The output gate,
which is also controlled by the sigmoid function, determines which value to take from
the cell state and output. Similarly, the input gate is used to update the cell state with the
new value.

ft = σ(Wx f xt + Wh f ht−1 + b f ) (3)

it = σ(Wxixt + Whiht−1 + bi) (4)

ot = σ(Wxoxt + Whoht−1 + bo) (5)

Ct = ft � Ct−1 + it � tanh(Wxcxt + Whcht−1 + bc) (6)

ht = ot � tanh(Ct) (7)

Output(yt) = so f tmax(Uht) (8)

where in the Equations (3)–(8), x denotes input, h the hidden state, W the weights, x∗
(∗ denotes f , i, and o) for weight W p < h∗ for weight W is the hidden-to-hidden layer, and
U is the hidden-to-output layer weights.

Tensorflow [78] is used to implement LSTM in our study. The implemented LSTM
architecture consists of eight LSTM layers and six dense layers, followed by one input
and one output layer. The LSTM layer has 2048 hidden units, while the dense layer has
1024 units. Except for the output layer, each LSTM layer contains the ReLU activation
function, a dropout layer with a dropout of 0.5, and L2 regularisation with a regularisation
factor of 0.1. The output layer is made up of one hidden unit with a sigmoid activation. The
dropout, which functions as a switch, turns off the neurons based on the provided dropout
value, effectively controlling overfitting [79]. On the other hand, regularisation, such as L2
regularisation, controls the overfitting issue by penalising the model. Furthermore, we used
additional overfitting control measures, such as early stopping. The use of an additional
overfitting measure was driven by the observed high overfitting during the experiment.
Early stopping monitors the specific metrics that were specified to be monitored and
terminates training when the model begins to overfit. In our experiment, we observed
validation loss. Furthermore, our implementation utilises the binary cross-entropy [80] loss
function and a time shift window of length 10.
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The learning rate is another critical parameter in deep learning algorithms. The
learning rate indicates how far the algorithm should progress in the learning process. The
learning rate is important because the model’s accuracy is determined by how well it learns.
If the learning rate is too low, the learning process will become stuck in the local minima
and diverge if it is too high, both of which we want to avoid. The learning rate can be
set either statically or dynamically. A static learning rate value, on the other hand, would
not be adaptable to changing circumstances, such as increasing or decreasing loss. As a
result, in our study, we chose an adaptive learning rate to make the learning process more
dynamic using the Adam optimiser [81]. We also included a learning rate scheduler to
make it more dynamic. Tensorflow’s InverseTimeDecay [82] learning rate scheduler was
used, with an initial learning rate of 0.001, decay steps of 2000, the decay rate of 1, and
staircase False.

3.6.2. GRU

GRU is another RNN-based model that is designed to address the long-term depen-
dency issues of RNN. GRU, like LSTM, adds new gates; however, unlike LSTM, GRU only
has a reset gate rt, an update gate zt, and one hidden state ht. The t in the reset gate, update
gate, and hidden state represents time. The GRU has fewer gates and is faster than LSTM,
and is often referred to as the simplified version of LSTM. Figure 7 depicts the architecture
of the GRU cell, and Equations (10)–(12) represent the computational steps involved in
GRU [77].

rt = σ(Wxrxt + Whrht−1 + br) (9)

zt = σ(Wxzxt + Whzht−1 + bz) (10)

ht = (1− zt)� ht−1 + zt � tanh(Wxhxt + Whh(rt � ht−1) + bh) (11)

Output(yt) = so f tmax(Uht) (12)

where in Equations (10)–(12), x denotes input, h denotes the hidden state, o denotes output,
W is the weights, b is the bias, x∗ (∗ represents z, r) for weight W is the input-to-hidden
layer, h∗ for weight W is the hidden-to-hidden layer, � is element-wise multiplication, and
U is the hidden-to-output layer weights.

Figure 7. GRU .

