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Abstract: Machine learning currently holds a vital position in predicting collision severity. Identifying
factors associated with heightened risks of injury and fatalities aids in enhancing road safety measures
and management. Presently, Thailand faces considerable challenges with respect to road traffic
accidents. These challenges are particularly acute in industrial zones, where they contribute to a
rise in injuries and fatalities. The mixture of heavy traffic, comprising both trucks and non-trucks,
significantly amplifies the risk of accidents. This situation, hence, generates profound concerns for
road safety in Thailand. Consequently, discerning the factors that influence the severity of injuries
and fatalities becomes pivotal for formulating effective road safety policies and measures. This study
is specifically aimed at predicting the factors contributing to the severity of accidents involving truck
and non-truck collisions in industrial zones. It considers a variety of aspects, including roadway
characteristics, underlying assumptions of cause, crash characteristics, and weather conditions.
Due to the fact that accident data is big data with specific characteristics and complexity, with the
employment of machine learning in tandem with the Multi-variate Adaptive Regression Splines
technique, we can make precise predictions to identify the factors influencing the severity of collision
outcomes. The analysis demonstrates that various factors augment the severity of accidents involving
trucks. These include darting in front of a vehicle, head-on collisions, and pedestrian collisions.
Conversely, for non-truck related collisions, the significant factors that heighten severity are tailgating,
running signs/signals, angle collisions, head-on collisions, overtaking collisions, pedestrian collisions,
obstruction collisions, and collisions during overcast conditions. These findings illuminate the
significant factors influencing the severity of accidents involving trucks and non-trucks. Such insights
provide invaluable information for developing targeted road safety measures and policies, thereby
contributing to the mitigation of injuries and fatalities.

Keywords: big data analysis; severity of accidents; trucks; non-trucks; road safety; multivariate
adaptive regression splines; industrial zones; Thailand
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1. Introduction

Road safety remains a critical global concern [1]. As per the Road Safety Situation
Report by Road Safety for All, road accidents annually result in approximately 1.35 million
deaths and 50 million injuries [2]. Disturbingly, 93% of these fatalities occur in low to
middle-income countries. In this context, middle-income developing nations like Thailand
face serious issues concerning road accidents [3]. World Health Organization (WHO) data
reveal Thailand as having the ninth highest number of road accident fatalities globally,
making it the leading country in Asia and the ASEAN regions. The mortality rate stands at
approximately 32.7 deaths per 100,000 population, amounting to an average of 22,491 deaths
annually or roughly 60 deaths per day [4].

Throughout the preceding year, the prevalence of road accidents in Thailand has been
notably concentrated within provinces classified as industrial zones, as visually depicted
in Figure 1. These zones encompass a diverse range of spatial categories, encompassing
industrial areas, industrial estate parks, and comprehensive industrial zones. Delving
further into the accident data for the industrial province regions during the period spanning
2020 to 2022, a striking finding emerges, indicating that injuries and fatalities collectively
averaged a substantial 22.11% [5]. This statistical revelation underscores the inherent
challenges of navigating through complex driving conditions in densely populated areas,
which inherently magnify the inherent risk of accidents. Complex driving conditions in
densely populated areas significantly escalate the risk of accidents. Notably, collisions
involving trucks pose a higher threat than those not involving trucks, largely due to the
trucks’ size and weight impeding swift braking in emergencies [6]. In 2021, data categorized
by vehicle type indicated that truck-related accidents constituted 12.41% of all accidents [7].
When assessing the proportion of injuries and fatalities from truck-involved collisions in
industrial zones, the figures are markedly higher compared to collisions not involving
trucks (Figure 2). Consequently, the rate of injuries and fatalities from truck accidents ranks
second in comparison to other vehicle types [5]. Given this significance, a detailed study of
factors contributing to the severity of truck accident injuries and fatalities is essential for
enhancing road safety.

Figure 1. Road Traffic Accidents frequency in Thailand by Provinces from 2020–2022.
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Figure 2. Injury severity distribution of non-truck and truck-involved crashes in the industrial zones
of Thailand from 2020 to 2022 [5].

