
����������
�������

Citation: Bagui, S.; Walauskis, M.;

DeRush, R.; Praviset, H.; Boucugnani,

S. Spark Configurations to Optimize

Decision Tree Classification on

UNSW-NB15. Big Data Cogn. Comput.

2022, 6, 38. https://doi.org/

10.3390/bdcc6020038

Academic Editor: Carson K. Leung

Received: 1 March 2022

Accepted: 4 April 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Spark Configurations to Optimize Decision Tree Classification
on UNSW-NB15
Sikha Bagui * , Mary Walauskis, Robert DeRush, Huyen Praviset and Shaunda Boucugnani

Department of Computer Science, University of West Florida, Pensacola, FL 32514, USA;
maw103@students.uwf.edu (M.W.); rjd35@students.uwf.edu (R.D.); htp3@students.uwf.edu (H.P.);
srb87@students.uwf.edu (S.B.)
* Correspondence: bagui@uwf.edu

Abstract: This paper looks at the impact of changing Spark’s configuration parameters on machine
learning algorithms using a large dataset—the UNSW-NB15 dataset. The environmental conditions
that will optimize the classification process are studied. To build smart intrusion detection systems,
a deep understanding of the environmental parameters is necessary. Specifically, the focus is on
the following environmental parameters: the executor memory, number of executors, number of
cores per executor, execution time, as well as the impact on statistical measures. Hence, the objective
was to optimize resource usage and minimize processing time for Decision Tree classification, using
Spark. This shows whether additional resources will increase performance, lower processing time,
and optimize computing resources. The UNSW-NB15 dataset, being a large dataset, provides enough
data and complexity to see the changes in computing resource configurations in Spark. Principal
Component Analysis was used for preprocessing the dataset. Results indicated that a lack of executors
and cores result in wasted resources and long processing time. Excessive resource allocation did not
improve processing time. Environmental tuning has a noticeable impact.

Keywords: Spark; decision tree; Principal Component Analysis; UNSW-NB15; machine learning;
network intrusion detection

1. Introduction

The goal of this paper was to observe the impact of adjusting Spark’s configuration
parameters for decision tree classification using a large dataset. To build smart intrusion
detection systems, a deep understanding of the environmental parameters is also necessary.
The environmental conditions that will optimize the classification process are studied.
Specifically, the focus is on the following environmental parameters: executor memory,
number of executors, cores, and execution time. The objective was to find the optimal
configuration settings needed to minimize memory usage and processing time for clas-
sification in Spark’s environment. Principal Component Analysis (PCA) was used for
dimension reduction.

This internet day and age has brought a tremendous increase in computer network
traffic. With this increase in computer network traffic has come an increase in malicious
traffic, manifested as anomalies in regular network traffic [1], hence the need for efficient
intrusion detection systems (IDSs) to detect malicious traffic early. A huge amount of
computer network traffic has also brought an additional challenge of handling and analyz-
ing large amounts of data quickly and efficiently. This paper looks at building intrusion
detection systems (IDSs) using anomaly detection, availing of the decision tree classifier in
the distributed Big Data Framework using Spark. Using a large dataset, UNSW-NB15 [2,3],
the performance of running the decision tree classifier in the parallel Big Data environment,
Spark, was tracked using the SparkUI. Spark, a parallel cluster computing framework that
sits on top of the Hadoop Big Data Framework, gains its efficiency from having data and

Big Data Cogn. Comput. 2022, 6, 38. https://doi.org/10.3390/bdcc6020038 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc6020038
https://doi.org/10.3390/bdcc6020038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-1886-4582
https://doi.org/10.3390/bdcc6020038
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc6020038?type=check_update&version=1

Big Data Cogn. Comput. 2022, 6, 38 2 of 12

processes reside completely in-memory [4]. Additionally, Spark comes with a rich set of
APIs that allow complex analytical operations to be performed out-of-the-box.

The decision tree classifier was used in this work so that the classifier results obtained
in Spark’s parallel computing environment could be compared to previous studies done
using the traditional decision tree classifier on the UNSW-NB15 dataset. The decision tree
classifier has previously been used for classification in IDSs by many [5–8], giving high
detection accuracy without compromising learning speed. Refs. [5,6] also used the decision
tree classifier on the UNSW-NB15.

The rest of this paper is organized as follows. Section 2 presents the related works;
Section 3 presents the UNSW-NB15 dataset; Section 4 briefly presents the algorithms used;
Section 5 presents the methodology; Section 6 presents the results and discussion; and
Section 7 presents the conclusion.

2. Related Works

Several works have studied the application of various machine learning techniques
on several different intrusion detection datasets. Since there are minimal resources that
study the Spark environment in the context of environmental parameters [7,8], the majority
of related works focus on similar statistical measures and decision tree classification on
intrusion detection datasets—specifically, the UNSW-NB15 dataset.

Mostafaeipour et al. [7] compared and evaluated the KNN algorithm within Hadoop
and Spark. The runtime of spark was 4 to 4.5 times faster than Hadoop. The memory usage
in Hadoop was less than Spark.

Chang et al. [8] proposed the Hyperband algorithm to optimize the Spark parameters
and improve the efficiency of the Spark platform. Using the Hyperband algorithm, the
parameter model is trained through historical data information. The Spark parameter
model was chosen for different job requirements. With 5 GB dataset, this method reduced
the job execution time by approximately 12.94%.

Gao et al. [9] proposed a neural network algorithm, I-ELM, which improved detection
accuracy and training speed. These authors combined adaptive PCA to extract effective
features automatically. Being adjustable, in I-ELM, nodes could be added to solve underfit-
ting and overfitting. To prove the method’s efficiency, the paper compared SVM, BP, CNN,
ELM, and I-ELM on the NSL-KDD and UNSW-NB15 datasets. Despite the imbalanced
distribution of data among the attack types in the NSL-KDD dataset, and the large numbers
of new network attack types in UNSW-NB15, I-ELM, combined with adaptive PCA, showed
the highest detection accuracy and the lowest false alarm rates.