The reset gate r, which is similar to the LSTM forget gate, decides what to keep from
the previous layer, and the update gate z decides what to move on to the next step. The
reset gate and the update gate decisions are based on the sigmoid function value, as shown
in Equations (9) and (10), respectively. The GRU performs the same function as the LSTM,
and the reason for considering GRU is its comparable performance to the LSTM [73,74]. As
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a result, our GRU implementation has the same architecture as LSTM, with the exception
that the LSTM layer is replaced by the GRU layer.

4. Performance Evaluation

This section details our experiment, describing how the experiment was conducted,
and details how the experiment was evaluated. Section 4.1 contains the details for the
experimental setup and the conduct of the experiment in Section 4.3 and the evaluation
metrics that are used in Section 4.2. The data analysis and experiment results are in
Section 4.4.

4.1. System Setup

The information in this section provides a complete breakdown of our system and the
software used for conducting an experiment.

Computation-intensive tasks, such as the training of machine learning algorithms,
require a lot of processing power. Due to this, machine learning training is almost always
done using high-performance computing facilities, such as AWS (Amazon Web Service),
and cloud service providers, such as Google Cloud. We have, however, in our experiment,
utilised our system. Our study’s system consists of 62 GB of random access memory (RAM)
with a 16 core Intel i7 3.8 GHz processor. Additionally, the system has two Nvidia RTX
2080 Ti graphics processing units (GPU). The GPU has 4352 CUDA (or Compute Unified
Device Architecture) cores, with 11 GB of GDDR6 Standard Memory, and supports the Base
Clock of 1350 MHz for CUDA cores and 14 Gbps memory speed and 616 GB/sec memory
bandwidth [83].

The implementation can be performed using many different languages, such as
Python [49], R [84] and libraries such as Tensorflow [78], Keras [85], Scikit-learn [54].
The experiment was conducted using Python [49] version 3, along with libraries such as
Scikit-learn 0.22 and TensorFlow 2. The Scikit-learn library was employed in the design
and implementation of the random forest classifier and gradient boosting classifier. As in
the implementation of LSTM and GRU, the implementation of TensorFlow was used.

The Tensorflow is able to take advantage of the available GPU. Tensorflow, however,
can be further accelerated by using TensorRT [86]. TensorRT [86] is a C++-based library
provided by Nvidia that helps with high-performance inference on NVIDIA GPUs (GPUs).
TensorRT is typically used to enhance and expedite the deep learning training process.
Furthermore, TensorFlow includes TensorRT [86]. So, in order to use the GPU as efficiently
as possible and to optimise and accelerate the deep learning training process, we also use
TensorRT [86]. Our study used the TensorRT version 6.0.1. TensorRT [86] additionally
needs CUDA, a parallel programming platform. In order to allow for TensorRT [86], we
installed CUDA 10.0.130.

4.2. Evaluation Metrics

In this section, we go over the evaluation metrics and explain why they are necessary,
as well as which evaluation metrics were chosen and why they were chosen.

Evaluation is one of the important steps of any implementation. It helps to understand
the quality of implementation. In machine learning, evaluation helps to understand the
model’s quality and is performed using evaluation metrics. It tells us how well the model
will perform in a similar unseen scenario. Therefore, the correct use of model evaluation is
vital in academic machine learning research, and many industrial settings [87].

Studies such as [88–90] have shown that relying on single evaluation metrics, especially
in the case of unbalanced data, is not safe, as they can sometimes be misleading. Because of
this reason, other studies, such as those of Das et al. [22] and Islam et al. [91], also made
use of multiple evaluation metrics. Therefore, we selected multiple evaluation metrics for
our work: precision, recall, accuracy, and F1 score.
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4.2.1. Accuracy

Accuracy is the measure of correct overall predictions. Accuracy can be calculated by

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

where, TP is a true positive value, TN is a true negative value, FP is a false positive value
and FN is a false negative value.