To effectively mitigate road accidents, a comprehensive understanding of their causes
and a capability to predict potential accidents are necessary [1]. This understanding en-
ables the implementation of effective preventive strategies and measures. In recent years,
substantial attention has been paid to studying factors that contribute to road accident
severity. Examples include predictions related to accident severity on expressways [8],
urban roads [9], and signalized intersections [10], factors influencing injury severity in car
accidents [11] as well as studies on truck collisions [12–17]. In several studies, the focus has
been on analyzing big data through high-efficiency platforms to analyze accidents, which
enables the discovery of new insights and a deeper understanding of the problem [18–21].
Parameter-free techniques, such as Multivariate Adaptive Regression Splines (MARS), are
gaining traction for their efficacy in discerning factors contributing to accident severity [22]
and in the field of transportation [23]. The Multivariate Adaptive Regression Spline (MARS)
model presents a blend of distinct advantages and disadvantages. On the positive side, its
remarkable capability to unravel intricate nonlinear relationships and detect interactions
among variables makes it an invaluable asset in tackling intricate data patterns that defy
traditional linear regression approaches. MARS sets itself apart from other well-known
parametric linear regression techniques by offering a heightened degree of flexibility in
investigating nonlinear relationships between input and response variables [24]. MARS
operates autonomously in selecting pertinent features and offers insights into the pivotal
variables, thereby enhancing its interpretability. Notably, MARS rigorously explores all
potential levels of interaction, effectively unveiling a comprehensive spectrum of interac-
tions among variables. By thoroughly considering all interactions and functional shapes
inherent in input variables, the approach excels at unveiling latent connections within high-
dimensional datasets and capturing intricate structures apparent within data points [25].
However, there is a slight risk of limited adaptability in feature partitioning due to the
model’s weakness a potential lack of continuity and difficulty in capturing straightforward
relationships like linear, additive or interactions with lower orders [26]. The inherent
complexity of MARS poses challenges, particularly the risk of overfitting, which looms
large when dealing with expansive datasets or an extensive array of variables. Furthermore,
MARS models are notably sensitive to noise in the data, potentially incorporating irrelevant
patterns that can compromise predictive accuracy when applied to previously unseen data
instances (unobserved heterogeneity). While MARS retains a higher level of interpretability
compared to some intricate models, comprehending its behavior becomes progressively
intricate as the model’s complexity grows. The application of Multivariate Adaptive Re-
gression Splines (MARS) has been predominantly used in existing studies for investigating
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driver behavior, notably lane changing acceptance behavior [23], and developing crash
modification factors for freeway interchange areas in urban environments [27]. It has
also been used in predicting rear-end collisions [24,28] and studying the safety impacts
of wider shoulders on rural multilane highways [29]. However, it is crucial to recognize
that there is a notable gap in research specifically examining the factors influencing the
severity of accidents involving trucks in industrial zones, particularly using this machine
learning technique. Omitting areas prone to truck accidents from such study parameters
may result in significant challenges when aiming to effectively reduce the number of severe
injuries and fatalities stemming from these crashes. Therefore, it is vital to expand the
application of MARS to such specific and high-risk contexts. This approach would facilitate
a more comprehensive understanding of road safety, particularly in areas dominated by
industrial traffic.

This research is novel as it prioritizes collisions involving trucks and non-trucks in
industrial zones, utilizing a promising new approach in safety research—the Multivariate
Adaptive Regression Splines (MARS) methodology. The primary objective is to identify
significant factors contributing to injury and fatality severity. The findings will provide
valuable reference data for policymaking and safety measures aimed at effectively reducing
injuries and fatalities. Utilizing accident data from Thailand, a country grappling with
unique road safety challenges, serves as the basis for this investigation.

2. Materials and Methods
2.1. Method

The superiority of parameter-free techniques over parameter-based models stems from
their capability in making accurate predictions and the absence of predefined assumptions.
These techniques are capable of modeling complex relationships, including nonlinearity,
and can simultaneously manage a substantial number of explanatory variables [23]. Con-
sidering these strengths, this study has selected to utilize Multivariate Adaptive Regression
Splines (MARS), a parameter-free technique proposed by Friedman [26]. This model serves
to identify key factors influencing the severity of accidents involving both trucks and non-
trucks. MARS offers critical advantages in accurately capturing and predicting such data.
Moreover, it provides flexibility in exploring nonlinear relationships between independent
and dependent variables [30]. Therefore, it can construct a model that effectively captures
the complex interrelationships among various variables. This approach delivers in-depth
insights into the critical factors influencing the severity of accidents involving trucks and
non-trucks with high precision. The fundamental form of the MARS model is represented
by Equation (1) [29]:

ŷ = exp
(

b0 + ∑M
m=1 bmBm(x)

)
(1)

where
ŷ = predicted response variable,
b0 = coefficient of the constant basis function,
bm = coefficient of the mth basis function,
M = number of nonconstant basis functions, and
Bm(x) = mth basis functions.
The process of curve fitting using the Multivariate Adaptive Regression Splines

(MARS) model encompasses three primary steps [31]. The initial step involves constructing
the model by integrating predictor and response variables and assigning weights to these
variables to derive the MARS model. Subsequently, the pruning phase takes place, address-
ing overfitting issues within the MARS curve fitting model. The final step involves selecting
the most suitable MARS model, which can then be assessed for predictive performance
using the MARS curve fitting technique.