Qiao et al. [10] proposed a Direct Linear Discriminant Analysis (DLDA) and PCA to
obtain detection rates (DR) and false alarm rates (FAR) at an acceptable level on UNSW-
NB15. To solve the small sample size (SSS) problem and lack of discriminant information,
the authors used Discriminative PCA (DPCA). Detection was implemented using the
simple nearest-neighbor (NN) classifier. For multi-classes, PCA and DPCA gave similar
results. For binary-class detection, DPCA outperformed DLDA and PCA in accuracy, DR,
and FAR.

Moustafa et al. [11] proposed a threat intelligence architecture evaluating a CPS data
set of sensors and actuators and the UNSW-NB15 data set of network traffic based on Beta
Mixture and Hidden Markov Models (MHMM). In order to improve MHMM performance,
Independent Component Analysis (ICA) was used to reduce data dimensionality. Beta
Mixture Model (BMM) was used for fitting multivariate time series. Accuracy, Detection
Rate, and False Alarm Rate were used to measure the performance between the techniques,
MHMM, Cart, KNN, SVM, RF, and OGM, on the CPS and UNSW-NB15 datasets. MHMM
performed better than the other techniques on both the datasets and was more efficient in
recognizing different normal and abnormal records.

Sheshasaayee et al. [12] compared Decision Tree, Random Forest, and Gradient Boost-
ing Tree in the native MapReduce and Spark frameworks over the parameters read, write,

Big Data Cogn. Comput. 2022, 6, 38 3 of 12

time, and space. The authors found that all the tree-based algorithms performed much
better on the Spark framework than the native MapReduce.

Belouch et al. [13] compared SVM, Naïve Bayes, Decision Tree, and Random Forest,
for classification accuracy, sensitivity, specificity and execution time on the UNSW-NB15
dataset. Decision tree had an accuracy of 85.56% and FAR of 15.78%. Random Forest had a
specificity at 97.49%, and the specificity of Decision Tree was 97.10%. Random Forest had a
slightly higher accuracy at 97.49% compared to 95.82% but took longer to train at 5.69 s
compared to 4.30 s. Both performed far better than SVM and Naïve Bayes. In conclusion,
Random Forest was slightly better at detection on all types of network traffic.

Koroniotis et al. [14] tested four classification techniques used to recognize attack
vectors in IoT devices—Decision Tree (DT), Association Rule Mining (ARM), Artificial
Neural Network (ANN), and Naïve Bayes (NB). An Information Gain Ranking Filter (IG)
selected the 10 highest-ranked features. The metrics used for the determination of success
of each algorithm where accuracy and False Alarm Rate (FAR). This study showed that the
DT Classifier was the best for recognizing differences in Botnet and normal traffic. ANN
were the least successful.

Moustafa et al. [15] applied Naïve Bayes, Decision Tree, Artificial Neural Network,
Logistic Regression, and Expectation-Maximization (EM) clustering techniques to UNSW-
NB15 and KDD99 to analyze the accuracy and false alarm rate. On the UNSW-NB15 data
set, decision tree gave the highest accuracy and lowest FAR; EM clustering resulted in the
lowest accuracy and highest FAR.

Kasongo and Sun [16] compared Support Vector Machine, k-Nearest-Neighbor, Logis-
tic Regression, Artificial Neural Network, and Decision Tree performance after applying
XGBoost algorithm, a filter-based feature reduction technique on UNSW-NB15 dataset. The
results showed that Decision Tree had a better test accuracy compared to other Machine
Learning algorithms. XGBoost helped improve Decision Tree prediction.

Kumar et al. [6] proposed an integrated classification-based model using the UNSW-
NB15 dataset as an offline dataset. A real-time dataset (RTNITP18) was generated as a
testing dataset on a proposed model. Different existing decision tree models (C5, CHAID,
CART, and QUEST) were compared to the proposed integrated model, showing higher
performance in detection rate and FAR. The proposed integrated rule-based model kept
the highest confidence factors to be used for the rule-based model.

Though there are several works using the decision tree classifier on UNSW-NB15, and
some of them also use Spark, except for [7,8], none of the works have looked at optimizing
the Spark configuration parameters to get better results using the decision tree classifier on
the UNSW-NB15 dataset, which is the focus of this work. And [7,8] did not specifically use
the decision tree classifier.

3. The UNSW-NB15 Dataset

UNSW-NB15 [2,3] was created by the IXIA Perfect Storm tool1 in the Cyber Range Lab
of the Australian Centre for Cyber Security (ACCS) in conjunction with UNSW Canberra,
Australia [13]. This dataset is a fusion of actual modern normal network traffic and
contemporary synthesized attacks [14]. 100 GB of raw data was used to generate a hybrid
of real and synthetic data to simulate contemporary attack behaviors. The dataset is made
up of four separate files that contain 2,540,047 separate lines of data at 559.3 MB of CSV
data. This includes 49 different variables, including Label, which defines each instance as
benign traffic or as an attack. Attack_cat categorizes the type of attack.

When combining the four separate data files into one, there were a few cleaning issues:
extra spaces had to be trimmed in a few columns and two versions of an attack category,
with/without an -s were present. Columns that contained null values were converted using
StringIndexer() prior to transforming into PCA.

This dataset tracks nine types of attacks, as shown in Figure 1. The attacks are
Analysis, Backdoors, DoS, Exploits, Reconnaissance, Shellcode, Worms, Fuzzers, and
Generic. Figure 2 shows the distribution of benign versus attack traffic.