4.2.2. Precision

The precision, also known as positive predicted value (PPV) is a measure of a model’s
exactness; a higher precision value for a classifier is preferred [88]. The precision can be
calculated using Equation (14).

precision =
TP

TP + FP
(14)

4.2.3. Recall

The recall is also called sensitivity or the true positive rate, and evaluates the classifier’s
effectiveness on the positive/minority by measuring the accuracy of positive cases [88].
Recall can be calculated using Equation (15).

recall =
TP

TP + FN
(15)

4.2.4. F1 Score

The F1 score, also called F-measure, is the harmonic mean of precision and recall [92],
and is calculated using Equation (16).

F1 Score = 2× precision× recall
precision + recall

(16)

4.3. Training and Testing

In this section, we describe how we trained and tested our model.
As described in Section 4.1, the system we used has two GPUs. As a result, to make

the best use of the available resources and accelerate the training process, we used the
distributed training strategy for LSTM and GRU. We used MirroredStrategy out of the
available distributed training strategies, such as MultiWorkerMirroredStrategy, TPUStrat-
egy, and CentralStorageStrategy [93], the reason being that the MirroredStrategy supports
synchronous distributed training on multiple GPUs on one machine, and our system has
both GPUs on the same machine. Further, we used the batch sizes of 556 and 430 epochs
for training. Similarly, for the training of random forest and gradient boosting, we used
Joblib [94] with 12 parallel jobs, using selected hyperparameters and K-fold cross validation
as described in Sections 3.4 and 3.5. Further, the details on used parameters for LSTM and
GRU are presented in Sections 3.6.1 and 3.6.2 respectively. The experiment was conducted
with a 60%:40%, 55%:45%, 70%:30%, and 80%:20% train–test split. However, only the best
result was recorded following the observations from studies such as those of Bala et al. [37]
and Liu et al. [31], where the reported result is from only a combination of the train–test
split. We obtained our results with a train–test split of 60%:40%, which is discussed in
Section 4.4.2.
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4.4. Results and Discussion

This section summarises our findings. In Section 4.4.1, we present the data analy-
sis, such as an overview of the system metrics, e.g., memory usage based on the server; in
Section 4.4.2, we present the experimental results and their comparison to the state-of-the-art.

4.4.1. Data Analysis

Figures 8–10 depict a high-level overview of the system metrics and their usage by
server. These system metrics, illustrated in Figures 8–10, were chosen based on their mean
and standard deviation values; three from SMART metrics and three from others system
metrics. The overview of system metrics in Figures 8–10 provides an analysis by the server.
The analysis based on the server is taken into account in order to comprehend the server’s
resource utilisation. This is because our study is devoted to predicting server failures. In all
the figures, we present the hashed server information in a numeric format. This is done to
aid in visualisation.
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Figure 8. Utilisation of the CPU and memory based on the server. (a) Visualisation of CPU utilisation;
(b) Visualisation of memory utilisation.
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Figure 9. Visualisation of bits read and SMART 194 based on the server. (a) Visualisation of the data
written out from the disk (bits read); (b) visualisation of SMART 194.

Figure 8a shows the CPU utilisation, where we considered only the CPU utilisation
within the non-failure threshold (see Section 3.3). This is because of the observed high
difference, which we present later in the cumulative distribution function (CDF) report. As
shown in Figure 8a, we can observe the high CPU usage on all servers in general compared
to the memory usage, which is shown in Figure 8b. In most cases, the servers are not
making extensive use of the memory compared to the CPU. We can observe a similar
pattern to that in memory usage in the system metrics bits read in Figure 9a. Moreover, we
can also observe some gaps (or disconnections) in Figure 8b. This is because of the empty
(or NaN) values, which could be either that the data were not available during the data
collection (i.e., downloading) or that the values were missing (i.e., they were not recorded
properly by the server). Similarly, Figure 10a,b shows the visualisation of SMART 7 and
SMART 1 system metrics, which monitor the state of the hard drive. In Figure 10a,b, we
can observe similar patterns of disconnections to memory utilisation, resulting in NaNs.

