
Citation: Alshammari, H.; El-Sayed,

A.; Elleithy, K. AI-Generated Text

Detector for Arabic Language Using

Encoder-Based Transformer

Architecture. Big Data Cogn. Comput.

2024, 8, 32. https://doi.org/10.3390/

bdcc8030032

Academic Editor: Min Chen

Received: 4 February 2024

Revised: 11 March 2024

Accepted: 13 March 2024

Published: 18 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

AI-Generated Text Detector for Arabic Language Using
Encoder-Based Transformer Architecture
Hamed Alshammari 1, Ahmed El-Sayed 2 and Khaled Elleithy 1,*

1 Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA;
halsh@my.bridgeport.edu

2 Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT 06604, USA;
aelsayed@bridgeport.edu

* Correspondence: elleithy@bridgeport.edu

Abstract: The effectiveness of existing AI detectors is notably hampered when processing Arabic
texts. This study introduces a novel AI text classifier designed specifically for Arabic, tackling the
distinct challenges inherent in processing this language. A particular focus is placed on accurately
recognizing human-written texts (HWTs), an area where existing AI detectors have demonstrated
significant limitations. To achieve this goal, this paper utilized and fine-tuned two Transformer-
based models, AraELECTRA and XLM-R, by training them on two distinct datasets: a large dataset
comprising 43,958 examples and a custom dataset with 3078 examples that contain HWT and AI-
generated texts (AIGTs) from various sources, including ChatGPT 3.5, ChatGPT-4, and BARD. The
proposed architecture is adaptable to any language, but this work evaluates these models’ efficiency
in recognizing HWTs versus AIGTs in Arabic as an example of Semitic languages. The performance of
the proposed models has been compared against the two prominent existing AI detectors, GPTZero
and OpenAI Text Classifier, particularly on the AIRABIC benchmark dataset. The results reveal that
the proposed classifiers outperform both GPTZero and OpenAI Text Classifier with 81% accuracy
compared to 63% and 50% for GPTZero and OpenAI Text Classifier, respectively. Furthermore,
integrating a Dediacritization Layer prior to the classification model demonstrated a significant
enhancement in the detection accuracy of both HWTs and AIGTs. This Dediacritization step markedly
improved the classification accuracy, elevating it from 81% to as high as 99% and, in some instances,
even achieving 100%.

Keywords: AI detector; transformer; BARD; AI-generated; AI detection; AI content; synthetic texts;
ChatGPT; NLP; AIRABIC

1. Introduction
1.1. Arabic Language Challenges

The Arabic language, a linguistic tapestry rich in history and cultural significance,
is one of the most widely spoken languages globally, boasting over 420 million speakers
with it as their first language [1,2]. It is the official language in more than 22 countries,
underscoring its geopolitical importance [3]. Additionally, Arabic is one of the six official
languages of the United Nations (UN), highlighting its essential role in international
diplomacy and communication [4]. The Arabic language is one of the Semitic languages
that face many Natural Language Processing (NLP) challenges, including the language’s
morphological complexity, a variety of dialects, a writing style from right to left, the
existence or absence of diacritics, and orthographic inconsistencies. Many studies have
discussed these challenges, such as [5–8]. Our focus in this paper is the challenge of the
existence of diacritics. In the following section, we will address this challenge in detail.

Big Data Cogn. Comput. 2024, 8, 32. https://doi.org/10.3390/bdcc8030032 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc8030032
https://doi.org/10.3390/bdcc8030032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0003-4746-9095
https://orcid.org/0000-0001-9239-5035
https://doi.org/10.3390/bdcc8030032
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc8030032?type=check_update&version=1

Big Data Cogn. Comput. 2024, 8, 32 2 of 26

1.2. Arabic Diacritization Marks’ Background

Arabic diacritization marks, also known as Tashkeel or Harakat, play an essential role

in the Arabic language. These marks are small signs or symbols (� � @� � �
�
@ �

�
'�

�
'�

�
'�) written

above or below the letters to indicate the correct pronunciation, with a particular emphasis
on the articulation of short vowels. The importance of these diacritization marks becomes
particularly evident in the context of semantic differentiation. For example, a single Arabic
word with three letters, such as ‘ÕÎ«’, can yield many meanings, contingent upon the specific

diacritics employed. Therefore, applying varying diacritics to ‘ÕÎ«’ elucidates its semantic

versatility. For instance, ‘�ÕÎ�
�
«’ (pronounced ‘ulim’), translates to ‘understood (adj)’; ‘�Õ

�
Î
�
«’

(pronounced ‘alam’), means a ‘flag (n)’; ‘�Õ
�
Î
�
«’ (pronounced ‘allama’), means ‘taught (v)’; ‘�Õ

�
Î«� ’

(pronounced ‘ilm’), means ‘knowledge’; and so on. Thus, the essential role of diacritization
in Arabic lies in its ability to clarify meanings and ensure clear communication, making it
easier for speakers and readers to understand each other.

1.3. Challenges for AI Detectors in Processing Arabic Texts with Diacritics

This study [5] underscores that one of the primary sources of ambiguity in Arabic NLP
(ANLP) systems is attributed to the absence of diacritic marks. However, their existence
in human-written text (HWT) makes noise in the AI detector and the text is classified as
AI-generated text (AIGT). This was analyzed in depth when GPTZero [9] and OpenAI Text
Classifier [10] were evaluated against AIRABIC (https://github.com/Hamed1Hamed/
AIRABIC) (accessed on 18 November 2023) [11], which is an Arabic benchmark dataset
for assessing the AI detectors. The study results provide insights into the performance
of GPTZero and OpenAI Text Classifier in classifying a set of 500 HWT examples. The
findings indicate a significant decrease in GPTZero’s classification accuracy, particularly
when handling texts containing diacritics. In that context, it could correctly classify only
31 examples with diacritics, in contrast to a slightly higher accuracy with 119 examples that
lacked diacritics. On the other hand, the OpenAI Text Classifier demonstrated a noticeable
bias when processing Arabic text, categorizing all such texts uniformly as AIGT. This
outcome suggests a potential improvement in the classifier’s ability to distinguish between
HWTs and AIGTs, especially in Arabic texts with their unique linguistic features.

1.4. Large Language Models

Large Language Models (LLMs) have demonstrated impressive skills in producing
smooth, well-structured, and persuasive text in recent years. Earlier models, including
GPT-3, introduced in 2020 [12], and PaLM, in 2022 [13], showcased the capabilities of LLMs
in various NLP tasks. By the end of November 2022, ChatGPT [14], a variant of the GPT-3
model [12], emerged as a pivotal and often debated milestone in LLM evolution [15]. How-
ever, ChatGPT is not only an expansion of existing models. It has been distinctly refined
and enhanced through a process involving supervised and reinforcement learning methods
informed by human feedback [16,17]. Representing a groundbreaking advancement in
NLP, it has become the first model to be embraced beyond NLP research, and it is adept
at producing text closely resembling human writing [18]. ChatGPT’s ability to mimic
human writing, further enhanced in its latest version based on the GPT-4 Model, which
arrived in March 2023, has been a distinguishing feature. Following ChatGPT, subsequent
generative models like BARD [19] have also attracted attention for their ability to produce
content that mimics human-like expressions with their ability to access the internet utilizing
Google searches.

Before ChatGPT emerged, extensive academic research was conducted on the eth-
ical risks associated with LLMs, particularly those involved in natural language gener-
ation (NLG). These investigations delved into potential societal impacts, highlighting
concerns ranging from the confident distribution of inaccurate information to the creation

https://github.com/Hamed1Hamed/AIRABIC
https://github.com/Hamed1Hamed/AIRABIC

Big Data Cogn. Comput. 2024, 8, 32 3 of 26

of widespread false news and information [20,21]. With the advent of ChatGPT, concerns
have increased, as this study highlighted its risks [22].

These technological advancements in generative language models (GLMs) have un-
intentionally opened doors to various unethical applications across multiple domains. In
the education field, one of the most critical concerns is plagiarism, a concern extensively
examined in the study [23]. Similarly, in the field of scientific research, there has been a
notable trend of utilizing ChatGPT for crafting abstracts, a practice critically analyzed in
the study [24]. The implications also extend to the medical sector, where the misuse of
these technologies is explored in depth in the study [25]. Considering these instances, there
is an increasing focus on identifying AIGT. This focus on detection aligns with a broader
movement toward the ethical and suitable application of ChatGPT and other GLMs [26–28].

An increasing number of businesses are attempting to tackle this issue in response
to the potential misuse of ChatGPT and other GLMs. The latest research study by [16]
summarizes various commercial and accessible online tools available for this purpose.

However, it is noteworthy that most evaluations conducted thus far have predomi-
nantly focused on languages rooted in English or Latin-driven scripts. To the best of our
knowledge, no AI detector has been trained on HWT and AIGT from ChatGPT in Arabic to
the date of writing this paper. Therefore, the AIRABIC benchmark dataset reveals the lack
of existing AI detectors to process and recognize Arabic HWT.

Motivated by the need for an AI detector that works well with the Arabic language,
this paper introduces a novel Arabic AI classifier. While our architecture is versatile and can
be adapted for datasets in various languages, we specifically targeted the Arabic language
in this study. The primary objective of this research is to pioneer the development of a
ChatGPT detector tailored explicitly to the Arabic language and to evaluate its effectiveness
against the AIRABIC benchmark dataset rigorously. To achieve our objective, our method-
ology encompasses building classifiers upon two datasets. The first dataset, referred to as
the large dataset, comprises 43,958 examples. The second, known as the custom dataset,
contains 3078 examples. Therefore, our contribution to this paper can be summarized
as follows:

• Development of Two Arabic AI Classifier Models: We trained these models on a
dataset comprising 35,166 examples, validated them on 4369 examples, and tested
them on another set of 4369 examples. These examples include HWTs and AIGTs
derived from the ChatGPT 3.5 Turbo model.

• Evaluation Using a Custom-Crafted Dataset: The models were further evaluated on
our handcrafted dataset, which includes 2466 training examples, 306 validation exam-
ples, and 306 testing examples. This dataset encompasses a diverse range of HWTs
from various sources and AIGTs generated by ChatGPT 3.5, ChatGPT 4, and BARD.

• Benchmarking Against AIRABIC Dataset: We employed the AIRABIC benchmark
dataset to assess our models’ robustness and efficacy. This allowed us to measure our
models’ performance and compare it with two prominent AI detectors, GPTZero and
the OpenAI Text Classifier.

• Incorporation of the Dediacritization Layer: We incorporated a Dediacritization Layer
in our architecture, aiming to enhance the classification performance of the proposed
models, particularly for texts with diacritics.

• We conducted a detailed comparative analysis of the used pre-trained models empha-
sizing their performance across various datasets and under different hyperparameter
configurations, thereby offering critical insights for enhancing language-specific AI
text classifiers.

The remainder of this paper is structured as follows:

➢ Section 2, Related Works, delves into the evolution of AIGT detection, focusing on
developments before and after the emergence of ChatGPT. This section sets the stage
for our research by highlighting the progress and remaining gaps in the field.

➢ Section 3, Methodology, details the comprehensive approach taken in our study,
including data collection and the architecture of our detector. Special attention is paid

Big Data Cogn. Comput. 2024, 8, 32 4 of 26

to the fine-tuning process, the innovative Dediacritization Layer, and the design of
our evaluation pipeline. Additionally, this section outlines the experimental protocol
and hyperparameter settings, emphasizing scheduler and learning rate optimizations
to underscore the rigor of our research design.

➢ Section 4, Results, offers an in-depth comparative analysis of our models against
established benchmarks such as GPTZero and OpenAI Text Classifier. Through a
series of tests on the AIRABIC benchmark dataset, we demonstrate the effectiveness
of our fine-tuned AraELECTRA and XLM-R models. This section highlights the
advancements our research contributes to the field and presents evidence of our
models’ superior performance and efficiency.