Big Data Cogn. Comput. 2022, 6, 38 4 of 12

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 4 of 12

Analysis, as in traffic analysis, are eavesdropping attacks designed to listen to net-
work communications to infer the location of key nodes, routing structure, network, in-
frastructure topology, and even application behavior patterns. Backdoor attacks are typi-
cally malware installations that negate normal authentication procedures to a system and
allow remote access to an unauthorized person or agent. DoS, “denial of service”, are at-
tacks that aim to make a server, service, or another part of the infrastructure unavailable,
usually by overloading bandwidth to slow down or stop normal operations. Exploits are
types of attacks that target a known or emerging vulnerability and weakness in an appli-
cation, network, operating system, or hardware. Reconnaissance is a general knowledge
gathering attack that can be both logical and physical. This can include sniffing, scanning,
and phishing. Shellcode is a type of code attack where code is injected remotely. This al-
lows software vulnerabilities to be exploited. It also allows the opening of remote in-
stances of command line interpreters to further interact with infected systems. Worms are
a type of self-replicating malware that can spread across systems and networks without
human engagement; they can be first introduced by a human actor but then self-sustain
and propagate automatically. Fuzzer attacks are designed to stress an application to cause
unexpected behavior, resource leaks, or crashes. Generic is a catch-all class of attacks that
do not fit strongly into one of the other types of attack [17].

Figure 1. Distribution of Network Attack Types.

Figure 2. Distribution of Benign versus Attacks.

Figure 1. Distribution of Network Attack Types.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 4 of 12

Analysis, as in traffic analysis, are eavesdropping attacks designed to listen to net-
work communications to infer the location of key nodes, routing structure, network, in-
frastructure topology, and even application behavior patterns. Backdoor attacks are typi-
cally malware installations that negate normal authentication procedures to a system and
allow remote access to an unauthorized person or agent. DoS, “denial of service”, are at-
tacks that aim to make a server, service, or another part of the infrastructure unavailable,
usually by overloading bandwidth to slow down or stop normal operations. Exploits are
types of attacks that target a known or emerging vulnerability and weakness in an appli-
cation, network, operating system, or hardware. Reconnaissance is a general knowledge
gathering attack that can be both logical and physical. This can include sniffing, scanning,
and phishing. Shellcode is a type of code attack where code is injected remotely. This al-
lows software vulnerabilities to be exploited. It also allows the opening of remote in-
stances of command line interpreters to further interact with infected systems. Worms are
a type of self-replicating malware that can spread across systems and networks without
human engagement; they can be first introduced by a human actor but then self-sustain
and propagate automatically. Fuzzer attacks are designed to stress an application to cause
unexpected behavior, resource leaks, or crashes. Generic is a catch-all class of attacks that
do not fit strongly into one of the other types of attack [17].

Figure 1. Distribution of Network Attack Types.

Figure 2. Distribution of Benign versus Attacks.

Figure 2. Distribution of Benign versus Attacks.

Big Data Cogn. Comput. 2022, 6, 38 5 of 12

Analysis, as in traffic analysis, are eavesdropping attacks designed to listen to network
communications to infer the location of key nodes, routing structure, network, infrastruc-
ture topology, and even application behavior patterns. Backdoor attacks are typically
malware installations that negate normal authentication procedures to a system and allow
remote access to an unauthorized person or agent. DoS, “denial of service”, are attacks
that aim to make a server, service, or another part of the infrastructure unavailable, usually
by overloading bandwidth to slow down or stop normal operations. Exploits are types
of attacks that target a known or emerging vulnerability and weakness in an application,
network, operating system, or hardware. Reconnaissance is a general knowledge gathering
attack that can be both logical and physical. This can include sniffing, scanning, and
phishing. Shellcode is a type of code attack where code is injected remotely. This allows
software vulnerabilities to be exploited. It also allows the opening of remote instances of
command line interpreters to further interact with infected systems. Worms are a type
of self-replicating malware that can spread across systems and networks without human
engagement; they can be first introduced by a human actor but then self-sustain and propa-
gate automatically. Fuzzer attacks are designed to stress an application to cause unexpected
behavior, resource leaks, or crashes. Generic is a catch-all class of attacks that do not fit
strongly into one of the other types of attack [17].

4. Analysis Environment
4.1. Spark

Spark, a general-purpose advanced execution engine that can handle batch processing,
interactive analysis, streaming data, machine learning, and graph computing, is an in-
memory cluster computing framework for processing and analyzing large amounts of
data [4]. This type of programming interface has become crucial as the need to process
large datasets has continued to grow. Rather than writing to the disk every time, Spark
caches data in memory and only writes to the disk one time. Additional characteristics of
Spark that make it powerful are simple to use, fast, general purpose, scalable, and fault
tolerant. With the wide array of data processing jobs that Spark can handle, it was built to
be scalable. To increase the capacity of a Spark cluster, all that has to be done is to add more
nodes to the cluster [4]. Lastly, Spark, as previously mentioned, is fault tolerant, meaning
that it automatically handles node failure without breaking the application. As a result,
Spark can process tremendous amounts of data quickly and efficiently.

4.2. Principle Component Analysis

Though Spark can process large amounts of data, there is often still a need to reduce
the dimensionality of data. This can be done through Principal Component Analysis or
PCA. PCA is a statistical method for reducing a large set of possibly correlated variables
to a smaller set of uncorrelated variables, known as principal components. In terms of
Big Data analytics, PCA’s goal “is to find the fewest number of variables responsible for
the maximum amount of variability in the dataset” [4]. Each principal component has the
largest variance under the constraint that it is uncorrelated to the previous components.

4.3. Decision Tree

The decision tree algorithm infers a set of decision rules from a training dataset and
creates a decision tree that can be used to predict the numeric label for an observation. The
tree uses a hierarchy of nodes and edges. A decision tree is unlike a graph since there are
no loops; a non-leaf node is called an internal or split node whereas a leaf node is called a
terminal node. The decision tree algorithm starts at the root node and works its way down
the tree until it reaches a terminal node. The decision tree algorithm “performs a series of
tests on the features to predict a label” [4]. Though a decision tree can be used for both
regression and classification, in this work the decision tree is used for classification.