In addition, we performed a correlation analysis to better understand the relationships
between the system metrics, providing for the first time a correlation analysis between
the SMART system metrics and other system metrics. We used Kendall’s tau correlation
coefficients for the correlation analysis. Kendall’s tau correlations for the system metrics
are visualised in Figure 11. Kendall’s tau was chosen due to its mechanism of operation,
which is based on comparing the rankings of values in two random variables, rather than
comparing the values themselves [95]. Additionally, other correlation coefficients, such as
the Pearson correlation coefficient, were not considered because they are only useful when
the data are normally distributed [95]. In Figure 11, a correlation factor of 1.0 indicates a
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positive relationship, a factor of close to −1.0 indicates a negative relationship, and factors
of 0.0 or empty values indicate that there is no correlation (i.e., no relationships).
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Figure 10. Visualisation of SMART 7 and SMART 1 based on the server. (a) Visualisation of SMART
7; (b) visualisation of SMART 1.

The first observation we make is that there is a positive correlation between CPU and
memory utilisation, a finding that is consistent with that of Shen et al. [96]. As with CPU
and memory usage, a strong positive correlation exists between the system metrics of bits
read, bits write, and IO utilisation, with a correlation factor greater than 0.7 (or 70 percent).
Additionally, we observe a high correlation between the SMART 7 system metrics and
other system metrics, such as bits read and bits write with a correlation factor of 0.63 for
bits read and 0.45 for bits write. This relationship between SMART 7 and bits read and
bits write corresponds to the functionality of SMART 7, which monitors the hard drive’s
seek error rate. The other observation is that the correlations between SMART 7 and CPU
and memory utilisation are also positive, with a correlation factor of 0.34 for CPU and 0.36
for memory utilisation. Similar to SMART 7, SMART 1 correlates positively with network
overhead, as does SMART 3, which monitors the hard drive spin up time with bits read
and bits write. Because both the bits read and bits write correspond to the hard drive,
the correlation is logical, while the correlation between other SMART metrics and system
metrics, such as memory utilisation, is either very low, negative, or non-existent. This
observation, on the other hand, is consistent with our expectations. The reason for this is
that SMART metrics track the state of the hard drive, as opposed to system metrics, such
as memory usage and network overhead. In the case of SMART metrics, we can observe
a high correlation between SMART 1 and SMART 9 and SMART 7 and SMART 3, with
correlation factors of 0.58 and 0.63, respectively. The correlation between the remaining
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SMART metrics is very low or non-existent, similar to the correlation between SMART
metrics and other system metrics.
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Figure 11. Kendall’s tau correlations between system metrics.

Apart from performing a correlation analysis between system metrics and generat-
ing an overview of system metrics, we also computed the CDF of the system metrics.
Figures 12–15 show the CDF visualisation of the system metrics, which were selected based
on their standard deviation value (high), similar to the selection of system metrics for
overview analysis. In contrast to previous analyses, such as the overview of system metrics,
which focused on the server, the CDF analysis focuses on failures (or non-failures). Further,
we omit system metrics with a standard deviation of zero from our CDF analysis, as this
indicates that the data are centred around the mean (i.e., there is no spread). The CDF
analysis summarises the mean, maximum (or max), and minimum (or min) distributions
of values, which are then classified according to their failure characteristics (i.e., failure or
non-failure).