In the first phase of constructing a curve-fitting model with the MARS method, con-
tinuous basic functions are added to the MARS base model. These basic functions could
comprise single splines or multiple splines, each yielding different predictive outcomes. A
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“two-at-a-time” strategy is implemented during this addition, whereby the optimal pair
of spline functions is chosen to enhance the model. Each pair consists of one left function
and one right function, divided by knots as illustrated in Equations (2) and (3) respectively.
Following this, the positions of the knots are iteratively optimized until the location that
maximizes the model’s efficiency is selected. Additionally, after each iteration, the model is
continuously examined and adjusted as necessary. Equations (2) and (3) can be defined
as follows:

[−(x − t)q] =

{
(t − x)q ; x < t
0 ; otherwise

(2)

[+(x − t)q] =

{
(x − t)q ; x > t
0 ; otherwise

(3)

where
x = independent variable
t = constant denoting knot
q = the order of the spline and the subscript indicates the positive part of the argument.
The second stage in this process is the pruning step, which employs a “one-at-a-time”

approach to eliminate basic functions contributing minimally to the model. The pruning
process adheres to the Generalized Cross-Validation (GCV) criterion, in which a lower GCV
value tends to result in a more parsimonious model. Equation (4) below showcases the
GCV criterion:

GVC(M) =
1
N

∑N
i=1(yi − ŷ)2

(1 − C(M)/N)2 (4)

where
N is number of observations
yi is observation i
y is predicted response for observation i
C(M) is complexity penalty function
The final stage involves choosing the best fitting spline-based model utilizing the

Multivariate Adaptive Regression Splines (MARS) method. This decision is based on the
evaluation of the predictive performances of the various spline-based models developed
using the MARS method. Figure 3 illustrates the process of the Multivariate Adaptive
Regression Splines (MARS) model.

Figure 3. The process of Multivariate Adaptive Regression Splines (MARS) model [31].

2.2. Measures for Performance Evaluation

In this study, the accuracy (ACC), sensitivity (SNS), specificity (SP), precision (PRC),
F1-score, and AUC were used as performance metrics for the prediction model of MARS.
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These metrics can be calculated from the confusion matrix, as shown in Figure 4. The
confusion matrix consists of four components, the count of true positives (TP), count of
true negatives (TN), count of false positives (FP) and count of false negatives (FN) [32].
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Figure 4. Confusion Matrix.

When the confusion matrices were obtained, the four classifier performance metrics
can be calculated as [33,34]:

ACC =
TP + TN

TP + TN + FP + FN
× 100 (5)

SNS =
TP

TP + FN
(6)

SP =
TN

TN + FP
(7)

PRC =
TP

TP + FP
(8)

F1 = 2 × SNS × PRC
SNS + PRC

(9)

AUC =
1
2
(SNS + SP) (10)

Among the previously mentioned evaluation criteria, “Accuracy” stands as a compre-
hensive measure of a classifier’s overall effectiveness. “Sensitivity” assesses the classifier’s
ability to correctly identify positive labels, while “Specificity” measures its capacity to
accurately recognize negative labels. The “F-score” provides insight into the relationship
between the actual positive labels in the dataset and those identified by the classifier. To
further enhance the evaluation process, the “AUC” metric, which represents the area un-
der the receiver operating characteristic curve, sheds light on the classifier’s capability to
minimize erroneous classifications.

2.3. Data Collection

This research used the most recent accident data from the 2020–2022 period, obtained
from the Ministry of Transport, with a specific focus on crashes occurring within industrial
zones in Thailand. The study used the accumulated data to generate two models aimed at
identifying the critical factors influencing the severity of collisions involving trucks and
non-trucks. The collected data revealed 7963 truck-involved collision cases, resulting in
797 Severe/Fatal cases. Conversely, there were 8680 non-truck involved collision cases,
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leading to 828 Severe/Fatal cases. Influential factors were categorized into four main
groups: (1) Roadway Characteristics, (2) Cause of Assumption, (3) Crash Characteristics,
and (4) Weather Conditions. The total extracted risk factors for each case were 38 explana-
tories. Each variable was coded 1 = “Yes”, 0 = “Otherwise”. Table A1 summarizes all the
influencing factors, categorized according to the severity levels of injuries, for both trucks
and non-truck vehicles, using two levels of injury severities, namely, PDO/minor injury
and severe/fatal injury [35].

2.4. Model Evaluation

From the results of the analysis of the performance metrics of the MARS predic-
tion model in Table 1, it was found that the non-truck involved crashes model and the
Truck-involved crashes model exhibit high prediction accuracies of 91.05% and 90.32%,
respectively, which is relatively higher as compared to previous studies that utilized the
big data analysis approach [33,36]. The F1-Scores of 0.242 and 0.133 suggest that there
is a trade-off between precision and sensitivity, indicating that the model might not be
performing well in both aspects simultaneously. This phenomenon is likely attributable
to a substantial disparity in the number of instances across classes, causing the model
to exhibit a preference for the majority class (i.e., PDO/minor injury, in this case). This
preference subsequently results in reduced sensitivity and, consequently, a lower F1 score.
However, when measures the model’s ability to distinguish between positive and neg-
ative classes across different probability thresholds, the AUC values of 0.773 and 0.774
suggest that the model has a relatively higher capabilities to distinguish between the two
classes, as compared to the findings of the previous studies [33,37,38]. Hence, the outcomes
derived from the MARS models could be deemed acceptable for the purpose of valid
model interpretation.