Big Data Cogn. Comput. 2022, 6, 38 6 of 12

5. Methodology

Figure 3 presents a flow diagram for the overall methodology used in this work.
Although doing the PCA every time appears redundant at first glance, since SparkUI is
used, we had to completely leave the Spark environment each time. Hence, PCA has to be
re-done every single time.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 6 of 12

Figure 3. Flow Diagram for Methodology.

Environmental Variables Used in Spark
Table 1 shows the environmental variables that were adjusted in the Spark runs.

Table 1. Environment Variables [18].

Environment Variables Function
--num-executors The number of executors to be created

--executor-cores The number of threads used by each executor, which equals the maximum number
of tasks that can be executed concurrently by each executor

--executor-memory The maximum amount of memory to be allocated to each executor. The allocated
memory cannot be greater than the maximum available memory per node

In the Spark-shell, the number of executors, cores and memory allocated to the exec-
utors were varied using the statement:

spark-shell—num-executors X —executor-cores X —executor-memory X
Where X is a numeric value entered.

Core Spark classes in Scala [19] were used to perform all tasks. The Machine Learning

library (mllib) and the sql class were used. Within the classes, the following were im-
ported:

org.apache.spark.sql.SparkSession
org.apache.spark.ml.linalg.Vectors
org.apache.spark.ml.feature.{VectorAssembler, VectorIndexer, StringIndexer,
OneHotEncoder}
org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
org.apache.spark.ml.feature.PCA
org.apache.spark.ml.Pipeline
org.apache.spark.ml.classification.LogisticRegression
org.apache.spark.ml.classification.DecisionTreeClassificationModel
org.apache.spark.ml.classification.DecisionTreeClassifier
org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
org.apache.spark.mllib.evaluation.MulticlassMetrics

Figure 3. Flow Diagram for Methodology.

Environmental Variables Used in Spark

Table 1 shows the environmental variables that were adjusted in the Spark runs.

Table 1. Environment Variables [18].

Environment Variables Function

–num-executors The number of executors to be created

–executor-cores The number of threads used by each executor, which equals the maximum number
of tasks that can be executed concurrently by each executor

–executor-memory The maximum amount of memory to be allocated to each executor. The allocated
memory cannot be greater than the maximum available memory per node

In the Spark-shell, the number of executors, cores and memory allocated to the execu-
tors were varied using the statement:

spark-shell—num-executors X—executor-cores X—executor-memory X
Where X is a numeric value entered.

Core Spark classes in Scala [19] were used to perform all tasks. The Machine Learning
library (mllib) and the sql class were used. Within the classes, the following were imported:

org.apache.spark.sql.SparkSession
org.apache.spark.ml.linalg.Vectors
org.apache.spark.ml.feature.{VectorAssembler, VectorIndexer, StringIndexer, OneHo-
tEncoder}
org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
org.apache.spark.ml.feature.PCA
org.apache.spark.ml.Pipeline
org.apache.spark.ml.classification.LogisticRegression
org.apache.spark.ml.classification.DecisionTreeClassificationModel

Big Data Cogn. Comput. 2022, 6, 38 7 of 12

org.apache.spark.ml.classification.DecisionTreeClassifier
org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
org.apache.spark.mllib.evaluation.MulticlassMetrics

A Spark session was built using SparkSession.builder(). This allowed the performance
to be tracked and monitored in SparkUI to see the impact of the changing environmental
variables. Spark UI was used to track the performance of the different Spark configuration
parameters on the decision tree classifier. In Spark Application UI, stages in each Spark Job,
tasks in each stage including summary metrics for completed tasks, aggregated metrics by
executor, Resilient Distributed Dataset (RDD) storage, and environment can be monitored.
Directed Acylic Graph (DAG) visualization and event timeline of each stage can be observed.
From the application web UI Storage tab, each RDD storage displays partitions, memory
usage, storage level, and executor IDs of each RDD partition. Spark runtime information,
system properties, and class path entries can be monitored from the environment tab in
the application web UI. Executors page provides all the information about active and
dead executors, monitor logs, and executor threads [4]. The UNSW-NB15 dataset [13] was
imported as comma separated values into the Hadoop File System. Since the dataset [13]
was multiple files, they were merged into a vector column using the VectorAssembler
class [19] to create a list of column names from the dataset to be used by the code. The
transformed dataset from the VectorAssembler class transform method was used by the
PCA class to produce a reduced dimension dataset from principal components. The data
was randomly split into 70% training data observations and 30% testing observations using
the random split method from the PCA Model class [19]. Finally, the decision tree classifier
was run using the default settings from the DecisionTreeClassifier class [19].

This work was performed on a GHz 6-Core i7 16 GB 512 SSD machine. The work
was performed using the Spark API, Spark ML, using the out-of-box PCA and decision
tree algorithms, permitting fast data processing that is durable and robust. Lastly, it is
important to note that the same block of code was used for each trial with the only change
being the varying number of executors, cores, and memory allocated before each trial run.

6. Results and Discussion

Table 2 show the tabulated results of 11 runs with various combinations of Spark’s
environment variables. Performance was evaluated in two ways: (i) cores and execution
time based on memory used; and (ii) statistical metrics.