Figure 12a depicts the CPU utilisation CDF. As illustrated in Figure 12a, the mean,
min, and max values for the failed server are all extremely high compared to non-failures
(represented by ok in the figure). Nearly all (100% CDF) of the failed ones have very high
CPU utilisation, as high as 4000%. A similar observation can be made about memory
utilisation, bit write, bit read, network utilisation, and IO utilisation, all of which indicate
excessive resource utilisation in the event of a failure in Figures 12b, 13a,b and 14a,b,
respectively. Additionally, we can observe a very similar pattern for data distribution
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in the event of failure in the case of bits read and bits write. The abnormally high CPU
utilisation value observed in our study for the failure case is consistent with the findings of
Xu et al. [20], wherein in the event of a failure, a value as high as three times the normal
value was observed. The observed high resource usage, such as CPU, memory, data written
into and out of the disk, network usage, and increased time for IO usage in the event
of failure in Figures 12–14 is coherent with the failure characteristics identified by Jassas
et al. [36], who observed high resource usage prior to failure. In the absence of failure, we
can observe that resource utilisation is limited and relatively low. The similar failure traits
can also be observed in the case of the SMART system metrics from Figure 15. As illustrated
in Figure 15a, the mean and min values of SMART 194 are relatively stable in non-failure
cases, in contrast to the failure case, which fluctuates rapidly. Similar to SMART 194, in
the case of SMART 199, we can observe high mean, min and max values in Figure 15b.
Certain SMART 194 values are identical in failure to those in non-failure in Figure 15a. This
is due to the failure caused by the other system metrics, where SMART metrics are reported
normally. Further, we observe no CDF for SMART 199, which is not a failure. This is either
because the SMART reported a failure or because other system metrics reported a failure.
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Figure 12. Visualisation of the CDF of CPU and memory utilisation. (a) CDF of CPU utilisation;
(b) CDF of memory utilisation.
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Figure 13. Visualisation of the CDF of bits write and bits read. (a) CDF of bits write; (b) CDF of
bits read.
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Figure 14. Visualisation of the CDF of network overhead and IO utilisation. (a) CDF of network
overhead; (b) CDF of IO utilisation.
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Figure 15. Visualisation of the CDF of SMART 194 and SMART 199. (a) CDF of SMART 194; (b) CDF
of SMART 199.

We draw the following conclusions from our analysis of the data: The first conclusion
is based on the overview of the server’s system metrics. We conclude that the majority
of the time, resources are not fully utilised. For example, CPU utilisation is frequently
less than 60%. The second is constructed using correlation analysis. Correlations between
SMART system metrics and other system metrics are minimal. The third is based on an
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analysis of the CDF data. Resource consumption is typically high in the event of or prior to
failure. Finally, the data analysis demonstrates the benefits of combining SMART metrics
with other system metrics, as observed in CDF, where SMART does not report failures but
other system metrics do.

4.4.2. Experimental Result

Table 8 presents our experimental results and also a comparison to the state-of-the-
art. Overall, we observe high accuracy, precision, recall, and F1-score with all four of the
algorithms tested, using our combined system metrics approach, with results averaging
at least 95% for each algorithm. The consistent high values of all evaluation metrics
with all four selected algorithms, despite the unevenly distributed data (see Section 3.2),
demonstrates the benefits of the combined system metrics approach, validating our claim.

However, when we examine the results at a finer level, we can see that RF outperforms
GB, LSTM, and GRU. The GB comes in second on the list, with accuracy being as close to RF
as possible. The GB, on the other hand, falls short in precision by nearly 4% when compared
to the RF. LSTM and GRU have comparable performance, but GB and RF outperform them
by about 4–5% in terms of accuracy and precision and by about 2–3% in terms of the
F1-score. In terms of recall, we can see that all four algorithms produced the same result.

Table 8. Experimental result and its comparison to the state-of-the-art.

Accuracy Precision Recall F1 Score

Our RF 0.99 0.99 1 0.99

Our GB 0.99 0.95 1 0.97

Our LSTM 0.94 0.94 1 0.96

Our GRU 0.94 0.94 1 0.96

DESH (2018) [22] overall 0.83 (max. 0.86) overall 0.84 (max. 0.97) 0.87 overall 0.85 (max. 0.89)

FPHPC (2019) [19] 0.90 - 0.67 -

RTMBAS (2018) [29] 0.92 - - -

FACS (2019) [91] 0.91 - - -

PSFML (2018) [21] - - - 0.94

In our study, RF outperformed all other algorithms evaluated. The reason for RF’s
superior performance is its ability to generalise across diverse datasets with less hy-
perparameter tuning than techniques such as GB. A similar conclusion was made by
Fernández-Delgado et al. [97] after evaluating 179 classifiers from 17 different families,
such as decision trees, boosting, and other ensemble models on the whole UCI dataset [98].
Moreover, given the small difference between RF and GB performance, further hyperpa-
rameter tuning may result in improved GB performance. However, neural network-based
models that can model arbitrary decision boundaries, such as RF, are more powerful when
a large amount of data is available [99]. The lower performance of LSTM and GRU in
our study compared to RF and GB could be attributed to data size. In the case of the
larger datasets, LSTM and GRU can outperform RF because of their superior ability to
learn patterns.