Table 1. Goodness of fit for the truck and non-truck crash severity model.

Accuracy Sensitivity Specificity Precision F1-Score AUC

Non-truck involved crashes 91.05% 0.629 0.917 0.150 0.242 0.773
Truck-involved crashes 90.32% 0.641 0.906 0.074 0.133 0.774

3. Result and Discussion
3.1. Roadway Characteristics Factor

Table 2 presents an in-depth analysis of roadway characteristics concerning truck-
involved collisions. The study found that attributes such as Interchange Roads/Ramps
and Expressways significantly contribute to reducing injuries. Interchange Roads/Ramps,
designed to minimize traffic conflicts and enhance junction safety, naturally decrease injury
occurrences. Similarly, Expressways, due to their facilitation of consistent speeds and
uninterrupted traffic flow, mitigate the potential for accidents and subsequent injuries.
Straight roads also contribute to injury reduction, given their flat surface and increased
visibility, which allows for swift driver responses to unforeseen circumstances [39]. These
findings underscore the role of road attributes, including Interchange Roads/Ramps,
Expressways, and Straight Roads, in injury reduction within truck-involved accidents.
Additionally, there is a surprising finding suggesting that the characteristic of a wide
curved road leads to decreased injury occurrences. This contradicts the findings of previous
studies that indicated collisions on curved road segments resulted in increased injuries [40].
Nevertheless, this variable might be contingent on the width of the lanes, The statement
aligns with the findings of previous studies indicating that an increased lane width could
potentially help reduce the risks of collisions and injuries. This is because a wider lane
provides drivers with a greater separation from traffic, promoting a heightened sense of
safety [41,42].
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Table 2. Estimation results for the truck crash severity model.

Model Variable Coefficients

Truck

Intercept 0.290

Roadway Characteristics Factor

Interchange road/Ramps −0.159
Wide curved road −0.162
Expressway −0.138
Straight road −0.045

Cause of Assumption Factor

Darting in front of a vehicle 0.058
Malfunctioning equipment −0.074

Crash Characteristics Factor

Head-on collision 0.227
Pedestrian collision 0.529
Sideswipe collision −0.120
Rear-end collision −0.135
Curved-road rollover −0.233
Straight-road rollover −0.188

Weather Conditions Factor

Rain −0.031

For collisions not involving trucks, as displayed in Table 3, the study discerned
that Straight Roads, due to their extended visibility, were associated with a reduction
in injuries. Previous research has identified road characteristics significantly influencing
accident severity as typically being intersections with conflicting points and shortened
visibility [43,44]. Furthermore, road sections with curves and steep slopes, which inherently
have reduced visibility, were found to elevate injury rates [45,46].

Table 3. Estimation results for the non-truck crash severity model.

Model Variable Coefficients

Non-Truck

Intercept 0.135

Roadway Characteristics Factor

Straight road −0.060

Cause of Assumption Factor

Tailgating. 0.369
Running signs/signals 0.310
Obstruction −0.172

Crash Characteristics Factor

Angle collision 0.246
Head-on collision 0.386
Overtaking collision 0.358
Pedestrian collision 0.598
Obstruction Collision 0.126

Weather Conditions Factor

Rain −0.031
Overcast 0.414

3.2. Cause of Assumption Factor

Table 2 displays a comprehensive analysis of factors contributing to truck-involved
collisions. The study found that attribute malfunctioning equipment, which traditionally
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exacerbates injury rates, had a decreasing effect on injuries within this specific context.
High traffic congestion, impeding high-speed driving, combined with defective vehicle
equipment, could lead to more cautious driving and prompt vehicle management, thus
reducing the likelihood of injuries. Conversely, collisions involving vehicles darting in
front of trucks, which allow for short braking distances, were found to increase injury rates.
This finding aligns with earlier studies showing that sudden lane changes often result in
more severe injuries and fatalities in truck-involved collisions [47,48].

In accidents unrelated to trucks (Table 3), the presence of road obstacles or barriers
helps reduce the impact of injuries, consistent with previous research. Obstructions or
roadblocks, which typically serve as safety measures for traffic regulation, play a role in
decreasing injury consequences [49,50]. However, tailgating as a cause of collisions and
running signs and signals both increased injury rates. Previous studies have identified
the violation of traffic signals and signs as significant contributors to accidents [48,51,52].
Moreover, closely following another vehicle with a short braking distance was found to be
a critical factor impacting injuries [53].