➢ Section 5, Discussion, provides insights gleaned from our findings, with an emphasis
on the impact of dataset size and content variation. It also provides a comparative
performance analysis of the XLM-R versus AraELECTRA models. The significant
role of the Dediacritization Layer in enhancing classifier performance is examined in
detail, showcasing the methodological innovations at the heart of our study.

➢ Section 6, Conclusion and Future Work, summarizes the contributions of our research,
outlines the potential for future work, and suggests directions for further research
to build on the strong foundation laid by our study, aiming to inspire continued
advancements in the field of Arabic AI detection.

2. Related Works
2.1. Detection of AIGT Prior to ChatGPT

In mid-2019, a significant development in this field was the introduction of the
GROVER model [29], capable of generating and detecting fake news. GROVER had
access to 5000 of its own generated articles and unlimited real news content, boasting a
92% accuracy rate in detection, surpassing other deep pre-trained models such as [30,31].
In June 2019, the GLTR (Giant Language Model Test Room) tool [32] was released. As
an open-source resource, GLTR uses various baseline statistical methods to detect texts
generated by models like GPT-2, identifying generation artifacts from different sampling
methods used in language models. Later in the same year, OpenAI rolled out a specialized
GPT-2 detector [33], fine-tuning the Roberta model [34].

In 2020, a novel model was developed to generate and detect fake online reviews [35].
This innovative approach combined GPT-2’s review generation capabilities with a fine-
tuned BERT model [31] as a classifier for the detection phase. In the same year, the authors
of [36] explored the challenge of distinguishing between texts written by humans and
various neural network-based language models. They focused on three specific author-
ship attribution problems: determining if two texts were generated by the same method,
identifying whether a human or a machine wrote a text, and identifying the specific neural
method behind a given text. Their study involved empirical experiments with texts written
by humans and those generated by eight different models, including CTRL [37], GPT [30],
GPT-2, GROVER, XLM [38], XLNET [39], PPLM [40], and FAIR [41]. The study revealed
that while most text generators still produce content distinguishable from HWT, some
models, like GPT2, GROVER, and FAIR, create higher-quality outputs that more frequently
confuse machine classifiers.

In 2021, a detector was developed to identify deepfake tweets as part of the ‘Tweep-
Fake’ project [42,43]. This work involved creating the first real dataset of deepfake tweets
posted on Twitter. The research team collected and analyzed tweets from 23 bots that repli-
cated 17 real user accounts employing a range of content creation methods, including GPT-2,
Markov Chains, RNN, and LSTM. The study used and fine-tuned several pre-trained lan-
guage models for detection, such as BERT, DistilBERT [30], RoBERTa, and XLNet [26]. They
encompassed an evaluation of 13 advanced deepfake text detection methods to highlight
the specific challenges presented by TweepFake and to establish a reliable foundation of
techniques for detection. Another study in 2021 [44] proposed a new detection method
using text similarity with round-trip translation (TSRT). This approach involves translating

Big Data Cogn. Comput. 2024, 8, 32 5 of 26

text into another language and returning it to the original language. They found that TSRT
achieved an 86.9% accuracy rate in detecting texts translated by unfamiliar translators,
surpassing both traditional detectors (with a 77.9% accuracy) and human discernment
capabilities (53.3%). Similar work was conducted using BERT for detecting Arabic GPT2
tweets [43]

In the same year, 2021, AraGPT-2 [45], an advanced language generation model for
Arabic, demonstrated a dual capability in generating and detecting synthetic text. It excels
in generating high-quality synthetic text, such as news articles, that are challenging to
differentiate from humans. This capability is particularly evident in its largest variant,
AraGPT2-mega, which has 1.46 billion parameters. Concurrently, the authors of this paper
also developed an automatic discriminator model to address the potential misuse of such
synthetic text generation. This model can detect text generated by AraGPT-2 with a high
accuracy rate of 98%, making it a valuable tool for distinguishing between human-written
and machine-generated content in Arabic. Subsequently, the same author of AraGPT2
released the AraELECTRA model [32], which is based on an ELECTRA (Efficiently Learning
an Encoder that Classifies Token Replacements Accurately) model [46]. AraELECTRA was
trained on a vast Arabic corpus to identify content created by their AraGPT2 model. It
is worth noting that AraELECTRA was trained on the same dataset used for training
the AraGPT2 model. The effectiveness of the AraELECTRA model can be attributed to
its pre-training goal of detecting token replacements (RTD), an advanced approach that
represents a significant shift from the conventional Masked Language Modeling (MLM)
strategy employed in models like BERT. In contrast to MLM, where specific tokens in the
input text are masked and subsequently predicted, RTD innovatively replaces tokens in
the sequence with alternatives generated by a secondary model. The principal task for
the discriminator within the ELECTRA framework is to accurately differentiate between
the original tokens and those that have been intentionally substituted. This method trains
the model to identify ‘real’ tokens from the original text and ‘fake’ ones introduced by the
generator. By focusing on discerning real from altered tokens rather than simply predicting
masked ones, this refined approach substantially enhances the model’s learning efficacy,
allowing it to extract more comprehensive insights from the input data.

In 2022, the development of a neural network-based detector that combines textual
information with explicit factual knowledge was introduced [47]. This is achieved through
entity–relation graphs, encoded by a graph convolutional neural network, which capture
interactions between various entities and relationships within the text. The model aims to
detect manipulated news articles by reasoning about the facts mentioned, distinguishing
them from detectors that only utilize stylometric signals. This work contributes to the
broader field of fake news detection, emphasizing the importance of understanding the
content of news articles and verifying their factual accuracy. Employing factual knowledge
in conjunction with textual analysis represents a notable advancement in identifying texts
that have been altered, which could be mistakenly considered human-written due to their
preserved writing style. However, the authors concluded their experiment by stating that
detecting manipulated text continues to be difficult and challenging.

2.2. Detection of AIGT after ChatGPT

Since the release of ChatGPT in November 2022, there has been a marked surge in
research interest surrounding detection models, focusing predominantly on identifying text
generated by this advanced multi-model chatbot. In the subsequent section, we summarize
some of the latest research and models in this area until we wrote this paper. Our review
mainly strictly covers academic studies, and we intentionally omit web-based non-academic
tools due to the lack of clarity regarding their training methods and internal mechanisms.

One of the first released studies in 2023 that brought both datasets generated by Chat-
GPT and HWT and detectors trained on the same dataset in both the English and Chinese
languages was conducted by the study in [48], which examines the capabilities of ChatGPT
in comparison to human experts. The researchers collected a large dataset and called their

Big Data Cogn. Comput. 2024, 8, 32 6 of 26

dataset Human ChatGPT Comparison Corpus (HC3). It consists of nearly 40,000 questions
and answers by utilizing datasets such as OpenQA [49], Reddit ELI5 [50], and ChatGPT
to generate the responses for these questions, covering various domains such as finance,
medicine, law, and psychology. They conducted detailed human evaluations and linguistic
analyses to study the differences and similarities between human-written content and
ChatGPT responses. The study led to the development of several models to detect whether
content is generated by ChatGPT or written by humans, demonstrating decent performance
in different scenarios. They used other methods, starting from machine learning and deep
learning algorithms. The approach involved employing logistic regression, trained using
GLTR features, along with a deep learning classifier based on the pre-trained Transformer
model, specifically the RoBERTA model [34]. The RoBERTA model was fine-tuned to detect
both single-text formats and question-and-answer-type texts. Additionally, all collected
data were made open source to aid further academic research, meaning some of the studies
that came after leveraged their dataset, either by adapting it to different languages or
utilizing its English examples.

One of the earliest studies released in 2023 that introduced a novel watermarking
framework for LLMs was conducted in the study in [51]. Their approach leverages the
output log probability of LLMs at each generation step to embed a watermark, primarily
through the use of a green token list. In this framework, the LLM is strategically inclined to
select tokens from the green list more frequently (e.g., nine green tokens for humans), and
more than that, it has a high probability of being AIGT. This method is designed to embed
detectable signals in the generated text that are invisible to human readers, offering a way to
responsibly manage and identify the outputs of these powerful language models. Similarly,
other work conducted on watermarking [52] introduces three significant enhancements
to existing watermarking methods. It enhances watermarking in LLMs by introducing
statistically sound tests for false positive rate accuracy, assessing text quality through NLP
benchmarks, and advancing toward scalable multi-bit watermarking systems. Another
significant contribution in the field of watermarking, conducted in the study in [53], adopts
a distinct approach by leveraging cryptographic principles. This innovative method, unique
in its reliance on cryptography, ensures that watermarks embedded within LLMs remain
undetectable unless a specific secret key is used. This cryptographically inspired technique
marks a paradigm shift in watermarking, focusing on the imperceptibility of watermarks
to enhance the security and authenticity verification of AIGTs.

A recent study also aimed to develop a classifier capable of identifying restaurant
reviews generated by ChatGPT [54]. They utilized the Kaggle restaurant reviews dataset as
a foundation and prompted ChatGPT to create multiple types of reviews, such as those for
poor-quality restaurants. To further challenge the classifier, they also had ChatGPT reword
existing human-written reviews, generating an adversarial dataset to test the classifier’s
effectiveness. They fine-tuned the uncased version of the DitlBeERT model on a dataset
for training and testing only. In their efforts, they also created a classifier that relies on the
perplexity score. This involved calculating the perplexity score of each entry in the training
set using the GPT-2 model. This measure helps gauge the complexity or uncertainty of
the text as interpreted by the model. In this manner, they attempted to establish a critical
perplexity score threshold for classifying text. Texts exceeding this threshold were labeled
as human (0), while those below were tagged as ChatGPT (1). The threshold was optimized
to enhance the F1-score in training. The methodology was then applied to the test set for
effective classification.

Another paper was released on detecting ChatGPT text, targeting both English and
French [55]. The English model built upon the HC3 dataset by translating its English content
into French using Google Cloud Translate API. They also included an additional tiny French
out-of-domain dataset comprising 113 examples of direct French responses from ChatGPT
and 116 examples from BingGPT to some of the translated HC3 questions from the testing
set. Then, they subsidized their dataset with French question–answer pairs (4454 examples)
from the Multilingual FAQ (MFAQ) dataset [56] and sentences from the French Treebank

Big Data Cogn. Comput. 2024, 8, 32 7 of 26

dataset (1235 sentences). Additionally, the dataset incorporates a small set (61 examples)
of adversarial examples crafted by humans in a style similar to ChatGPT’s outputs. They
fine-tuned two pre-trained models, the CamemBERT [57] and CamemBERTa [58] models,
for the French language and fine-tuned the RoBERTa and ELECTRA models for the English
language, then used XLM-R [59] for the combined datasets that have the two languages.
The study indicated that the French models effectively identified AIGT within the same
domain. However, the English models showed superior performance. The XLM-RoBERTa-
base model demonstrated the most robust and consistent results in detecting adversarial
attack datasets for English and French texts. Nonetheless, the ability of these models to
accurately detect AI-generated content dropped when applied to out-of-domain text.

3. Methodology
3.1. Data Collection

This study employed two comprehensive datasets for the training, validation, and
testing phases, as delineated in Figure 1. The first one, which we called a large dataset,
comprises 43,958 examples, of which 21,979 are HWTs that were obtained and prepro-
cessed from three sources: the Arabic-SQuAD [60] dataset, the TyDiQA (TyDiQA-GoldP)
dataset [61], and the MultiLingual Question Answering (MLQA) dataset [62]. Our focus
in these datasets was explicitly on the textual content, excluding any aspect related to
question-answering. To ensure a balanced dataset, we translated the English content of
ChatGPT-generated text in the HC3 dataset [48] using the Google Translate built-in in
Sheet to inspect the translation quality during the process, resulting in 20,982 ChatGPT-
generated examples. This step was vital as our examination of the HC3 dataset revealed
empty instances labeled ‘false’ (which represent ChatGPT-generated text), and some of
them were redundant content, which were subsequently removed to maintain data quality
and relevance. This process was integral in aligning the volume of ChatGPT texts with the
HWT examples. To further equalize the datasets, additional translations from a dataset
(https://github.com/amartyahatua/AI_Generated_Text_Classfier/tree/master/data) (ac-
cess on 12 October 2023) came with this study [63], leading to 35,196 training examples,
with 4396 each for validation and testing, encompassing both HWT and ChatGPT text.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 9 of 29

Figure 1. Dataset configuration and segregation.