6.1. Performance Based on Cores and Memory versus Execution Time

10 executors and 2 cores and 10 executors and 6 cores offered the best results. As
can be observed from Table 2, after running additional trials (runs 5–8—note that run 7
was a rerun of run 3, but without specifying executor memory, and run 8 was a rerun of
run 4, without specifying executor memory), it can be noted that a significant number of
dead cores were obtained for each run. This was because: for the original runs, spark-shell
–num-executors # –executor-cores # –executor-memory 19 G was used, whereas in runs 5–8,
spark-shell –num-executors 10 –executor-cores 6 was used. Hence, additional runs were
performed using the business concept of ceteris paribus or “other things equal”—keeping
the number of executors at 10 and cores at 6, but changing the executor memory each time.
This allowed us to see the impact of adjusting the executor memory. These results are
presented in Table 2. From runs 9–11, it can be noted that using 5 GB executor memory
provided similar time.

Big Data Cogn. Comput. 2022, 6, 38 8 of 12

Table 2. All Trial Runs.

Run
of Executors
of Executor

Cores

Executor
Memory

Cores
Used

Dead
Cores

Execution
Time
(min)

Memory
Used
(GB)

Spark
Jobs
Run

of Ex-
ecutors

Completed
Tasks

Dead
Tasks

Read/Write
(MB)

1 Executors: 4
Cores: 4 19 GB 8 16 6.9 64.6 37 6 1151 17.5

2 Executors: 5
Cores: 2 19 GB 12 0 3.5 64.5 37 6 621 13.5

3 Executors: 10
Cores: 2 19 GB 24 0 3.0 128.7 37 12 1183 17.4

4 Executors: 10
Cores: 6 19 GB 60 0 2.0 107.3 37 10 3017 27.5

5 Executors: 12
Cores: 5

Default—1
GB 80 45 2.5 6.8 37 16 3012 2188 28.2

6 Executors: 8
Cores: 5

Default—1
GB 65 40 2.7 5.4 37 12 1996 1964 22.7

7 Executors: 10
Cores: 2

Default—1
GB 30 10 3.1 6.3 37 15 1205 518 17.9

8 Executors: 10
Cores: 6

Default—1
GB 108 54 2.8 7.7 37 18 3017 2405 27

9 Executors: 10
Cores: 6 10 GB 60 0 2.5 55.8 37 10 3017 28.4

10 Executors: 10
Cores: 6 11 GB 60 0 2.2 61.5 37 10 3017 27

11 Executors: 10
Cores: 6 5 GB 60 0 2.0 27.2 37 10 3017 27.4

Figures 4 and 5 present a comparison of results. These figures show a comparison
for all runs with executors set to 10 and cores set to 6. The difference between each run is
the executor memory that was declared upon launch of spark-shell. The executor memory
specifications were as follows: default, 5 GB, 10 GB, 11 GB, and 19 GB. From Figure 4, it can
be noted that the higher the declared executor memory, the higher the total memory, but
execution time was high at the default executor memory of 1 GB and 10 GB. From Figure 5
it can be noted that higher declared executor memory used less cores (the number of cores
remained consistent after 5 GB) and execution time was high only at the default of 1 GB
and 10 GB.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 8 of 12

8 Executors: 10
Cores: 6

Default—
1 GB

108 54 2.8 7.7 37 18 3017 2405 27

9 Executors: 10
Cores: 6

10 GB 60 0 2.5 55.8 37 10 3017 28.4

10 Executors: 10
Cores: 6

11 GB 60 0 2.2 61.5 37 10 3017 27

11 Executors: 10
Cores: 6

5 GB 60 0 2.0 27.2 37 10 3017 27.4

6.1. Performance Based on Cores and Memory versus Execution Time
10 executors and 2 cores and 10 executors and 6 cores offered the best results. As can

be observed from Table 2, after running additional trials (runs 5–8—note that run 7 was a
rerun of run 3, but without specifying executor memory, and run 8 was a rerun of run 4,
without specifying executor memory), it can be noted that a significant number of dead
cores were obtained for each run. This was because: for the original runs, spark-shell --num-
executors # --executor-cores # --executor-memory 19 G was used, whereas in runs 5–8, spark-
shell --num-executors 10 --executor-cores 6 was used. Hence, additional runs were performed
using the business concept of ceteris paribus or “other things equal”—keeping the number
of executors at 10 and cores at 6, but changing the executor memory each time. This al-
lowed us to see the impact of adjusting the executor memory. These results are presented
in Table 2. From runs 9–11, it can be noted that using 5 GB executor memory provided
similar time.

Figures 4 and 5 present a comparison of results. These figures show a comparison for
all runs with executors set to 10 and cores set to 6. The difference between each run is the
executor memory that was declared upon launch of spark-shell. The executor memory
specifications were as follows: default, 5 GB, 10 GB, 11 GB, and 19 GB. From Figure 4, it
can be noted that the higher the declared executor memory, the higher the total memory,
but execution time was high at the default executor memory of 1 GB and 10 GB. From
Figure 5 it can be noted that higher declared executor memory used less cores (the number
of cores remained consistent after 5 GB) and execution time was high only at the default
of 1 GB and 10 GB.

Figure 4. Executor Memory versus Execution Time and Total Memory.

7.7

27.2

55.8 61.5

107.32.8

2

2.5
2.2

2

0

0.5

1

1.5

2

2.5

3

0

20

40

60

80

100

120

Default (1GB) 5GB 10GB 11GB 19GB

EX
EC

UT
IO

N
TI

M
E

(M
IN

UT
ES

)

TO
TA

L M
EM

OR
Y

US
ED

DECLARED EXECUTOR MEMORY

Memory Utilized versus Execution
Time

Total Memory (GB) Execution Time (min)

Figure 4. Executor Memory versus Execution Time and Total Memory.

Big Data Cogn. Comput. 2022, 6, 38 9 of 12Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 9 of 12

Figure 5. Cores versus Execution Time and Total Cores Used.

6.2. Performance Based on Statistical Metrics
In addition to monitoring performance for each of the runs, the Accuracy, Precision,

Recall, False Alarm Rate (FAR), F-measure, and AUC Area Under the Curve (AUC) was
recorded for all 11 runs.