3.3. Crash Characteristics Factor

Table 2 presents an analysis of crash characteristics in truck-involved collisions. Rear-
end collisions were found to reduce injury rates, presumably because these accidents often
occur in areas where the speed differential between vehicles is minimal [54]. The character-
istics of rollover collisions, whether on straight or curved roads also had a decreasing effect
on injuries. The nature of rollovers generally leads to avoidance behavior or less forceful
impacts with other vehicles, thus reducing the number of injuries. Moreover, sideswipe
collisions also result in reduced injuries. This aligns with the findings of a previous study
which revealed that collisions within the same direction tend to involve less severe impacts,
particularly for large trucks colliding with each other [55]. It is possible that the skill of
truck drivers in controlling the steering wheel in the same direction contributes to miti-
gating the severity of injuries in lateral collision scenarios. Conversely, head-on collisions
amplified the impact on injuries, a finding consistent with studies on truck collision char-
acteristics [56,57]. The substantial force generated when trucks collide head-on or at an
angle with other vehicles escalates injury severity. Likewise, collisions with pedestrians
were found to increase the impact on injuries [6,58]. Developed countries often have safer
pedestrian infrastructure, while developing countries like Thailand grapple with safety
issues, such as poorly maintained pedestrian paths and the lack of protective equipment.
This lack of protection, combined with the direct collision between trucks and pedestrians,
markedly raises injury severity.

For collisions not involving trucks (Table 3), angle collisions resulted in an increased
impact on injuries. These accidents occur when vehicles collide at a perpendicular angle,
as observed in sideswipe or T-bone collisions. This finding is congruent with various
studies that found sideswipe collisions, particularly in the same direction, tended to
cause severe injuries [54]. Head-on collisions also had a more substantial impact on
injuries compared to collisions in the same direction, corroborating previous research
findings [59,60]. Furthermore, overtaking maneuvers were linked to increased injury
impact. High acceleration rates during these maneuvers can lead to poor situational
awareness and an increased probability of erroneous driver decisions, thereby increasing
the likelihood of injuries [61,62]. Pedestrian collisions lead to an increase in injuries. This
finding is consistent with previous research that found pedestrians without protective
equipment in pedestrian areas had a high tendency to suffer severe injuries and fatalities
when directly hit by vehicles [63,64]. Important studies have also revealed that pedestrian
accidents primarily occur in areas near schools and industrial zones [65]. Furthermore,
obstruction collisions on roads result in an increased likelihood of injuries, especially when
colliding with concrete barriers. This is supported by multiple prior studies. Obstructions
have a higher structural rigidity compared to vehicles, resulting in less energy absorption
during the collision. As a result, vehicles sustain greater damage from the impact [66–68].
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Therefore, direct collisions with obstructions have an elevated propensity for increased
injuries [39].

3.4. Weather Conditions Factor

Table 2 presents an analysis of weather factors in truck-involved collisions revealing
that rainy conditions have a diminishing effect on injury rates, aligning with the study
conducted by Li et al. (2020). Nevertheless, this result contradicts several previous studies
that found an increased risk of injuries under adverse weather conditions, especially during
rainfall [42]. It is hypothesized that decreased visibility and slippery road conditions during
rainy weather contribute to decreased situational awareness and a need for increased
driving caution and a decrease in driving speed resulting in reduced collision severity.

The analysis of weather factors influencing non-truck collisions revealed that rainy
conditions have a diminishing effect on injury rates (Table 3). This can be attributed to the
reduced visibility and slippery road conditions during rainfall, which tend to induce more
cautious driving and lower vehicle speeds. Therefore, rainy weather indirectly contributes
to a decrease in collision severity. In contrast, collisions occurring under overcast conditions
were found to escalate the severity of collisions, as indicated by the coefficient value of 0.414.
This aligns with existing literature which suggests that the decreased visibility associated
with overcast conditions can exacerbate the severity of collisions [39,54,69–71].

4. Conclusions

Given the high fatality rate of truck-related accidents in Thailand’s industrial zones,
where they rank second when compared to other vehicles, it is essential to identify the
factors contributing to the severity of injuries and fatalities in both truck and non-truck
related crashes. This understanding is crucial for developing effective road safety policies
and measures.

Our current study uses accident data from Thailand between 2020 and 2022, com-
prising large and complex datasets. We applied machine learning in conjunction with
the Multivariate Adaptive Regression Splines (MARS) technique. This method identifies
influential factors affecting the severity of injuries and fatalities in both truck and non-
truck related accidents without relying on predefined parameters. These factors encompass
roadway characteristics, cause of assumption, crash characteristics, and weather conditions.

The analysis considers two levels of injury severity namely, PDO/minor injury and
severe/fatal injury. Upon examining truck-related accidents within Thailand’s industrial
zones, we discovered that darting in front of a vehicle, head-on collisions, and pedestrian
collisions all enhance the severity of injuries. Conversely, non-truck related crashes in these
industrial zones revealed that tailgating, running signs/signals, angle collisions, head-on
collisions, overtaking collisions, pedestrian collisions, obstruction collisions, and collisions
during overcast conditions also increase injury severity.

A comparison of the two models highlighted that head-on collisions and pedestrian
collisions significantly increase injury severity in both truck and non-truck accidents.
However, the influencing factors differ between accidents involving trucks and those not
involving trucks. Hence, it is vital that road safety policies and measures are appropriately
tailored without neglecting any specific factor to improve road safety in Thailand effectively.