3.2. Detector Architecture
In developing our detector architecture, our approach was grounded in the strategic

adoption of deep learning paradigms, specifically focusing on the fine-tuning of pre-
trained encoder-based Transformer models, which are quintessential for their superior
proficiency in language understanding. To accommodate the linguistic diversity of the
large dataset, which intentionally incorporates non-Arabic scripts without translation, we
selected the XLM-R model [59], lauded for its exceptional multilingual capabilities as ev-
idenced by its performance in related studies [48,55] and its ability to adapt over 100 lan-
guages. In tandem with the AraELECTRA model [67], one of the state-of-the-art models
in Arabic built upon the ELECTRA model [46] was chosen for its state-of-the-art efficacy
in Arabic language understanding, building upon the advancements of the ELECTRA ar-
chitecture.

3.2.1. Fine-Tuning Process
The process begins with the raw input text, which is tokenized into a sequence of

tokens. These tokens serve as the input to a pre-trained model of language understanding
designed to extract contextual representations from the text (as illustrated in Figure 2).
Each token is transformed into a dense vector representation, encapsulating the semantic
and syntactic information learned during the pre-training phase. Upon processing the in-
put text, the pre-trained model generates a sequence of representation vectors (Rep 1 to
Rep 512). These representations are then fed into a dense (fully connected) linear layer
that projects the high-dimensional features into an output space corresponding to the
number of classes required for our classification task. This dense layer is important as it
adapts the general language representations to the specificities of distinguishing HWT
from AIGT. Following the dense layer, a SoftMax function is applied to the output logits,
converting them into normalized probabilities, as shown in Equation (1). During training,

Figure 1. Dataset configuration and segregation.

https://github.com/amartyahatua/AI_Generated_Text_Classfier/tree/master/data

Big Data Cogn. Comput. 2024, 8, 32 8 of 26

The custom dataset in our study was deliberately crafted manually to exhibit a range
of writing styles from various human writing styles and different leading chatbot models.
For the AIGT, this dataset includes an equal number of instances (513 each) from ChatGPT
3.5, ChatGPT 4.0, and BARD. This composition results in a total of 1539 AIGT samples,
offering a comprehensive representation of different LLM output styles. We ensured each
prompt was sent only once and selected a single response for inclusion, especially from
BARD, which often provides three drafts per response. The prompts cover topics like
Literature, Titles and Nicknames, Islamic Studies, Media and Publishing, History, and
Geography. We meticulously chose questions from each section for input into ChatGPT
versions and BARD as detailed in Table 1. As for the HWT dataset, it also has 1539 instances,
including written lectures and human text chats collected from the Tashkila dataset [64],
after being preprocessed by removing diacritics. It also has passages from different books
from various sources, including the Shamela Library [65] and Tashkila. We also included
poets’ biographies written on the Aldiwan website [66]. The specific contributions from
each source are detailed in Table 2. The passages that were chosen have different typing
formats that include, but are not limited to, in-text citations, bullet points, long paragraphs,
and more.

Table 1. Dataset composition of AIGT showcasing prompt distribution from ChatGPT Models 3.5,
4.0, and BARD.

Custom Dataset AIGT

ChatGPT BARD

Model 3.5 turpo Model 4 -

513 Prompts 513 Prompts 513 Prompts

Topics

Literature Titles and Nicknames Islamic Studies Media and Publishing History Geography

71 prompts 29 prompts 100 prompts 75 prompts 106 prompts 132 prompts

Table 2. Dataset composition of HWT showcasing dataset structure detailing number of instances
from every source.

Custom Dataset HWT

Shamela Library Aldiwan website Tashkila dataset (diacritics-free)

249 samples obtained from book passages 240 samples obtained from
poets’ biographies

1050 samples, including book passages,
human text chats, and lecture notes

We allocated 80% of the dataset to training, with the remaining 20% divided equally
between validation and testing across both datasets. This distribution was deliberately
chosen, with a predominant portion dedicated to training, to achieve more than mere
performance evaluation on the same datasets. The primary objective was to enhance
the model’s robustness, ensuring its capability to generalize well across diverse datasets.
By prioritizing a substantial training set, we aimed to equip the model with a deep and
nuanced understanding of the underlying patterns, which is critical for its adaptability and
effectiveness when faced with different data.

3.2. Detector Architecture

In developing our detector architecture, our approach was grounded in the strategic
adoption of deep learning paradigms, specifically focusing on the fine-tuning of pre-trained
encoder-based Transformer models, which are quintessential for their superior proficiency
in language understanding. To accommodate the linguistic diversity of the large dataset,
which intentionally incorporates non-Arabic scripts without translation, we selected the

Big Data Cogn. Comput. 2024, 8, 32 9 of 26

XLM-R model [59], lauded for its exceptional multilingual capabilities as evidenced by
its performance in related studies [48,55] and its ability to adapt over 100 languages. In
tandem with the AraELECTRA model [67], one of the state-of-the-art models in Arabic
built upon the ELECTRA model [46] was chosen for its state-of-the-art efficacy in Arabic
language understanding, building upon the advancements of the ELECTRA architecture.

3.2.1. Fine-Tuning Process

The process begins with the raw input text, which is tokenized into a sequence of
tokens. These tokens serve as the input to a pre-trained model of language understanding
designed to extract contextual representations from the text (as illustrated in Figure 2).
Each token is transformed into a dense vector representation, encapsulating the semantic
and syntactic information learned during the pre-training phase. Upon processing the
input text, the pre-trained model generates a sequence of representation vectors (Rep 1
to Rep 512). These representations are then fed into a dense (fully connected) linear
layer that projects the high-dimensional features into an output space corresponding to
the number of classes required for our classification task. This dense layer is important
as it adapts the general language representations to the specificities of distinguishing
HWT from AIGT. Following the dense layer, a SoftMax function is applied to the output
logits, converting them into normalized probabilities, as shown in Equation (1). During
training, these probabilities are evaluated using a cross-entropy loss function for binary
classification, as shown in Equation (2), which measures the discrepancy between the
predicted probability distribution and the true class labels. This loss is then used to
update all network layers through backpropagation, effectively fine-tuning the entire
model to improve its ability to classify texts as HWT or AIGT. During inference, the
SoftMax-normalized probabilities inform the prediction, where the class with the highest
probability is selected as the predicted class. This fine-tuned model, therefore, not only
leverages the sophisticated linguistic understanding of the pre-trained model but also
applies it specifically to distinguish between HWT and AIGT with a high degree of accuracy,
as indicated by our classification results. All network layers were updated throughout
the training process to ensure that the pre-trained language representation models and
the additional dense layer were optimized for our specific classification problem. This
comprehensive fine-tuning approach ensures that the model is well-adapted to the nuances
of the task, leading to improved performance and robustness in classifying the text.

For a binary classification task such as ours, the SoftMax function can be expressed for
two classes, HWT (label 1) and AIGT (label 0):

σ(z)i =
ezi

ez0 + ez1
(1)

where σ(z)i represents the predicted probability for the i−th class given the input vector z
of logits, with i corresponding to either HWT or AIGT.

The cross-entropy loss function for binary classification is defined as

L(y, ŷ) = −[ylog(ŷ1) + (1 − y)log(1 − ŷ1)] (2)

where L is the loss and y represents the true label (1 for HW and 0 for AIG). The predicted
probability ŷ1 indicates the model’s confidence that the input text is HW, and 1 − ŷ1 rep-
resents the model’s confidence that the input text is AIG. This function penalizes the
predictions that diverge from the actual labels. For a true label of 1 (HW), the loss is
driven by the term ylog(ŷ1), encouraging the model to increase the predicted probability
ŷ1 for HWT. Conversely, for a true label of 0 (AIG), the loss is influenced by the term
(1 − y)log(1 − ŷ1), which encourages the model to increase 1 − ŷ1, the predicted probabil-
ity for the text being AIG. By penalizing the divergence in both cases, the model is trained
to make more accurate predictions throughout training.

Big Data Cogn. Comput. 2024, 8, 32 10 of 26
Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 11 of 29

Figure 2. Architectural diagram of the fine-tuning process. This figure illustrates the end-to-end
workflow for the binary classification task.

3.2.2. Dediacritization Layer
Previous investigations within this research [11] have identified the presence of dia-

critics in the Arabic text as a potential source of noise that may impair the efficacy of clas-
sification algorithms. To address this challenge, we proposed the integration of a
Dediacritization Layer prior to the classification stage. In this study, we operationalized
this by employing the Dediacritization Layer function, utilizing the preprocessing capa-
bilities of the CAMeL ANLP tools [5] to remove diacritics from the text (with no changes
to the text itself), as shown in Figure 3. This preprocessing was exclusively applied during
the evaluation phase of the AIRABIC benchmark dataset to substantiate our hypothesized
impact of diacritics on classifier performance. However, this dediacritization process was
not utilized in the training, validation, or testing phases for models using both the custom
and large datasets, as these datasets are not laden with diacritics. Figure 4 shows the code
for this step.

Figure 3. Procedural framework for dediacritization layer.

Figure 2. Architectural diagram of the fine-tuning process. This figure illustrates the end-to-end
workflow for the binary classification task.

3.2.2. Dediacritization Layer

Previous investigations within this research [11] have identified the presence of di-
acritics in the Arabic text as a potential source of noise that may impair the efficacy of
classification algorithms. To address this challenge, we proposed the integration of a De-
diacritization Layer prior to the classification stage. In this study, we operationalized this
by employing the Dediacritization Layer function, utilizing the preprocessing capabilities
of the CAMeL ANLP tools [5] to remove diacritics from the text (with no changes to the
text itself), as shown in Figure 3. This preprocessing was exclusively applied during the
evaluation phase of the AIRABIC benchmark dataset to substantiate our hypothesized
impact of diacritics on classifier performance. However, this dediacritization process was
not utilized in the training, validation, or testing phases for models using both the custom
and large datasets, as these datasets are not laden with diacritics. Figure 4 shows the code
for this step.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 11 of 29

Figure 2. Architectural diagram of the fine-tuning process. This figure illustrates the end-to-end
workflow for the binary classification task.

3.2.2. Dediacritization Layer
Previous investigations within this research [11] have identified the presence of dia-

critics in the Arabic text as a potential source of noise that may impair the efficacy of clas-
sification algorithms. To address this challenge, we proposed the integration of a
Dediacritization Layer prior to the classification stage. In this study, we operationalized
this by employing the Dediacritization Layer function, utilizing the preprocessing capa-
bilities of the CAMeL ANLP tools [5] to remove diacritics from the text (with no changes
to the text itself), as shown in Figure 3. This preprocessing was exclusively applied during
the evaluation phase of the AIRABIC benchmark dataset to substantiate our hypothesized
impact of diacritics on classifier performance. However, this dediacritization process was
not utilized in the training, validation, or testing phases for models using both the custom
and large datasets, as these datasets are not laden with diacritics. Figure 4 shows the code
for this step.

Figure 3. Procedural framework for dediacritization layer. Figure 3. Procedural framework for dediacritization layer.

Big Data Cogn. Comput. 2024, 8, 32 11 of 26Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 12 of 29

Figure 4. Dediacritization layer code.