Furthermore, to understand where we stand in comparison to the most recent studies,
we compared our findings to [19,21,22,29,91], which were chosen based on their recentness
(2018 and later), relevancy, and the similarity of the evaluation metrics used. Additionally,
when multiple algorithms were used in the comparison studies, we used the result from the
best performing algorithm. In terms of accuracy, our combined system metrics approach
outperforms others by up to 11% and recall by up to 32%, compared to the state-of-the-art
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studies. Similar observations can be made in terms of other evaluation metrics, such as
precision and F1 score. Further, our combined system approach demonstrates competitive
results by nearly 5% in terms of F1 score against state-of-the-art studies and precision
by up to 10%. The studies FACS and DESH used LSTM as in our study. Based on the
findings of these two studies, our proposed combined system approach continues to
outperform the competition. However, when we compare our LSTM and GRU (i.e., a
similar technique) results to the maximum DESH result, we see that DESH outperforms
our proposed combined system metrics in terms of precision by up to 3%.

Finally, the results from our experiment and comparison to state-of-the-art studies
substantiate our claim that using SMART metrics in conjunction with other system metrics,
such as CPU and memory utilisation, can improve failure prediction. Furthermore, with
improved failure prediction, we can detect potential failures accurately before they occur,
allowing us to take proactive action and, as a result, improve reliability.

5. Conclusions

We hypothesised that combining multiple system metrics would improve failure
prediction, and in this paper, we present our research on cloud server failure prediction.
Additionally, we substantiated our hypothesis and demonstrated the competitive advantage
of combined metrics through data analysis, a correlation study, and experimental results
based on our acquired data from 100 different cloud servers. As a result of the data
analysis and correlation study, we observed the following: (i) SMART system metrics have
a very low, if any, correlation with other system metrics, such as CPU utilisation; (ii) in
the event of a failure, high resource utilisation can be observed; and (iii) the benefits of
combining system metrics. For instance, SMART system metrics do not include failure
information, whereas other system metrics do (see Section 4.4.1). Subsequently, in a
comparison of our automated failure prediction models, we discovered that all four AI
algorithms, RF, GB, LSTM, and GRU, that utilise combined system metrics (or multi-
modal inputs) outperformed the state-of-the-art studies. The highest accuracy, however,
was obtained by RF methods, compared to other alternatives. Moreover, for competitive
reasons, cloud providers and high-performance computing centres do not want their
failures to be made public. This is also why such failure datasets are scarce, and those
that exist are extremely old. Utilising such data (i.e., very old data) will not provide the
necessary insights, for example, as a result of hardware (or technological) advancements.
As a result, we were required to generate the target label, a procedure similar to that used
in other studies (see Section 3.3). This, however, may not accurately reflect the actual failure
pattern, as failures can occasionally occur abruptly, which we regard as a limitation of
this study. The recent work by Chhetri et al. [100] on failure prediction, which focuses on
hard drive failure prediction using knowledge graphs [101], has demonstrated even greater
effectiveness. Future work will involve expanding on this approach of combining system
metrics based on knowledge graphs, as described in [100], in order to achieve even greater
effectiveness, as well as implementing the production method.
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FaCS: Toward a fault-tolerant cloud scheduler leveraging long short-term memory
network
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Cloud Computing: A model construct of real-time monitoring for big dataset analytics
using Apache Spark

FPHPC Failure prediction using machine learning in a virtualised HPC system and application
DESH Desh: Deep learning for system health prediction of lead times to failure in HPC
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