Accuracy is the ratio of a model’s correct data (TP + TN) to the total data, calculated
by:

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1)

Precision is the ratio of true positives to all positives, determined by:

Precision = TP / (TP + FP) (2)

Recall is the fraction of the positive examples classified correctly by a model:

Recall = TP / (TP + FN) (3)

False Alarm Rate (FAR) or False Positive Rate is the ratio of the number of negative
events wrongly categorized as positive to the total number of actual negative events. FAR
is given by:

FAR = FP / (FP + TN) (4)

F-measure is the harmonic mean of the recall and precision of a model:

F-measure = (2 * precision * recall) / (precision + recall) (5)

Note: TP stands for “True Positives”, FN stands for “False Negatives”, and FP stands
for “False Positives”.

From Table 3, it can be noted that the number of cores and executors specified did
not impact the statistical calculations. Figure 6 demonstrates that for each of the runs while
varying the number of executors, cores, and executor memory, the ranges for each of the
statistical measures were fairly consistent, on average. Precision ranged from 0.9181 to
0.9605. Recall ranged from 0.9425 to 0.9947. F-measure ranged from 0.9498 to 0.9855. AUC
ranged from 0.9682 to 0.9909.

0

0.5

1

1.5

2

2.5

3

0

20

40

60

80

100

120

Default (1GB) 5GB 10GB 11GB 19GB

EX
EC

UT
IO

N
TI

M
E

(M
IN

UT
ES

)

TO
TA

L C
OR

ES
 U

SE
D

DECLARED EXECUTOR MEMORY

Cores Used versus Time
Cores Used Execution Time (min)

Figure 5. Cores versus Execution Time and Total Cores Used.

6.2. Performance Based on Statistical Metrics

In addition to monitoring performance for each of the runs, the Accuracy, Precision,
Recall, False Alarm Rate (FAR), F-measure, and AUC Area Under the Curve (AUC) was
recorded for all 11 runs.

Accuracy is the ratio of a model’s correct data (TP + TN) to the total data, calculated by:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Precision is the ratio of true positives to all positives, determined by:

Precision = TP/(TP + FP) (2)

Recall is the fraction of the positive examples classified correctly by a model:

Recall = TP/(TP + FN) (3)

False Alarm Rate (FAR) or False Positive Rate is the ratio of the number of negative
events wrongly categorized as positive to the total number of actual negative events. FAR
is given by:

FAR = FP/(FP + TN) (4)

F-measure is the harmonic mean of the recall and precision of a model:

F-measure = (2 ∗ precision ∗ recall)/(precision + recall) (5)

Note: TP stands for “True Positives”, FN stands for “False Negatives”, and FP stands
for “False Positives”.

From Table 3, it can be noted that the number of cores and executors specified did not
impact the statistical calculations. Figure 6 demonstrates that for each of the runs while
varying the number of executors, cores, and executor memory, the ranges for each of the
statistical measures were fairly consistent, on average. Precision ranged from 0.9181 to
0.9605. Recall ranged from 0.9425 to 0.9947. F-measure ranged from 0.9498 to 0.9855. AUC
ranged from 0.9682 to 0.9909.

Big Data Cogn. Comput. 2022, 6, 38 10 of 12

Table 3. Statistical Measures.

Run #
of Executors
of Executor

Cores

Executor
Memory Precision Recall F Measure AUC

Run 1 Executors: 4
Cores: 4 19 GB 0.9453 0.9635 0.9543 0.9777

Run 2 Executors: 5
Cores: 2 19 GB 0.9304 0.9745 0.9947 0.9607

Run 3 Executors: 10
Cores: 2 19 GB 0.9543 0.9519 0.9549 0.9548

Run 4 Executors: 10
Cores: 6 19 GB 0.9777 0.982 0.9909 0.9766

Run 5 Executors: 12
Cores: 5 Default—1 GB 0.938 0.9699 0.9537 0.9803

Run 6 Executors: 8
Cores: 5 Default—1 GB 0.9561 0.9571 0.9855 0.9753

Run 7 Executors: 10
Cores: 2 Default—1 GB 0.9573 0.9425 0.9498 0.9682

Run 8 Executors: 10
Cores: 6 Default—1 GB 0.9605 0.9502 0.9556 0.9723

Run 9 Executors: 10
Cores: 6 10 GB 0.953 0.9509 0.9519 0.9761

Run 10 Executors: 10
Cores: 6 11 GB 0.9493 0.9628 0.956 0.9777

Run 11 Executors: 10
Cores: 6 5 GB 0.9502 0.9594 0.9549 0.9761

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 10 of 12

Table 3. Statistical Measures.

Run # # of Executors
of Executor Cores

Executor
Memory

Precision Recall F Measure AUC

Run 1 Executors: 4
Cores: 4

19 GB 0.9453 0.9635 0.9543 0.9777

Run 2 Executors: 5
Cores: 2

19 GB 0.9304 0.9745 0.9947 0.9607

Run 3
Executors: 10
Cores: 2 19 GB 0.9543 0.9519 0.9549 0.9548

Run 4
Executors: 10
Cores: 6 19 GB 0.9777 0.982 0.9909 0.9766

Run 5
Executors: 12
Cores: 5 Default—1 GB 0.938 0.9699 0.9537 0.9803

Run 6
Executors: 8
Cores: 5 Default—1 GB 0.9561 0.9571 0.9855 0.9753

Run 7
Executors: 10
Cores: 2 Default—1 GB 0.9573 0.9425 0.9498 0.9682

Run 8
Executors: 10
Cores: 6 Default—1 GB 0.9605 0.9502 0.9556 0.9723

Run 9
Executors: 10
Cores: 6 10 GB 0.953 0.9509 0.9519 0.9761

Run 10
Executors: 10
Cores: 6 11 GB 0.9493 0.9628 0.956 0.9777

Run 11
Executors: 10
Cores: 6 5 GB 0.9502 0.9594 0.9549 0.9761

Figure 6. Precision, Recall, F-Measure, and AUC Calculations for all runs (varying execu-
tors/cores/executor memory).