3.3. Pipeline Design
We designed our architecture with the intent of versatility and reusability across var-

ious design scenarios. Figure 5 shows that the processing architecture encompasses sev-
eral phases. Depending on the dataset being assessed, the model’s workflow bifurcates
for the inference phase. Aside from the Dediacritization Layer, which works specifically
for Arabic, our design is adaptable to any language across various datasets. Thus, our
design is universally applicable and ready to be utilized with datasets in any language.

Figure 5. High-level workflow of the text classification architecture.

3.4. Experimental Evaluation Protocol
A range of methodologies were explored to ascertain the most favorable outcomes.

This exploration was followed by the execution of 12 meticulously designed experiments
to assess the robustness of the two models across disparate datasets, as illustrated in Fig-
ure 6.

Figure 4. Dediacritization layer code.

3.3. Pipeline Design

We designed our architecture with the intent of versatility and reusability across
various design scenarios. Figure 5 shows that the processing architecture encompasses
several phases. Depending on the dataset being assessed, the model’s workflow bifurcates
for the inference phase. Aside from the Dediacritization Layer, which works specifically for
Arabic, our design is adaptable to any language across various datasets. Thus, our design
is universally applicable and ready to be utilized with datasets in any language.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 12 of 29

Figure 4. Dediacritization layer code.

3.3. Pipeline Design
We designed our architecture with the intent of versatility and reusability across var-

ious design scenarios. Figure 5 shows that the processing architecture encompasses sev-
eral phases. Depending on the dataset being assessed, the model’s workflow bifurcates
for the inference phase. Aside from the Dediacritization Layer, which works specifically
for Arabic, our design is adaptable to any language across various datasets. Thus, our
design is universally applicable and ready to be utilized with datasets in any language.

Figure 5. High-level workflow of the text classification architecture.

3.4. Experimental Evaluation Protocol
A range of methodologies were explored to ascertain the most favorable outcomes.

This exploration was followed by the execution of 12 meticulously designed experiments
to assess the robustness of the two models across disparate datasets, as illustrated in Fig-
ure 6.

Figure 5. High-level workflow of the text classification architecture.

3.4. Experimental Evaluation Protocol

A range of methodologies were explored to ascertain the most favorable outcomes.
This exploration was followed by the execution of 12 meticulously designed experiments to
assess the robustness of the two models across disparate datasets, as illustrated in Figure 6.

In our case, we had two datasets for training and three distinct datasets for testing,
one of which, the AIRABIC dataset, fell outside the domain of the training data. To assess
the robustness and generalization capability of the two models, we conducted multiple
evaluations that were carefully designed to prevent any overlap between the training
datasets and to avoid transfer learning biases during testing. Thus, all models started
training, validation, and testing on a specific dataset, and then the models’ best weights
were evaluated against the other datasets. Then, the model was finally tested against the
benchmark out-of-domain dataset, AIRABIC. Since AIRABIC has two types of writing,
one with diacritics and one without (after incorporating the Dediacritization Layer in the
inference), every model was tested on both to be compared against the existing leading AI
detectors, such as GPTZero and OpenAI Classifier.

Big Data Cogn. Comput. 2024, 8, 32 12 of 26Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 13 of 29

Figure 6. Cross-evaluation methodology for optimized model parameters across custom, large, and
AIRABIC benchmark datasets with AraELECTRA and XLM-R models.

In our case, we had two datasets for training and three distinct datasets for testing,
one of which, the AIRABIC dataset, fell outside the domain of the training data. To assess
the robustness and generalization capability of the two models, we conducted multiple
evaluations that were carefully designed to prevent any overlap between the training da-
tasets and to avoid transfer learning biases during testing. Thus, all models started train-
ing, validation, and testing on a specific dataset, and then the models’ best weights were
evaluated against the other datasets. Then, the model was finally tested against the bench-
mark out-of-domain dataset, AIRABIC. Since AIRABIC has two types of writing, one with
diacritics and one without (after incorporating the Dediacritization Layer in the inference),
every model was tested on both to be compared against the existing leading AI detectors,
such as GPTZero and OpenAI Classifier.

3.5. Hyperparameters
A comprehensive series of experiments was undertaken to optimize a suite of hy-

perparameters, the objective being to ascertain the most efficacious configuration for our
models. However, due to the inherent differences between the two models used and the
distinct characteristics of the datasets, with the large dataset contrasting significantly from
the custom dataset, no single approach proved universally effective. Consequently, hy-
perparameter values were meticulously calibrated to align with the distinct requirements
of each dataset, with a concerted effort to maintain consistency in the experimental pro-
cess by standardizing the random seed for all iterations (refer to Table 3 for hyperparam-
eter details). For the large dataset, a batch size of 64 was employed throughout the training,
validation, and testing stages. In contrast, the batch size was experimentally adjusted be-
tween 32 and 64 for the custom dataset to fine-tune the model’s performance. Our trials
spanned a range of epochs from 30 down to 8 or 10 epochs, but our results focus on the
most successful outcomes achieved with 10 epochs. Moreover, an early stopping protocol
was implemented focusing on global minima loss to mitigate the potential for overfitting,
applying a patience parameter of three to four for training up to 10 epochs and extending
this to five to seven for sessions exceeding this epoch threshold. In the initial phases of

Figure 6. Cross-evaluation methodology for optimized model parameters across custom, large, and
AIRABIC benchmark datasets with AraELECTRA and XLM-R models.

3.5. Hyperparameters

A comprehensive series of experiments was undertaken to optimize a suite of hy-
perparameters, the objective being to ascertain the most efficacious configuration for our
models. However, due to the inherent differences between the two models used and the
distinct characteristics of the datasets, with the large dataset contrasting significantly from
the custom dataset, no single approach proved universally effective. Consequently, hyper-
parameter values were meticulously calibrated to align with the distinct requirements of
each dataset, with a concerted effort to maintain consistency in the experimental process
by standardizing the random seed for all iterations (refer to Table 3 for hyperparameter
details). For the large dataset, a batch size of 64 was employed throughout the training,
validation, and testing stages. In contrast, the batch size was experimentally adjusted
between 32 and 64 for the custom dataset to fine-tune the model’s performance. Our trials
spanned a range of epochs from 30 down to 8 or 10 epochs, but our results focus on the
most successful outcomes achieved with 10 epochs. Moreover, an early stopping protocol
was implemented focusing on global minima loss to mitigate the potential for overfitting,
applying a patience parameter of three to four for training up to 10 epochs and extending
this to five to seven for sessions exceeding this epoch threshold. In the initial phases of
inference, a batch size of 8 was set for testing, which, upon elevation to a batch size of 32,
yielded a nominal yet notable decrease in loss.

Table 3. Hyperparameter specifications for model training and evaluation.

Parameter Value Description

Seed 1 Used consistent random seed throughout all experiments.
Batch Size (Large Dataset) 64 Used for training, validation, and testing phases.

Batch Size (Custom Dataset) 32 to 64 Varied to find the optimal setting for model performance.
Epochs 10 Range considered: 30 to 8; results reported for 10 epochs.

Early Stopping Patience (<10 Epochs) 3 to 4 To prevent overfitting, applied for models trained for less than 10 epochs.
Early Stopping Patience (>10 Epochs) 5 to 7 Applied when training for more than 10 epochs to mitigate overfitting.

Initial Testing Batch Size 8 Initial size used during the inference phase.
Adjusted Testing Batch Size 32 Incremented to enhance performance and decrease loss.

Big Data Cogn. Comput. 2024, 8, 32 13 of 26

Scheduler and Learning Rate

The experiments showed that both linear and cosine annealing schedulers can perform
well in some cases. Thus, we designed our custom Combined Learning Rate Scheduler al-
gorithm, which utilizes both linear and cosine annealing schedulers, to effectively facilitate
the convergence of neural network training. Our algorithm operates in a warm-up linear
phase and a cosine annealing phase, as shown in Figure 7.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 14 of 29

inference, a batch size of 8 was set for testing, which, upon elevation to a batch size of 32,
yielded a nominal yet notable decrease in loss.

Table 3. Hyperparameter specifications for model training and evaluation.

Parameter Value Description

Seed 1
Used consistent random seed throughout all

experiments.

Batch Size (Large Dataset) 64
Used for training, validation, and testing

phases.

Batch Size (Custom Dataset) 32 to 64 Varied to find the optimal setting for model
performance.

Epochs 10 Range considered: 30 to 8; results reported for
10 epochs.

Early Stopping Patience (<10
Epochs) 3 to 4

To prevent overfitting, applied for models
trained for less than 10 epochs.

Early Stopping Patience (>10
Epochs)

5 to 7 Applied when training for more than 10 epochs
to mitigate overfitting.

Initial Testing Batch Size 8 Initial size used during the inference phase.

Adjusted Testing Batch Size 32
Incremented to enhance performance and de-

crease loss.

Scheduler and Learning Rate
The experiments showed that both linear and cosine annealing schedulers can per-

form well in some cases. Thus, we designed our custom Combined Learning Rate Sched-
uler algorithm, which utilizes both linear and cosine annealing schedulers, to effectively
facilitate the convergence of neural network training. Our algorithm operates in a warm-
up linear phase and a cosine annealing phase, as shown in Figure 7.

Figure 7. Combined Learning Rate Scheduler algorithm.

In the initial warm-up phase, our algorithm tackles the cold start problem encoun-
tered during training by progressively increasing the learning rate from a minimal initial
value (e.g., 1 × 10ି଼) to a predefined main learning rate (up to 3.5 × 10ିହሻ. The increase
is linear, contingent on the current epoch, which ensures a smooth scaling of the learning
rate across the warmup epochs. This method enables the network to gradually adjust from
minimal updates, preventing abrupt shifts in the weights that could destabilize the model.

Figure 7. Combined Learning Rate Scheduler algorithm.

In the initial warm-up phase, our algorithm tackles the cold start problem encountered
during training by progressively increasing the learning rate from a minimal initial value
(e.g., 1 × 10−8) to a predefined main learning rate (up to 3.5 × 10−5). The increase is linear,
contingent on the current epoch, which ensures a smooth scaling of the learning rate across
the warmup epochs. This method enables the network to gradually adjust from minimal
updates, preventing abrupt shifts in the weights that could destabilize the model.

Upon completing the warm-up phase, which in most cases lasts for half the total
epochs, the scheduler advances to the cosine annealing phase. Here, the learning rate
descends following a half-cosine cycle from the main learning rate down to a lower limit,
modulated by the main learning rate and the cosine of the adjusted epoch, with the latter
being the epoch count after the conclusion of the warm-up period. This reduction is
designed to be non-linear, allowing for smooth and gradual fine-tuning of the weights,
thus facilitating the model’s convergence to a more advantageous local minimum. The
shift from the warm-up to the cosine annealing phase occurs automatically after exceeding
the predetermined warmup_epochs, merging the stabilizing effect of the warm-up with
the refinement of cosine annealing to enhance the training’s end-stage convergence. Our
application of this combined learning rate scheduler demonstrates improvements over
linear or cosine annealing schedules alone.

4. Results

The best-performing model weights were identified and applied to evaluate the model
on the other testing dataset, including the AIRABIC benchmark, both with and without
incorporating a Dediacritization Layer. Table 4 comprehensively shows the performance
metrics of the AraELECTRA and XLM-R models.

Table 4. Comparative performance metrics of AraELECTRA and XLM-R models trained on custom
and large datasets.

Model Trained on Evaluated on Precision Recall F1 Score AUC-ROC Loss

AraELECTRA

Custom Dataset

Validation set 1.0 1.0 1.0 1.0 0.0002
Testing set 1.0 1.0 1.0 1.0 0.0006

Large dataset 0.9437 0.7333 0.8253 0.9525 0.8197
AIRABIC without Dediacritization Layer 0.7953 0.824 0.8094 0.9139 0.4267

AIRABIC with Dediacritization Layer 0.9900 1.0 0.9950 0.9998 0.0302

Large Dataset

Validation set 0.9968 0.9955 0.9961 0.9999 0.0138
Testing set 0.9995 0.9927 0.9961 0.9999 0.0180

Custom dataset 0.9114 0.9411 0.9260 0.9698 0.4422
AIRABIC without Dediacritization Layer 0.6435 0.928 0.7600 0.7745 2.42

AIRABIC with Dediacritization Layer 0.8169 1.0 0.8992 0.9719 0.6587

Big Data Cogn. Comput. 2024, 8, 32 14 of 26

Table 4. Cont.