Following our statistical analysis, we proposed several road safety policies and mea-
sures aimed at reducing the severity of injuries and fatalities in both truck and non-truck
related accidents. Our recommendations are informed by crucial variables identified within
our models (Table 4), and the key guidelines are as follows:
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Table 4. Appropriate strategies based on such findings.

Variables Truck Non-Truck Guidelines

Roadway Characteristics Factor

Interchange road/Ramps (−) Designing the characteristics of an interchange road/ramp for intersections
with conflicts and high accident rates

Wide curved road (−) Increasing the number of lanes for curved sections of the road where there
is a higher risk

Expressway (−) Designing an expressway-like road layout to shorten travel distances and
reduce the risk of accidents

Straight road (−) (−) Designing a straight road layout to increase visibility and reduce points of
risk that lead to accidents

Cause of Assumption Factor

Darting in front of a vehicle (+)

(1) Install advanced V2V (Vehicle to Vehicle) devices within vehicles to
provide rear-end collision warnings, ensuring a safe following distance.
(2) Configure lower speed limits to reduce the severity of injuries in
emergency situations.

Tailgating. (+)

(1) Install advanced V2V (Vehicle to Vehicle) devices within vehicles to
provide rear-end collision warnings, ensuring a safe following distance.
(2) Install road markings to guide drivers and help them maintain a safe
following distance.

Malfunctioning equipment (−) Promoting consistent safe driving behavior in emergency situations.

Running signs/signals (+) Installing cameras to monitor red-light signals at all intersections to mitigate
unsafe driving behavior.

Obstruction (−) Installing obstruction devices at high-risk points, such as curved or
sharp-angle sections.

Crash Characteristics Factor

Angle collision (+) (1) Promote awareness among drivers about risky scenarios that can lead to
increased injuries, such as angled collisions and head-on collisions.
(2) Advocate for the use of seatbelts for both drivers and passengers to
minimize the severity of injuries.
(3) Install Automatic Emergency Braking (AEB) systems to reduce the
severity of injuries by automatically applying brakes in
emergency situations.
(4) Install airbag systems within vehicles to mitigate the severity of injuries.

Head-on collision (+) (+)

Sideswipe collision (−) Promote awareness among drivers about risky scenarios that can lead to
decreased injuries, such as sideswipe collisions and rear-end collisions.

Rear-end collision (−)

Overtaking collision (+) Design roads to enhance safety during overtaking maneuvers and mitigate
the risk of collisions during passing.

Pedestrian collision (+) (+) (1) Install safety devices for pedestrians.
(2) Configure lower speed limits in situations involving pedestrians.

Obstruction Collision (+)
Install impact-absorbing barriers designed to reduce the severity of
accidents without causing significant damage to vehicles, such as barriers
made from Polyethylene plastic.

Curved-road rollover (−) Promoting skill training for truck drivers to effectively control the steering
wheel in the same direction during emergency situations can significantly
reduce the severity of injuries resulting from accidents.Straight-road rollover (−)

Weather Conditions Factor

Rain (−) (−) Promoting responsible driving behavior in continuous rainy
weather conditions.

Overcast (+) Install roadside conveniences or additional lighting systems to enhance
road safety.

+: Indicates an increase in the estimated likelihood for severe injuries. −: Indicates a decrease in the estimated
likelihood for severe injuries.

Policies and safety measures for trucks: First, road design should focus on enhancing
traffic safety. This could involve designing intersections or upgrading them into interchange
roads/ramps to minimize conflict points at junctions. especially at T-junctions, which are
commonly implicated in severe injury or fatality-involved accidents with trucks [72–75].
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Because of the reasons mentioned, it is critical to design intersections with a minimal
number of conflict points and align these with typical driver behavior to mitigate accident
risks. Furthermore, this approach includes designing an expressway-like road layout to
shorten travel distances and reduce the risk of accidents, designing a straight road layout
to increase visibility and reduce points of risk that lead to accidents and increasing the
number of lanes for curved sections of the road where there is a higher risk. Such measures
coincide with this study’s findings that these road characteristics can influence a reduction
in injury severity.

Enforcing speed limits for trucks is an approach intended to reduce the risk of accidents
caused by darting in front of a vehicle and pedestrian collisions, all of which heighten the
likelihood of injuries. This includes installing advanced V2V (Vehicle to Vehicle) devices
within vehicles to provide rear-end collision warnings, ensuring a safe following distance.

Promoting educational policies for truck drivers to minimize collision risk should en-
compass training on diverse collision types, such as angle collision, rear-end, single-vehicle,
and head-on collisions [54]. Special emphasis should be placed on head-on collisions,
given their significant contribution to the severity of accidents. Furthermore, this approach
includes promoting skill training for truck drivers to effectively control the steering wheel
in the same direction during emergency situations and can significantly reduce the severity
of injuries. The study suggests that the Department of Land Transport integrate topics on
collision types into driver’s license training. By gaining a comprehensive understanding
of the causes and consequences of different collision types, truck drivers can cultivate
increased awareness and promote safer driving practices.