Table 4 presents classification results of using the decision tree algorithm on UNSW-
NB15. The last row shows the results obtained by our parallel implementation of Spark.
The last line—our results—are an average of the 11 runs that were performed. As per
Table 3, in terms of FAR, as well as accuracy, decision tree used in Spark’s parallel frame-
work did a lot better than previous uses of the decision tree algorithm. Most importantly,
the total execution time was a lot lower after tuning Spark’s parameters.

Figure 6. Precision, Recall, F-Measure, and AUC Calculations for all runs (varying execu-
tors/cores/executor memory).

Table 4 presents classification results of using the decision tree algorithm on UNSW-
NB15. The last row shows the results obtained by our parallel implementation of Spark. The
last line—our results—are an average of the 11 runs that were performed. As per Table 3,
in terms of FAR, as well as accuracy, decision tree used in Spark’s parallel framework did

Big Data Cogn. Comput. 2022, 6, 38 11 of 12

a lot better than previous uses of the decision tree algorithm. Most importantly, the total
execution time was a lot lower after tuning Spark’s parameters.

Table 4. Decision Tree Results on UNSW-NB15.

Author and Year Precision F Measure AUC Accuracy FAR Recall Specificity Total Time

Belouch et al., 2018 NA NA NA 95.82% 92.52% 97.1% 4.93

Koroniotis et al., 2018 NA NA NA 92.30% 11.71% NA NA NA

Moustafa and Slay, 2016 NA NA NA 85.56% 15.78% NA NA NA

This paper (Bagui,
et al.)—Parallel Spark

implementation
96.58% 97.34% 98.30% 98.89% 0.79% 97.10% 99.20% 2.3

This work clearly demonstrates that adding additional resources does not guarantee
better performance. On one hand, if too few resources are used along with a large dataset,
it will result in numerous dead cores. On the other hand, a significant increase in resources
did not prove to provide any significant performance time benefits. In the real world this
would be an expensive waste of resources because of the additional cost associated with
using a larger amount of resources.

7. Conclusions

In this work, different executor memory sizes were compared on different memory
ranges from 1 GB to 19 GB using different numbers of executors and cores. The results point
out some key performance indicators, including explicitly assigning executor memory to
avoid dead cores, in some cases extended processing time. That is, a lack of executors and
cores result in a significant time increase, dead cores, and unacceptably long processing
time. Hence the results showed the optimal combination which minimizes both memory
used and processing time. The overall conclusion is that as the declared executor memory
increased the executive time went down, but the number of cores remained the same.
Finally, the decision tree algorithm on Spark’s parallel environment performed better in
terms of classification time, accuracy, and False Alarm Rate.

8. Future Works

Spark 2.x was used for the content of this paper; all the referenced works also used
this CPU focused version of Spark. With the release of Spark 3.x [20] columnar processing
support is provided in Spark’s Catalyst query optimizer—the logical query plan optimizer,
which can accelerate DataFrame operations [21] using Graphics Processing Unit (GPU)
resources on the Spark clusters. NVIDIA [21] states that Spark on NVIDIA GPUs will
reduce infrastructure costs by completing jobs faster with less hardware compared to the
CPU based alternative. It would be interesting to see if these claims can be proven with this
research conducted in a Spark 3.x environment. All these trials could be conducted in the
upgraded environment and tested to see the impact of allocating more GPU cores instead
of CPU along with the executors and memory maintained at constant levels for both does
decrease the runtimes reported in this work.

Author Contributions: Conceptualization, S.B. (Sikha Bagui); methodology, S.B. (Sikha Bagui);
software, M.W., R.D., H.P. and S.B. (Shaunda Boucugnani); validation, S.B. (Sikha Bagui), M.W.,
R.D., H.P. and S.B. (Shaunda Boucugnani); formal analysis, S.B. (Sikha Bagui), M.W., R.D., H.P. and
S.B. (Shaunda Boucugnani); investigation, S.B. (Sikha Bagui), M.W., R.D., H.P. and S.B. (Shaunda
Boucugnani); resources, S.B. (Sikha Bagui), M.W., R.D., H.P. and S.B. (Shaunda Boucugnani); data
curation, M.W., R.D., H.P. and S.B. (Shaunda Boucugnani); writing—original draft preparation, S.B.
(Sikha Bagui), M.W., R.D., H.P. and S.B. (Shaunda Boucugnani); writing—review and editing, S.B.
(Sikha Bagui), M.W., R.D., H.P. and S.B. (Shaunda Boucugnani); visualization, S.B. (Sikha Bagui), M.W.,
R.D., H.P. and S.B. (Shaunda Boucugnani); supervision, S.B. (Sikha Bagui); project administration, S.B.
(Sikha Bagui). All authors have read and agreed to the published version of the manuscript.

Big Data Cogn. Comput. 2022, 6, 38 12 of 12

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The Data is available at: https://research.unsw.edu.au/projects/unsw-
nb15-dataset (accessed on 3 April 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bagui, S.; Simonds, J.; Plenkers, R.; Bennett, T.; Bagui, S. Classifying UNSW-NB15 Network Traffic in the Big Data Framework

using Random Forest in Spark. Int. J. Big Data Intell. Appl. 2021, 2, 17. [CrossRef]
2. The UNSW-NB15 Dataset Description. Cyber Range Lab of the Australian Centre for Cyber Security (ACCS). Available online:

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/. (accessed on 19 September 2019).
3. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network

data set). In Proceedings of the Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015. [CrossRef]

4. Guller, M. Big Data Analytics with Spark: A Practitioner’s Guide to Using Spark for Large Scale Data Analysis, 1st ed.; Apress: New
York, NY, USA, 2015.