Model Trained on Evaluated on Precision Recall F1 Score AUC-ROC Loss

XLM-R

Custom Dataset

Validation set 1.0 1.0 1.0 1.0 0.0003
Testing set 1.0 0.9608 0.98 0.9804 0.1426

Large dataset 0.9223 0.8753 0.8982 0.9476 0.6820
AIRABIC without Dediacritization Layer 1.0 0.634 0.7760 0.9652 1.372

AIRABIC with Dediacritization Layer 1.0 1.0 1.0 1.0 0.0001

Large Dataset

Validation set 0.9977 0.9977 0.9977 0.9997 0.0153
Testing set 0.9977 0.9977 0.9977 0.9999 0.0151

Custom dataset 0.5 0.9738 0.6607 0.8223 4.4082
AIRABIC without Dediacritization Layer 0.5263 1.0 0.6896 0.7182 3.9560

AIRABIC with Dediacritization Layer 0.5470 1.0 0.7072 0.9042 3.5100

4.1. Our Best Models vs. GPTZero and OpenAI Text Classifier

We benchmarked the performance of our leading models against two well-known
AI detectors, GPTZero and the OpenAI Classifier, using the AIRABIC dataset. Notably,
our models demonstrated superior performance even without implementing a Dedia-
critization Layer. This achievement is significant, especially in recognizing HWTs, a task
where GPTZero and the OpenAI Classifier showed limitations. Furthermore, our models
performed well in processing text with diacritics, outperforming GPTZero and the Ope-
nAI Classifier in this aspect. It is important to mention that these results were achieved
without specifically training our models on diacritic-laden texts as they existed on the
AIRABIC dataset.

The following results show that the Receiver Operating Characteristic (ROC) curves for
the GPTZero and OpenAI Text Classifier models are based on binary classification outcomes
from the confusion matrix results below. It is important to note that the curve was generated
from discrete classification results rather than continuous probability estimates, which
are typically used in ROC analysis. This approach may not fully represent the model’s
performance across all possible thresholds, as it does not account for the varying degrees
of certainty in the predictions. Therefore, the presented data points and curves should be
viewed as an approximate measure of the model’s capacity to discriminate between HWT
and AIGT. However, it should be noted that the ROC curves for our models, which will be
presented following the discussion of the GPTZero and OpenAI Text Classifier results, are
derived from probability estimates and provide a comprehensive overview of the model’s
performance across a wide range of decision thresholds.

4.1.1. GPTZero against AIRABIC Benchmark Dataset

Table 5 details GPTZero’s performance evaluation as applied to the AIRAIBC Bench-
mark Dataset. Figure 8 depicts an approximate ROC curve that was generated from discrete
classification results rather than continuous probability estimates, which are typically used
in ROC analysis.

Table 5. Evaluation of GPTZero detector on AIRABIC benchmark dataset.

GPTZero Predicted:
Human-Written

Predicted:
Al-Generated

Performance
Metrics Value

Actual: Human-written 150 (TP) 350 (FN)
Sensitivity 30%
Specificity 95%

Actual: Al-generated 23 (FP) 477 (TN)
Precision 86.7%
Accuracy 62.7%
F1-Score 44.5%

Big Data Cogn. Comput. 2024, 8, 32 15 of 26

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 16 of 29

models demonstrated superior performance even without implementing a
Dediacritization Layer. This achievement is significant, especially in recognizing HWTs,
a task where GPTZero and the OpenAI Classifier showed limitations. Furthermore, our
models performed well in processing text with diacritics, outperforming GPTZero and the
OpenAI Classifier in this aspect. It is important to mention that these results were
achieved without specifically training our models on diacritic-laden texts as they existed
on the AIRABIC dataset.

The following results show that the Receiver Operating Characteristic (ROC) curves
for the GPTZero and OpenAI Text Classifier models are based on binary classification
outcomes from the confusion matrix results below. It is important to note that the curve
was generated from discrete classification results rather than continuous probability esti-
mates, which are typically used in ROC analysis. This approach may not fully represent
the model’s performance across all possible thresholds, as it does not account for the var-
ying degrees of certainty in the predictions. Therefore, the presented data points and
curves should be viewed as an approximate measure of the model’s capacity to discrimi-
nate between HWT and AIGT. However, it should be noted that the ROC curves for our
models, which will be presented following the discussion of the GPTZero and OpenAI
Text Classifier results, are derived from probability estimates and provide a comprehen-
sive overview of the model’s performance across a wide range of decision thresholds.

4.1.1. GPTZero Against AIRABIC Benchmark Dataset
Table 5 details GPTZero's performance evaluation as applied to the AIRAIBC Bench-

mark Dataset. Figure 8 depicts an approximate ROC curve that was generated from dis-
crete classification results rather than continuous probability estimates, which are typi-
cally used in ROC analysis.

Table 5. Evaluation of GPTZero detector on AIRABIC benchmark dataset.

GPTZero Predicted:
Human-Written

Predicted:
Al-Generated

Performance
Metrics Value

Actual: Human-written 150 (TP) 350 (FN) Sensitivity 30%
Specificity 95%

Actual: Al-generated 23 (FP) 477 (TN)
Precision 86.7%
Accuracy 62.7%
F1-Score 44.5%

Figure 8. ROC curve of GPTZero detector.

4.1.2. OpenAI Text Classifier against AIRABIC Benchmark Dataset

Table 6 shows OpenAI Text Classifier’s performance evaluation as applied to the
AIRAIBC Benchmark Dataset. Figure 9 depicts an approximate ROC curve that was
generated from discrete classification results rather than continuous probability estimates,
which are typically used in ROC analysis.

Table 6. Evaluation of OpenAI Text Classifier on AIRABIC benchmark dataset.

OpenAI Text Classifier Predicted:
Human-Written

Predicted:
Al-Generated

Performance
Metrics Value

Actual: Human-written 0 (TP) 500 (FN)
Sensitivity 0%
Specificity 100%

Actual: Al-generated 0 (FP) 500 (TN)
Precision 0%
Accuracy 50%
F1-Score 0%

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 17 of 29

Figure 8. ROC curve of GPTZero detector.

4.1.2. OpenAI Text Classifier Against AIRABIC Benchmark Dataset
Table 6 shows OpenAI Text Classifier’s performance evaluation as applied to the

AIRAIBC Benchmark Dataset. Figure 9 depicts an approximate ROC curve that was gen-
erated from discrete classification results rather than continuous probability estimates,
which are typically used in ROC analysis.

Table 6. Evaluation of OpenAI Text Classifier on AIRABIC benchmark dataset.

OpenAI Text Classifier
Predicted:

Human-Written
Predicted:

Al-Generated
Performance

Metrics Value

Actual: Human-written 0 (TP) 500 (FN)
Sensitivity 0%
Specificity 100%

Actual: Al-generated 0 (FP) 500 (TN)
Precision 0%
Accuracy 50%
F1-Score 0%

Figure 9. ROC curve of OpenAI Text Classifier.

4.1.3. Fine-Tuned AraELECTRA Model Against AIRABIC Benchmark Dataset
Table 7 details the fine-tuned AraELECTRA model’s performance evaluation as ap-

plied to the AIRAIBC Benchmark Dataset without applying the Dediacritization Layer.
Figure 10 depicts the ROC curve derived from probability estimates and provides a com-
prehensive overview of the model’s performance across a wide range of decision thresh-
olds.

Table 7. Evaluation of the fine-tuned AraELECTRA model without using a Dediacritization Layer
on the AIRABIC benchmark dataset.

AraELECTRA Model
Predicted:

Human-Written
Predicted:

Al-Generated
Performance

Metrics Value

Actual: Human-written 412 (TP) 88 (FN)
Sensitivity 82%
Specificity 79%

Actual: Al-generated 106 (FP) 394 (TN) Precision 79%
Accuracy 81%

Figure 9. ROC curve of OpenAI Text Classifier.

Big Data Cogn. Comput. 2024, 8, 32 16 of 26

4.1.3. Fine-Tuned AraELECTRA Model against AIRABIC Benchmark Dataset

Table 7 details the fine-tuned AraELECTRA model’s performance evaluation as ap-
plied to the AIRAIBC Benchmark Dataset without applying the Dediacritization Layer.
Figure 10 depicts the ROC curve derived from probability estimates and provides a compre-
hensive overview of the model’s performance across a wide range of decision thresholds.

Table 7. Evaluation of the fine-tuned AraELECTRA model without using a Dediacritization Layer on
the AIRABIC benchmark dataset.

AraELECTRA Model Predicted:
Human-Written

Predicted:
Al-Generated

Performance
Metrics Value

Actual: Human-written 412 (TP) 88 (FN)
Sensitivity 82%
Specificity 79%

Actual: Al-generated 106 (FP) 394 (TN)
Precision 79%
Accuracy 81%
F1-Score 82%

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 18 of 29

F1-Score 82%

Figure 10. ROC curve of the fine-tuned AraELECTRA model without using a Dediacritization
Layer.

Table 8 details the fine-tuned AraELECTRA model’s performance evaluation as ap-
plied to the AIRAIBC Benchmark Dataset after using the Dediacritization Layer. Figure
11 depicts the ROC curve derived from probability estimates and provides a comprehen-
sive overview of the model’s performance across a wide range of decision thresholds.

Table 8. Evaluation of the fine-tuned AraELECTRA model using a Dediacritization Layer on the
AIRABIC benchmark dataset.

AraELECTRA Model Predicted:
Human-Written

Predicted:
Al-Generated

Performance
Metrics

Value

Actual: Human-written 500 (TP) 0 (FN) Sensitivity 100%
Specificity 99%

Actual: Al-generated 5 (FP) 495 (TN)
Precision 99%
Accuracy 99%
F1-Score 99%

Figure 10. ROC curve of the fine-tuned AraELECTRA model without using a Dediacritization Layer.

Table 8 details the fine-tuned AraELECTRA model’s performance evaluation as ap-
plied to the AIRAIBC Benchmark Dataset after using the Dediacritization Layer. Figure 11
depicts the ROC curve derived from probability estimates and provides a comprehensive
overview of the model’s performance across a wide range of decision thresholds.

Table 8. Evaluation of the fine-tuned AraELECTRA model using a Dediacritization Layer on the
AIRABIC benchmark dataset.

AraELECTRA Model Predicted:
Human-Written

Predicted:
Al-Generated

Performance
Metrics Value

Actual: Human-written 500 (TP) 0 (FN)
Sensitivity 100%
Specificity 99%

Actual: Al-generated 5 (FP) 495 (TN)
Precision 99%
Accuracy 99%
F1-Score 99%

Big Data Cogn. Comput. 2024, 8, 32 17 of 26

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 19 of 29

Figure 11. ROC curve of the fine-tuned AraELECTRA model using a Dediacritization Layer.

4.1.4. Fine-Tuned XLM-R Model Against AIRABIC Benchmark Dataset
Table 9 details the fine-tuned XLM-R model’s performance evaluation as applied to

the AIRAIBC Benchmark Dataset without applying the Dediacritization Layer. Figure 12
depicts the ROC curve derived from probability estimates and provides a comprehensive
overview of the model’s performance across a wide range of decision thresholds.

Table 9. Evaluation of fine-tuned XLM-R model without using Dediacritization Layer on AIRABIC
benchmark dataset.

XLM-R Model
Predicted:

Human-Written
Predicted:

Al-Generated
Performance

Metrics Value

Actual: Human-written 317 (TP) 183 (FN)
Sensitivity 63%
Specificity 100%

Actual: Al-generated 0 (FP) 500 (TN)
Precision 100%
Accuracy 81%
F1-Score 77%

Figure 11. ROC curve of the fine-tuned AraELECTRA model using a Dediacritization Layer.