Installing safety devices for both drivers and road users should encompass provisions
for pedestrians, such as Pedestrian Crosswalks, Raised Crosswalks, and pedestrian-specific
traffic signals. The aim is to stimulate driver awareness, mitigate injuries resulting from
unforeseen accidents, and bolster overall road safety.

Lastly, promoting consistent safe driving behavior in emergency situations is crucial
(Malfunctioning equipment), as it can significantly reduce the severity of injuries. Encour-
aging drivers to remain composed, activate hazard lights, and safely navigate their vehicles
to the side of the road or a suitable stopping point is essential.

Policy and safety measures for general vehicles: Specifically, designing roads with a
focus on traffic safety should give priority to creating straight road sections. These sections
offer extended visibility and have been linked to a decrease in the occurrence of injuries.
This includes designing roads to reduce the severity of overtaking collisions, another crucial
consideration. Overtaking collisions primarily occur on roads where overtaking is permit-
ted, particularly in areas without designated passing zones [61]. Therefore, integrating
knowledge of safe passing zones into road design is an important strategy for improving
overall roadway safety and effectiveness.

Installing safety devices for both drivers and road users is important. This includes
installing safety devices for pedestrians. Implementing impact-absorbing barriers designed
to mitigate accident severity without inflicting significant vehicular damage, including
barriers crafted from polyethylene plastic, is also key. Additionally, the installation of red-
light cameras at all intersections is an approach that should be strongly considered to reduce
the risk of collisions resulting from red light running and traffic signal violations. These
violations are notable contributors to increased injury risks. Red-light cameras, as a crucial
component of the transportation infrastructure, facilitate more effortless enforcement of
traffic laws. This approach aligns with studies conducted in the United States, which found
that the implementation of red-light cameras can reduce injuries resulting from signal
violations by up to 29% [76]. Installing advanced V2V (Vehicle to Vehicle) devices within
vehicles to provide rear-end collision warnings from tailgating is another crucial approach.
This includes installing road markings to guide drivers and help them maintain a safe
following distance is equally important. Furthermore, installing obstruction devices at
high-risk points, such as curved or sharp-angle sections, has been shown by the study’s
findings to effectively reduce injuries. As a final guideline for installing safety devices for
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both drivers and road users, focusing on reducing the risk of collisions during dark and
low-light conditions should entail conducting assessments of areas at high risk for accidents.
Following these assessments, the installation of enhanced visibility devices for drivers,
such as streetlights, should be prioritized. However, this initiative must be executed within
the constraints of the available budget and timeframe. The study recommends prioritizing
the installation of streetlights in areas with low-light conditions, especially at high risk for
accidents, as these factors significantly increase the likelihood of injuries and fatalities.

Promoting educational policies for drivers to minimize collision risk should encompass
training in various collision types, including angle collisions, rear-end collisions, single-
vehicle collisions, and head-on collisions [54]. For general vehicle drivers, special emphasis
should be placed on preventing head-on collisions and angle collisions, as they have a
significant impact on the severity of accidents. Lastly, promoting responsible driving
behavior in continuous rainy weather conditions is essential; such proactive measures not
only decrease the likelihood of accidents but also play a crucial role in minimizing the
severity of injuries.

5. Limitations and Further Research

This study, while providing valuable insights, is not devoid of limitations. As it primar-
ily concentrates on industrial areas, the enforcement and implementation of the proposed
safety policies and measures must be carefully executed, particularly when extrapolating
them to regions outside of the industrial zone. Additionally, due to data constraints, the
study might not encompass all pertinent factors. Thus, further considerations are needed
to account for other potentially influential variables. These may include driver demo-
graphics such as gender and age, roadway attributes like the number of lanes, and traffic
characteristics, such as volume, etc.
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Appendix A

Table A1. Data description of the truck and non-truck crash severity model.

Variables

Truck Non-Truck

Severe/Fatal PDO/Minor Severe/Fatal PDO/Minor

Freq % Freq % Freq % Freq %

Roadway Characteristics Factor

(1) Interchange road/Ramps (1 If crash occurred
on interchange road/ramps, 0 Otherwise) 1 1.28 77 98.72 0 0.00 0 0.00

(2) Access road (1 if crash occurred on access
road, 0 Otherwise) 0 0.00 0 0.00 6 27.27 16 72.73

(3) Wide curved road (1 if crash occurred on
wide curved road, 0 Otherwise) 0 0.00 35 100.00 0 0.00 0 0.00

(4) Curved road (1 if crash occurred on curved
road, 0 Otherwise) 33 10.68 276 89.32 60 15.15 336 84.85

(5) Curved slope road (1 if crash occurred on
curved slope road, 0 Otherwise) 23 13.53 147 86.47 21 15.79 112 84.21

(6) Sharp curve road (1 if crash occurred on
sharp curve road, 0 Otherwise) 0 0.00 0 0.00 4 28.57 10 71.43

(7) Expressway (1 if crash occurred on
expressway, 0 Otherwise) 9 2.43 362 97.57 0 0.00 0 0.00