5. Kasongo, M.S.; Sun, Y. Performance Analysis of Intrusion Detection Systems Using a Feature Selection Method on the UNSW-NB15
Dataset. J. Big Data 2020, 7, 105. [CrossRef]

6. Kumar, V.; Sinha, D.; Das, A.K.; Pandey, S.C.; Goswami, R.T. An integrated rule based intrusion detection system: Analysis on
UNSW-NB15 data set and the real time online dataset. Clust. Comput. 2019, 23, 1397–1418. [CrossRef]

7. Mostafaeipour, A.; Jahangard Rafsanjani, A.; Ahmadi, M.; Arockia Dhanraj, J. Investigating the performance of Hadoop and
Spark platforms on machine learning algorithms. J. Supercomput. 2020, 77, 1273–1300. [CrossRef]

8. Chang, D.; Qiao, Z.; Li, L.; Zheng, Q. Parameter Optimization of Spark in Heterogeneous Environment Based on Hyperband.
In Proceedings of the 2021 2nd International Conference on Big Data Economy and Information Management (BDEIM), Sanya,
China, 3–5 December 2021; pp. 204–208. [CrossRef]

9. Gao, J.; Chai, S.; Zhang, B.; Xia, Y. Research on Network Intrusion Detection Based on Incremental Extreme Learning Machine
and Adaptive Principal Component Analysis. Energies 2019, 12, 1223. [CrossRef]

10. Qiao, H.; Blech, J.; Chen, H. A Machine learning based intrusion detection approach for industrial networks. In Proceedings of
the IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020; pp. 265–270.
[CrossRef]

11. Moustafa, N.; Adi, E.; Turnbull, B.; Hu, J. A New Threat Intelligence Scheme for Safeguarding Industry 4.0 Systems. IEEE Access
2018, 6, 32910–32924. [CrossRef]

12. Sheshasaayee, A.; Lakshmi, J.V.N. An insight into tree-based machine learning techniques for big data analytics using Apache
Spark. In Proceedings of the International Conference on Intelligent Computing, Instrumentation and Control Technologies
(ICICICT), Kerala, India, 6–7 July 2017; pp. 1740–1743. [CrossRef]

13. Belouch, M.; El Hadaj, S.; Idhammad, M. Performance evaluation of intrusion detection based on machine learning using Apache
Spark. Procedia Comput. Sci. 2018, 127, 1–6. [CrossRef]

14. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Slay, J. Towards Developing Network Forensic Mechanism for Botnet Activities in
the IoT Based on Machine Learning Techniques. In International Conference on Mobile Networks and Management; Springer: Cham,
Switzerland, 2018. [CrossRef]

15. Moustafa, N.; Slay, J. The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set and
the comparison with the KDD99 data set. Inf. Secur. J. 2016, 25, 18–31. [CrossRef]

16. Bagui, S.; Benson, D. Android Adware Detection Using Machine Learning. Int. J. Cyber Res. Educ. 2021, 3, 1–19. [CrossRef]
17. Simmons, C.; Shiva, S.; Bedi, H.; Dasgupta, D. AVOIDIT: A cyber attack taxonomy. In Proceedings of the 9th Annual Symposium

on Information Assurance (ASIA’14), Albany, NY, USA, 3–4 June 2014; pp. 2–12.
18. Alibaba Cloud. Configure Spark-Submit Parameters—EMR Development Guide | Alibaba Cloud Documentation Center.

Available online: https://www.alibabacloud.com/help/en/doc-detail/28124.html (accessed on 10 January 2020).
19. Spark.apache.org. Overview—Spark 2.4.0 Documentation. 2022. Available online: https://spark.apache.org/docs/2.4.0/

(accessed on 15 March 2022).
20. Spark.apache.org. Spark Release 3.0.0 | Apache Spark. 2022. Available online: https://spark.apache.org/releases/spark-release-

3-0-0.html (accessed on 15 March 2022).
21. NVIDIA. NVIDIA Apache Spark 3.0 For Analytics & ML Data Pipelines. 2022. Available online: https://www.nvidia.com/en-

us/deep-learning-ai/solutions/data-science/apache-spark-3/ (accessed on 15 March 2022).

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://doi.org/10.4018/IJBDIA.287617
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/.
http://doi.org/10.1109/milcis.2015.7348942
http://doi.org/10.1186/s40537-020-00379-6
http://doi.org/10.1007/s10586-019-03008-x
http://doi.org/10.1007/s11227-020-03328-5
http://doi.org/10.1109/BDEIM55082.2021.00048
http://doi.org/10.3390/en12071223
http://doi.org/10.1109/ICIT45562.2020.9067253
http://doi.org/10.1109/ACCESS.2018.2844794
http://doi.org/10.1109/ICICICT1.2017.8342833
http://doi.org/10.1016/j.procs.2018.01.091
http://doi.org/10.1007/978-3-319-90775-8_3
http://doi.org/10.1080/19393555.2015.1125974
http://doi.org/10.4018/IJCRE.2021070101
https://www.alibabacloud.com/help/en/doc-detail/28124.html
https://spark.apache.org/docs/2.4.0/
https://spark.apache.org/releases/spark-release-3-0-0.html
https://spark.apache.org/releases/spark-release-3-0-0.html
https://www.nvidia.com/en-us/deep-learning-ai/solutions/data-science/apache-spark-3/
https://www.nvidia.com/en-us/deep-learning-ai/solutions/data-science/apache-spark-3/

	Introduction
	Related Works
	The UNSW-NB15 Dataset
	Analysis Environment
	Spark
	Principle Component Analysis
	Decision Tree

	Methodology
	Results and Discussion
	Performance Based on Cores and Memory versus Execution Time
	Performance Based on Statistical Metrics

	Conclusions
	Future Works
	References