4.1.4. Fine-Tuned XLM-R Model against AIRABIC Benchmark Dataset

Table 9 details the fine-tuned XLM-R model’s performance evaluation as applied to
the AIRAIBC Benchmark Dataset without applying the Dediacritization Layer. Figure 12
depicts the ROC curve derived from probability estimates and provides a comprehensive
overview of the model’s performance across a wide range of decision thresholds.

Table 9. Evaluation of fine-tuned XLM-R model without using Dediacritization Layer on AIRABIC
benchmark dataset.

XLM-R Model Predicted:
Human-Written

Predicted:
Al-Generated

Performance
Metrics Value

Actual: Human-written 317 (TP) 183 (FN)
Sensitivity 63%
Specificity 100%

Actual: Al-generated 0 (FP) 500 (TN)
Precision 100%
Accuracy 81%
F1-Score 77%

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 20 of 29

Figure 12. ROC curve of the fine-tuned XLM-R model without using a Dediacritization Layer.

Table 10 details the fine-tuned XLM-R model’s performance evaluation as applied to
the AIRAIBC Benchmark Dataset after using the Dediacritization Layer. Figure 13 depicts
the ROC curve derived from probability estimates and provides a comprehensive over-
view of the model’s performance across a wide range of decision thresholds.

Table 10. Evaluation of the fine-tuned XLM-R model using a Dediacritization Layer on the AIRABIC
benchmark dataset.

XLM-R Model
Predicted:

Human-written
Predicted:

Al-generated
Performance

Metrics Value

Actual: Human-written 500 (TP) 0 (FN) Sensitivity 100%
Specificity 100%

Actual: Al-generated 0 (FP) 500 (TN)
Precision 100%
Accuracy 100%
F1-Score 100%

Figure 12. ROC curve of the fine-tuned XLM-R model without using a Dediacritization Layer.

Big Data Cogn. Comput. 2024, 8, 32 18 of 26

Table 10 details the fine-tuned XLM-R model’s performance evaluation as applied to
the AIRAIBC Benchmark Dataset after using the Dediacritization Layer. Figure 13 depicts
the ROC curve derived from probability estimates and provides a comprehensive overview
of the model’s performance across a wide range of decision thresholds.

Table 10. Evaluation of the fine-tuned XLM-R model using a Dediacritization Layer on the AIRABIC
benchmark dataset.

XLM-R Model Predicted:
Human-Written

Predicted:
Al-Generated

Performance
Metrics Value

Actual: Human-written 500 (TP) 0 (FN)
Sensitivity 100%
Specificity 100%

Actual: Al-generated 0 (FP) 500 (TN)
Precision 100%
Accuracy 100%
F1-Score 100%

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 20 of 29

Figure 12. ROC curve of the fine-tuned XLM-R model without using a Dediacritization Layer.

Table 10 details the fine-tuned XLM-R model’s performance evaluation as applied to
the AIRAIBC Benchmark Dataset after using the Dediacritization Layer. Figure 13 depicts
the ROC curve derived from probability estimates and provides a comprehensive over-
view of the model’s performance across a wide range of decision thresholds.

Table 10. Evaluation of the fine-tuned XLM-R model using a Dediacritization Layer on the AIRABIC
benchmark dataset.

XLM-R Model
Predicted:

Human-written
Predicted:

Al-generated
Performance

Metrics Value

Actual: Human-written 500 (TP) 0 (FN) Sensitivity 100%
Specificity 100%

Actual: Al-generated 0 (FP) 500 (TN)
Precision 100%
Accuracy 100%
F1-Score 100%

Figure 13. Fine-tuned XLM-R model using Dediacritization Layer ROC curve on AIRABIC bench-
mark dataset.

5. Discussion
5.1. Large Dataset vs. Custom Dataset Content Variation

When the models were applied to the two datasets, the performance disparities
between the two models can be attributed to various factors. First, the large dataset content
of AIGT has some non-Arabic scripts due to the translation. Moreover, the narrative
structure within this dataset is generally limited to one or two paragraphs per instance
of HWT, resulting in a narrower range of writing styles than the custom dataset. In
contrast, the custom dataset was developed meticulously by handcrafting it to encompass a
diverse range of HWT patterns. Additionally, the large dataset’s scope of AIGT is confined
to translated versions of ChatGPT 3.5 outputs. This presents a limitation, as it fails to
encompass more advanced and varied writing patterns characteristic of GPT-4 and BARD
outputs, which are critical for a robust evaluation of AIGT.

Furthermore, it is important to highlight that the HWT was obtained from Arabic-
SQuAD [60] in a large dataset comprising content translated from the English version of
SQuAD [49]. This translation aspect is crucial as the quality of these translations inherently
affects the dataset’s robustness. Due to its reliance on translated content, the large dataset
may not fully capture the nuances and complexity of native Arabic text, which could
affect the effectiveness of models trained on this dataset in understanding and processing

Big Data Cogn. Comput. 2024, 8, 32 19 of 26

authentic Arabic language constructs in comparison with the native dataset, such as the
custom dataset.

5.2. XLM-R vs. AraELECTRA Performance

The comparative analysis reveals that fine-tuning both the XLM-R and AraELECTRA
models demonstrates exceptional performance in classifying HWT and AIGT on large
and custom datasets. Specifically, in the larger dataset containing a mix of Arabic and
non-Arabic vocabulary, the XLM-R model was expected to perform well due to its capacity
to recognize over 100 languages [51]. It accurately classified 4362 out of 4369 examples,
a slight improvement over the AraELECTRA model, which correctly identified 4352 and
missed classifying 17 examples, as shown in Figure 14.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 21 of 29

Figure 13. Fine-tuned XLM-R model using Dediacritization Layer ROC curve on AIRABIC bench-
mark dataset.

5. Discussion
5.1. Large Dataset vs. Custom Dataset Content Variation

When the models were applied to the two datasets, the performance disparities be-
tween the two models can be attributed to various factors. First, the large dataset content
of AIGT has some non-Arabic scripts due to the translation. Moreover, the narrative struc-
ture within this dataset is generally limited to one or two paragraphs per instance of HWT,
resulting in a narrower range of writing styles than the custom dataset. In contrast, the
custom dataset was developed meticulously by handcrafting it to encompass a diverse
range of HWT patterns. Additionally, the large dataset’s scope of AIGT is confined to
translated versions of ChatGPT 3.5 outputs. This presents a limitation, as it fails to encom-
pass more advanced and varied writing patterns characteristic of GPT-4 and BARD out-
puts, which are critical for a robust evaluation of AIGT.

Furthermore, it is important to highlight that the HWT was obtained from Arabic-
SQuAD [60] in a large dataset comprising content translated from the English version of
SQuAD [49]. This translation aspect is crucial as the quality of these translations inherently
affects the dataset’s robustness. Due to its reliance on translated content, the large dataset
may not fully capture the nuances and complexity of native Arabic text, which could affect
the effectiveness of models trained on this dataset in understanding and processing authen-
tic Arabic language constructs in comparison with the native dataset, such as the custom
dataset.

5.2. XLM-R vs. AraELECTRA Performance
The comparative analysis reveals that fine-tuning both the XLM-R and AraELECTRA

models demonstrates exceptional performance in classifying HWT and AIGT on large and
custom datasets. Specifically, in the larger dataset containing a mix of Arabic and non-
Arabic vocabulary, the XLM-R model was expected to perform well due to its capacity to
recognize over 100 languages [51]. It accurately classified 4362 out of 4369 examples, a
slight improvement over the AraELECTRA model, which correctly identified 4352 and
missed classifying 17 examples, as shown in Figure 14.

(a) (b)

Figure 14. Comparison of the two models’ performance on the large dataset testing set: (a) AraELEC-
TRA; (b) XLM-R.

The high accuracy of the AraELECTRA model, even in a dataset mixed with Arabic
and non-Arabic vocabulary, can be attributed to different factors. First, the RTD technique
distinguishes between real and fake words within a text, is a core component of the ELEC-
TRA training method, and plays an important role in enhancing the model’s performance.
In the RTD setup, a small generator network proposes words to replace tokens in a text, and
the discriminator (the main model) has to determine if a word is original or replaced by the
generator. This approach is more efficient than traditional language modeling, encouraging
the model to learn finer distinctions in word choice and context. That method is particularly
beneficial for distinguishing between AIGT and HWT. Secondly, being trained explicitly
on Arabic datasets, it is likely to have a more nuanced understanding of Arabic linguistic
features. This can contribute to its strong performance in datasets with prominent Arabic
text, even if mixed with other languages.

This distinction becomes more evident when examining the custom dataset. While
both models performed admirably, the AraELECTRA model achieved perfect accuracy,
correctly classifying all instances, as shown in Figure 15a. The XLM-R model was tested
under the same hyperparameters as the AraELECTRA model in an experiment focused on
the custom dataset. The XLM-R model initially misclassified three instances in this setup, as
shown in Figure 15b. Further adjustments were made by lowering both the initial and fore-
most learning rates. After these modifications, the model incorrectly classified six instances,

Big Data Cogn. Comput. 2024, 8, 32 20 of 26

as shown in Figure 15c. However, this tuning enhanced the XLM-R model’s performance
on other datasets during the inference phase, particularly with the custom and AIRABIC
datasets, when operating with the adjusted lower initial and default learning rates.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 22 of 29

Figure 14. Comparison of the two models’ performance on the large dataset testing set: (a)
AraELECTRA; (b) XLM-R.

The high accuracy of the AraELECTRA model, even in a dataset mixed with Arabic
and non-Arabic vocabulary, can be attributed to different factors. First, the RTD technique
distinguishes between real and fake words within a text, is a core component of the ELEC-
TRA training method, and plays an important role in enhancing the model’s performance.
In the RTD setup, a small generator network proposes words to replace tokens in a text,
and the discriminator (the main model) has to determine if a word is original or replaced
by the generator. This approach is more efficient than traditional language modeling, en-
couraging the model to learn finer distinctions in word choice and context. That method
is particularly beneficial for distinguishing between AIGT and HWT. Secondly, being
trained explicitly on Arabic datasets, it is likely to have a more nuanced understanding of
Arabic linguistic features. This can contribute to its strong performance in datasets with
prominent Arabic text, even if mixed with other languages.

This distinction becomes more evident when examining the custom dataset. While
both models performed admirably, the AraELECTRA model achieved perfect accuracy,
correctly classifying all instances, as shown in Figure 15a. The XLM-R model was tested
under the same hyperparameters as the AraELECTRA model in an experiment focused
on the custom dataset. The XLM-R model initially misclassified three instances in this
setup, as shown in Figure 15b. Further adjustments were made by lowering both the initial
and foremost learning rates. After these modifications, the model incorrectly classified six
instances, as shown in Figure 15c. However, this tuning enhanced the XLM-R model’s
performance on other datasets during the inference phase, particularly with the custom
and AIRABIC datasets, when operating with the adjusted lower initial and default learn-
ing rates.

The big challenge in fine-tuning pre-trained models is preventing overfitting. Our
study addressed this by carefully adjusting the learning rates for the AraELECTRA model
during its application to the custom dataset. Specifically, the initial learning rate was re-
duced to 1 × 10ି଼, and the main learning rate was reduced to approximately 1.5 × 10ି.
These adjustments enabled the model to be effectively trained for up to 30 epochs. The
optimal performance was observed at epoch 27, where the model achieved its lowest loss
value of 0.008, as illustrated in Figure 16.

(a) (b)

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 23 of 29

(c)

Figure 15. Performance comparison of two models on the custom dataset’s testing set: (a) AraELEC-
TRA model; (b) XLM-R model using the same hyperparameters as the AraELECTRA model; (c)
XLM-R model with adjusted hyperparameters (‘learning_rate’: 3.2 × 10ିହ, ‘initial_learning_rate’: 1 × 10ି଼).