(8) Straight road (1 if crash occurred on straight
road, 0 Otherwise) 596 9.69 5554 90.31 716 8.91 7319 91.09

(9) Gradient road (1 If crash occurred on
gradient road, 0 Otherwise) 24 21.05 90 78.95 7 15.22 39 84.78

(10) T-junction (1 if crash occurred at the
T-junction, 0 Otherwise) 3 60.00 2 40.00 14 41.18 20 58.82

(11) Y-junction (1 if crash occurred on Y-junction,
0 Otherwise) 0 0.00 11 100.00 0 0.00 0 0.00

(12) 4-leg intersection (1 if crash occurred on
4-leg intersection, 0 Otherwise) 5 35.71 9 64.29 0 0.00 0 0.00

Cause of Assumption Factor

(13) DUI (1 if driver was under influence of
alcohol, 0 Otherwise) 8 23.53 26 76.47 15 23.81 48 76.19

(14) Illegal overtaking (1 if driver made an illegal
overtaking, 0 Otherwise) 0 0.00 0 0.00 6 24.00 19 76.00

(15) Unfamiliar route (1 if driver was not
familiar with the route, 0 Otherwise) 0 0.00 0 0.00 1 7.69 12 92.31

(16) Exceeding the speed limit (1 if driver
exceeded the speed limit, 0 Otherwise) 663 10.20 5837 89.80 681 8.92 6952 91.08

(17) Tailgating (1 if driver tailgated the vehicle in
front, 0 Otherwise) 0 0.00 0 0.00 9 56.25 7 43.75

(18) Wrong direction (1 if driver drove in the
wrong direction/against the traffic, 0 Otherwise) 0 0.00 0 0.00 7 41.18 10 58.82

(19) Darting in front of a vehicle (1 if cause was
due to darting in front of a vehicle, 0 Otherwise) 58 22.22 203 77.78 59 14.43 350 85.57

(20) Overloading (1 if the vehicle was
overloaded, 0 Otherwise) 1 4.35 22 95.65 0 0.00 0 0.00

(21) Running signs/signals (1 if driver
conducted a running signs/signal, 0 Otherwise) 22 32.35 46 67.65 21 50.00 21 50.00
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Table A1. Cont.

Variables

Truck Non-Truck

Severe/Fatal PDO/Minor Severe/Fatal PDO/Minor

Freq % Freq % Freq % Freq %

(22) Obstruction (1 if obstruction on the road,
0 Otherwise) 0 0.00 0 0.00 0 0.00 34 100.00

(23) Doze Off (1 if driver dozed off, 0 Otherwise) 23 9.20 227 90.80 21 10.50 179 89.50

(24) Malfunctioning equipment (1 if the vehicle
had malfunctioning equipment, 0 Otherwise) 9 2.81 311 97.19 7 3.15 215 96.85

Crash Characteristics Factor

(25) Angle collision (1 if crash type was angle
collision, 0 Otherwise) 9 25.71 26 74.29 9 45.00 11 55.00

(26) Head-on collision (1 if crash type was
head-on collision, 0 Otherwise) 84 48.55 89 51.45 63 48.46 67 51.54

(27) Overtaking collision (1 if crash type was
collision while overtaking, 0 Otherwise) 0 0.00 0 0.00 7 50.00 7 50.00

(28) Pedestrian collision (1 if crash involved
pedestrian, 0 Otherwise) 24 80.00 6 20.00 77 68.14 36 31.86

(29) Sideswipe collision (1 if crash type was
sideswipe collision, 0 Otherwise) 4 4.26 90 95.74 0 0.00 0 0.00

(30) Rear-end collision (1if crash type was
rear-end collision, 0 Otherwise) 412 10.50 3511 89.50 278 7.32 3522 92.68

(31) Obstruction Collision (1 if the crash was
against the obstruction on the road, 0 0therwise) 46 25.56 134 74.44 46 23.23 152 76.77

(32) Curved-road rollover (1 if crash type was
rollover on a curved road, 0 Otherwise) 20 4.58 417 95.42 57 12.93 384 87.07

(33) Straight-road rollover (1 if crash type was
rollover on a straight road, 0 Otherwise) 138 4.86 2704 95.14 291 7.34 3673 92.66

Weather Conditions Factor

(34) Fine weather (1 if crash occurred under fine
weather, 0 Otherwise) 716 10.70 5973 89.30 751 9.79 6923 90.21

(35) Rain (1 if crash occurred during rain,
0 Otherwise) 79 6.25 1186 93.75 58 5.99 911 94.01

(36) Storm/flooding (1 if crash occurred under
Storm/flooding, 0 Otherwise) 0 0.00 0 0.00 0 0.00 2 100.00

(37) Fog/smoke/dust (1 if crash occurred during
fog, smoke or dust, 0 Otherwise) 0 0.00 0 0.00 0 0.00 3 100.00

(38) Overcast (1 if crash occurred during
overcast weather, 0 Otherwise) 0 0.00 0 0.00 16 69.57 7 30.43
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