(a) (b)

Figure 16. Performance of the AraELECTRA model on a custom dataset. (a) The loss during the
training and validation phases, where the x-axis represents epochs (e.g., 5 epochs, 10 epochs, 15
epochs) indicating the training process’s progress over time. (b) The training and validation accu-
racy over the same epochs. This representation provides insights into the model’s learning dynamics
and overall effectiveness throughout the training period.

In contrast, the XLM-R model exhibited a different pattern. The validation loss
started relatively low, at 0.1, even with the previously mentioned hyperparameters. Sub-
sequent efforts to address this issue have been taken for tackling the loss, such as increas-
ing the dropout ratio to 0.2, 0.3, and subsequently to 0.5, but were unsuccessful in signifi-
cantly improving the results or mitigating the overfitting problem. Consequently, it was

Figure 15. Performance comparison of two models on the custom dataset’s testing set: (a) Ara-
ELECTRA model; (b) XLM-R model using the same hyperparameters as the AraELECTRA model;
(c) XLM-R model with adjusted hyperparameters (‘learning_rate’: 3.2 × 10−5, ‘initial_learning_rate’:
1 × 10−8).

The big challenge in fine-tuning pre-trained models is preventing overfitting. Our
study addressed this by carefully adjusting the learning rates for the AraELECTRA model
during its application to the custom dataset. Specifically, the initial learning rate was
reduced to 1 × 10−8, and the main learning rate was reduced to approximately 1.5 × 10−6.
These adjustments enabled the model to be effectively trained for up to 30 epochs. The
optimal performance was observed at epoch 27, where the model achieved its lowest loss
value of 0.008, as illustrated in Figure 16.

Big Data Cogn. Comput. 2024, 8, 32 21 of 26

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 23 of 29

(c)

Figure 15. Performance comparison of two models on the custom dataset’s testing set: (a) AraELEC-
TRA model; (b) XLM-R model using the same hyperparameters as the AraELECTRA model; (c)
XLM-R model with adjusted hyperparameters (‘learning_rate’: 3.2 × 10ିହ, ‘initial_learning_rate’: 1 × 10ି଼).

(a) (b)

Figure 16. Performance of the AraELECTRA model on a custom dataset. (a) The loss during the
training and validation phases, where the x-axis represents epochs (e.g., 5 epochs, 10 epochs, 15
epochs) indicating the training process’s progress over time. (b) The training and validation accu-
racy over the same epochs. This representation provides insights into the model’s learning dynamics
and overall effectiveness throughout the training period.

In contrast, the XLM-R model exhibited a different pattern. The validation loss
started relatively low, at 0.1, even with the previously mentioned hyperparameters. Sub-
sequent efforts to address this issue have been taken for tackling the loss, such as increas-
ing the dropout ratio to 0.2, 0.3, and subsequently to 0.5, but were unsuccessful in signifi-
cantly improving the results or mitigating the overfitting problem. Consequently, it was

Figure 16. Performance of the AraELECTRA model on a custom dataset. (a) The loss during
the training and validation phases, where the x-axis represents epochs (e.g., 5 epochs, 10 epochs,
15 epochs) indicating the training process’s progress over time. (b) The training and validation
accuracy over the same epochs. This representation provides insights into the model’s learning
dynamics and overall effectiveness throughout the training period.

In contrast, the XLM-R model exhibited a different pattern. The validation loss started
relatively low, at 0.1, even with the previously mentioned hyperparameters. Subsequent efforts
to address this issue have been taken for tackling the loss, such as increasing the dropout ratio
to 0.2, 0.3, and subsequently to 0.5, but were unsuccessful in significantly improving the results
or mitigating the overfitting problem. Consequently, it was observed that the XLM-R model
is particularly susceptible to overfitting. The most favorable results obtained from running
the XLM-R model on the custom dataset were by running the model for 10 epochs using the
following hyperparameters: batch size 32 with enhancements on the learning rate by applying
a warmup phase, learning_rate: 3.2× 10−5, initial_learning_rate: 1× 10−8, warmup_epochs:
2. The model’s best loss was obtained at epoch 6, with a validation loss of 0.0002. Beyond this
point, the model’s loss escalated, indicative of increasing overfitting.

In the experiments conducted on the large dataset, both the XLM-R and AraELECTRA
models initially demonstrated low validation losses, starting at 0.03. Despite this promis-
ing outset, the XLM-R model exhibited notable overfitting, more so than its counterpart.
Extensive experimentation was conducted to optimize hyperparameters specifically for
this dataset. Despite the variability in results, both models demonstrated proficiency in
detecting AIGT and HWT, though validation losses fluctuated and eventually increased.
Optimal results on this dataset were achieved using the XLM-R model for ten epochs, with
a batch size of 64, an initial learning rate of 5 × 10−8, a learning rate of 3.2 × 10−6, and
warmup epochs set at five. These hyperparameters yielded the most favorable outcomes
during the inference phase on both the custom and AIRABIC datasets despite being less
effective than runs on the custom dataset alone.

In contrast, AraELECTRA displayed superior performance during the inference phase
on both the custom and AIRABIC datasets compared to XLM-R. This suggests greater
robustness in AraELECTRA, although its results were less optimal than when trained solely
on the custom dataset. This disparity underscores the crucial role of dataset quality and
composition in model training. Native datasets, with their inherent linguistic authenticity,
often provide a more conducive environment for effective training than datasets composed
predominantly of translated material.

The robustness of the model is evident during the inference phase when tested against
various datasets. Notably, XLM-R demonstrates poor performance following training
on large datasets. In contrast, AraELECTRA exhibits satisfactory results under similar
conditions. However, when both models are trained on a custom dataset, they each
show improved performance, particularly against the benchmark dataset, which was the
measurement criteria of our study. More details are in the following section.

Big Data Cogn. Comput. 2024, 8, 32 22 of 26

5.3. Improvement Contribution of Dediacritization Layer toward the Classifier

The findings elucidated that the dataset’s robustness on which the classifier is trained
emerges as the pivotal factor influencing its efficacy. When trained on the custom dataset,
the classifier demonstrated enhanced performance, outperforming the results obtained
from a significantly larger, translated dataset (large dataset). Nonetheless, the inherent
robustness of the dataset proved insufficient for the classifier to effectively process texts
laden with diacritics, as in 500 examples of the AIRABIC dataset. Therefore, integrating
a Dediacritization Layer enhances the classifier’s ability to receive diacritics-free texts,
thereby markedly improving its classification accuracy. Table 11 compares the detection of
the two fine-tuned models before and after the use of the Dediacritization Layer.

Table 11. Dediacritization Layer contribution toward classifier efficacy: comparative performance
metrics of the two models against the AIRABIC benchmark dataset with and without Dediacritization
Layer intervention.

Without Dediacritization Layer With Dediacritization Layer

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 25 of 29

(a) (b)

Fine-tuned AraELECTRA model trained on the custom dataset. (a) Without Dediacritization Layer. (b) With
Dediacritization Layer.

(a) (b)

Fine-tuned AraELECTRA model trained on the large dataset. (a) Without Dediacritization Layer. (b) With
Dediacritization Layer.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 25 of 29

(a) (b)

Fine-tuned AraELECTRA model trained on the custom dataset. (a) Without Dediacritization Layer. (b) With
Dediacritization Layer.

(a) (b)

Fine-tuned AraELECTRA model trained on the large dataset. (a) Without Dediacritization Layer. (b) With
Dediacritization Layer.

(a) (b)

Fine-tuned AraELECTRA model trained on the custom dataset. (a) Without Dediacritization Layer. (b) With Dediacritization Layer.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 25 of 29

(a) (b)

Fine-tuned AraELECTRA model trained on the custom dataset. (a) Without Dediacritization Layer. (b) With
Dediacritization Layer.

(a) (b)

Fine-tuned AraELECTRA model trained on the large dataset. (a) Without Dediacritization Layer. (b) With
Dediacritization Layer.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 25 of 29

(a) (b)

Fine-tuned AraELECTRA model trained on the custom dataset. (a) Without Dediacritization Layer. (b) With
Dediacritization Layer.

(a) (b)

Fine-tuned AraELECTRA model trained on the large dataset. (a) Without Dediacritization Layer. (b) With
Dediacritization Layer.

(a) (b)

Fine-tuned AraELECTRA model trained on the large dataset. (a) Without Dediacritization Layer. (b) With Dediacritization Layer.

Big Data Cogn. Comput. 2024, 8, 32 23 of 26

Table 11. Cont.

Without Dediacritization Layer With Dediacritization Layer

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 26 of 29

(a) (b)

Fine-tuned XLM-R model trained on the custom dataset. (a) Without Dediacritization Layer. (b) With Dediacritization
Layer.

(a) (b)

Fine-tuned XLM-R model trained on the large dataset. (a) Without Dediacritization Layer. (b) With Dediacritization
Layer.

6. Conclusions and Future Work
In this paper, we developed the first Arabic AI detector after ChatGPT emerged. It

was designed to distinguish between Arabic synthetic ChatGPT- and BARD-generated
texts and HWTs, a domain in which current AI detection systems have shown considera-
ble shortcomings. Two encoder-based Transformer architecture models, AraELECTRA
and XLM-R, were fine-tuned on datasets intentionally devoid of diacritics-laden texts.
This was conducted to assess how well our classifiers recognize diacritical content, partic-
ularly using the AIRABIC benchmark dataset, which includes texts both with and without
diacritics. These models outperformed two well-known AI detectors, GPTZero and the

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 26 of 29

(a) (b)

Fine-tuned XLM-R model trained on the custom dataset. (a) Without Dediacritization Layer. (b) With Dediacritization
Layer.

(a) (b)

Fine-tuned XLM-R model trained on the large dataset. (a) Without Dediacritization Layer. (b) With Dediacritization
Layer.

6. Conclusions and Future Work
In this paper, we developed the first Arabic AI detector after ChatGPT emerged. It

was designed to distinguish between Arabic synthetic ChatGPT- and BARD-generated
texts and HWTs, a domain in which current AI detection systems have shown considera-
ble shortcomings. Two encoder-based Transformer architecture models, AraELECTRA
and XLM-R, were fine-tuned on datasets intentionally devoid of diacritics-laden texts.
This was conducted to assess how well our classifiers recognize diacritical content, partic-
ularly using the AIRABIC benchmark dataset, which includes texts both with and without
diacritics. These models outperformed two well-known AI detectors, GPTZero and the

(a) (b)

Fine-tuned XLM-R model trained on the custom dataset. (a) Without Dediacritization Layer. (b) With Dediacritization Layer.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 26 of 29

(a) (b)

Fine-tuned XLM-R model trained on the custom dataset. (a) Without Dediacritization Layer. (b) With Dediacritization
Layer.

(a) (b)

Fine-tuned XLM-R model trained on the large dataset. (a) Without Dediacritization Layer. (b) With Dediacritization
Layer.

6. Conclusions and Future Work
In this paper, we developed the first Arabic AI detector after ChatGPT emerged. It

was designed to distinguish between Arabic synthetic ChatGPT- and BARD-generated
texts and HWTs, a domain in which current AI detection systems have shown considera-
ble shortcomings. Two encoder-based Transformer architecture models, AraELECTRA
and XLM-R, were fine-tuned on datasets intentionally devoid of diacritics-laden texts.
This was conducted to assess how well our classifiers recognize diacritical content, partic-
ularly using the AIRABIC benchmark dataset, which includes texts both with and without
diacritics. These models outperformed two well-known AI detectors, GPTZero and the

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 26 of 29

(a) (b)

Fine-tuned XLM-R model trained on the custom dataset. (a) Without Dediacritization Layer. (b) With Dediacritization
Layer.

(a) (b)

Fine-tuned XLM-R model trained on the large dataset. (a) Without Dediacritization Layer. (b) With Dediacritization
Layer.

6. Conclusions and Future Work
In this paper, we developed the first Arabic AI detector after ChatGPT emerged. It

was designed to distinguish between Arabic synthetic ChatGPT- and BARD-generated
texts and HWTs, a domain in which current AI detection systems have shown considera-
ble shortcomings. Two encoder-based Transformer architecture models, AraELECTRA
and XLM-R, were fine-tuned on datasets intentionally devoid of diacritics-laden texts.
This was conducted to assess how well our classifiers recognize diacritical content, partic-
ularly using the AIRABIC benchmark dataset, which includes texts both with and without
diacritics. These models outperformed two well-known AI detectors, GPTZero and the

(a) (b)

Fine-tuned XLM-R model trained on the large dataset. (a) Without Dediacritization Layer. (b) With Dediacritization Layer.

6. Conclusions and Future Work

In this paper, we developed the first Arabic AI detector after ChatGPT emerged. It
was designed to distinguish between Arabic synthetic ChatGPT- and BARD-generated
texts and HWTs, a domain in which current AI detection systems have shown considerable
shortcomings. Two encoder-based Transformer architecture models, AraELECTRA and
XLM-R, were fine-tuned on datasets intentionally devoid of diacritics-laden texts. This was
conducted to assess how well our classifiers recognize diacritical content, particularly using
the AIRABIC benchmark dataset, which includes texts both with and without diacritics.
These models outperformed two well-known AI detectors, GPTZero and the OpenAI Text
Classifier. Incorporating a Dediacritization Layer further enhanced the detection accuracy,
increasing it to 99% and, in some instances, 100%. This marks a significant advancement in
developing an AI text classifier for Arabic texts that distinguishes between HWT and AIGT
from ChatGPT and BARD. Building on this success, in our future research, we intend to
delve deeper into this domain by utilizing a variety of pre-trained models. These models

Big Data Cogn. Comput. 2024, 8, 32 24 of 26

will be trained on texts containing both forms of Arabic script, with and without diacritics. A
pivotal aspect of future research will be to compare the effectiveness of two methodologies:
training models on diacritics-laden texts versus employing a Dediacritization Layer, with
the latter having already demonstrated significant efficacy. This comparison is crucial in
identifying the superior approach, particularly in developing a classifier that supports
multiple languages.

Author Contributions: Conceptualization, H.A. and K.E.; methodology, H.A.; software, H.A.; valida-
tion, H.A., A.E.-S. and K.E.; formal analysis, H.A.; investigation, H.A.; resources, H.A.; data curation,
H.A.; writing—original draft preparation, H.A.; writing—review and editing, H.A., A.E.-S. and K.E.;
visualization, H.A.; supervision, A.E.-S. and K.E.; project administration, K.E. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors received no financial support for this research.

Data Availability Statement: All materials related to our study, including the trained models, detailed
results reports, source code, and datasets, are publicly accessible via our dedicated GitHub repository:
https://github.com/Hamed1Hamed/Arabic_AI_Detector (accessed on 1 February 2024).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ahmed, A.; Ali, N.; Alzubaidi, M.; Zaghouani, W.; Abd-alrazaq, A.A.; Househ, M. Freely available Arabic corpora: A scoping

review. Comput. Methods Programs Biomed. Update 2022, 2, 100049. [CrossRef]
2. UNESCO. World Arabic Language Day. Available online: https://www.unesco.org/en/world-arabic-language-day (accessed on

19 December 2023).
3. Chemnad, K.; Othman, A. Advancements in Arabic Text-to-Speech Systems: A 22-Year Literature Review. IEEE Access 2023, 11,

30929–30954. [CrossRef]
4. United Nations. Official Languages. Available online: https://www.un.org/en/our-work/official-languages (accessed on 25

December 2023).
5. Obeid, O.; Zalmout, N.; Khalifa, S.; Taji, D.; Oudah, M.; Alhafni, B.; Inoue, G.; Eryani, F.; Erdmann, A.; Habash, N. CAMeL tools:

An open source python toolkit for Arabic natural language processing. In Proceedings of the Twelfth Language Resources and
Evaluation Conference, Marseille, France, 11–16 May 2020; pp. 7022–7032.

6. Farghaly, A.; Shaalan, K. Arabic natural language processing: Challenges and solutions. ACM Trans. Asian Lang. Inf. Process.
(TALIP) 2009, 8, 1–22. [CrossRef]

7. Darwish, K.; Habash, N.; Abbas, M.; Al-Khalifa, H.; Al-Natsheh, H.T.; Bouamor, H.; Bouzoubaa, K.; Cavalli-Sforza, V.; El-Beltagy,
S.R.; El-Hajj, W. A panoramic survey of natural language processing in the Arab world. Commun. ACM 2021, 64, 72–81. [CrossRef]

8. Habash, N.Y. Introduction to Arabic natural language processing. Synth. Lect. Hum. Lang. Technol. 2010, 3, 1–187.
9. GPTZero. Available online: https://gptzero.me/ (accessed on 1 June 2023).
10. OpenAI. Available online: https://beta.openai.com/ai-text-classifier (accessed on 1 June 2023).
11. Alshammari, H.; El-Sayed, A. AIRABIC: Arabic Dataset for Performance Evaluation of AI Detectors. In Proceedings of the 2023

International Conference on Machine Learning and Applications (ICMLA), Jacksonville Riverfront, FL, USA, 15–17 December
2023; pp. 1–5.

12. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. Language
models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

13. Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra, G.; Roberts, A.; Barham, P.; Chung, H.W.; Sutton, C.; Gehrmann, S.
Palm: Scaling language modeling with pathways. arXiv 2022, arXiv:2204.02311.

14. OpenAI. ChatGPT (Mar 14 Version) [Large Language Model]. Available online: https://chat.openai.com/chat (accessed on 14
March 2023).

15. Trichopoulos, G.; Konstantakis, M.; Caridakis, G.; Katifori, A.; Koukouli, M. Crafting a Museum Guide Using ChatGPT4. Big Data
Cogn. Comput. 2023, 7, 148. [CrossRef]

16. Pegoraro, A.; Kumari, K.; Fereidooni, H.; Sadeghi, A.-R. To ChatGPT, or not to ChatGPT: That is the question! arXiv 2023,
arXiv:2304.01487.

17. Wölfel, M.; Shirzad, M.B.; Reich, A.; Anderer, K. Knowledge-Based and Generative-AI-Driven Pedagogical Conversational
Agents: A Comparative Study of Grice’s Cooperative Principles and Trust. Big Data Cogn. Comput. 2023, 8, 2. [CrossRef]

18. Hassani, H.; Silva, E.S. The role of ChatGPT in data science: How ai-assisted conversational interfaces are revolutionizing the
field. Big Data Cogn. Comput. 2023, 7, 62. [CrossRef]

19. Bard. Available online: https://bard.google.com/ (accessed on 30 January 2023).
20. Sheng, E.; Chang, K.-W.; Natarajan, P.; Peng, N. Societal biases in language generation: Progress and challenges. arXiv 2021,

arXiv:2105.04054.

https://github.com/Hamed1Hamed/Arabic_AI_Detector
https://doi.org/10.1016/j.cmpbup.2022.100049
https://www.unesco.org/en/world-arabic-language-day
https://doi.org/10.1109/ACCESS.2023.3260844
https://www.un.org/en/our-work/official-languages
https://doi.org/10.1145/1644879.1644881
https://doi.org/10.1145/3447735
https://gptzero.me/
https://beta.openai.com/ai-text-classifier
https://chat.openai.com/chat
https://doi.org/10.3390/bdcc7030148
https://doi.org/10.3390/bdcc8010002
https://doi.org/10.3390/bdcc7020062
https://bard.google.com/

Big Data Cogn. Comput. 2024, 8, 32 25 of 26

21. Weidinger, L.; Uesato, J.; Rauh, M.; Griffin, C.; Huang, P.-S.; Mellor, J.; Glaese, A.; Cheng, M.; Balle, B.; Kasirzadeh, A. Taxonomy
of risks posed by language models. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency,
Seoul, Republic of Korea, 21–24 June 2022; pp. 214–229.

22. Zhuo, T.Y.; Huang, Y.; Chen, C.; Xing, Z. Exploring ai ethics of chatgpt: A diagnostic analysis. arXiv 2023, arXiv:2301.12867.
23. Cotton, D.R.; Cotton, P.A.; Shipway, J.R. Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innov. Educ.

Teach. Int. 2023, 61, 228–239. [CrossRef]
24. Gao, C.A.; Howard, F.M.; Markov, N.S.; Dyer, E.C.; Ramesh, S.; Luo, Y.; Pearson, A.T. Comparing scientific abstracts generated by

ChatGPT to original abstracts using an artificial intelligence output detector, plagiarism detector, and blinded human reviewers.
BioRxiv 2022. [CrossRef]

25. Anderson, N.; Belavy, D.L.; Perle, S.M.; Hendricks, S.; Hespanhol, L.; Verhagen, E.; Memon, A.R. AI did not write this manuscript,
or did it? Can we trick the AI text detector into generated texts? The potential future of ChatGPT and AI in Sports & Exercise
Medicine manuscript generation. BMJ Open Sport Exerc. Med. 2023, 9, e001568. [PubMed]

26. Kumar, S.; Balachandran, V.; Njoo, L.; Anastasopoulos, A.; Tsvetkov, Y. Language generation models can cause harm: So what can
we do about it? An actionable survey. arXiv 2022, arXiv:2210.07700.

27. Abramski, K.; Citraro, S.; Lombardi, L.; Rossetti, G.; Stella, M. Cognitive network science reveals bias in GPT-3, GPT-3.5 Turbo,
and GPT-4 mirroring math anxiety in high-school students. Big Data Cogn. Comput. 2023, 7, 124.

28. Taecharungroj, V. “What Can ChatGPT Do?” Analyzing Early Reactions to the Innovative AI Chatbot on Twitter. Big Data Cogn.
Comput. 2023, 7, 35. [CrossRef]

29. Zellers, R.; Holtzman, A.; Rashkin, H.; Bisk, Y.; Farhadi, A.; Roesner, F.; Choi, Y. Defending against neural fake news. In
Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.

30. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018.
work in progress. Available online: https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_
paper.pdf (accessed on 1 December 2023).

31. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

32. Gehrmann, S.; Strobelt, H.; Rush, A.M. Gltr: Statistical detection and visualization of generated text. arXiv 2019, arXiv:1906.04043.
33. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI

Blog 2019, 1, 9.
34. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
35. Adelani, D.I.; Mai, H.; Fang, F.; Nguyen, H.H.; Yamagishi, J.; Echizen, I. Generating sentiment-preserving fake online reviews

using neural language models and their human-and machine-based detection. In Advanced Information Networking and Applications,
Proceedings of the 34th International Conference on Advanced Information Networking and Applications (AINA-2020), Caserta, Italy, 15–17
April 2020; pp. 1341–1354.

36. Uchendu, A.; Le, T.; Shu, K.; Lee, D. Authorship attribution for neural text generation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; pp. 8384–8395.

37. Keskar, N.S.; McCann, B.; Varshney, L.R.; Xiong, C.; Socher, R. Ctrl: A conditional transformer language model for controllable
generation. arXiv 2019, arXiv:1909.05858.

38. Lample, G.; Conneau, A. Cross-lingual language model pretraining. arXiv 2019, arXiv:1901.07291.
39. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language

understanding. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14
December 2019.

40. Dathathri, S.; Madotto, A.; Lan, J.; Hung, J.; Frank, E.; Molino, P.; Yosinski, J.; Liu, R. Plug and play language models: A simple
approach to controlled text generation. arXiv 2019, arXiv:1912.02164.

41. Ng, N.; Yee, K.; Baevski, A.; Ott, M.; Auli, M.; Edunov, S. Facebook FAIR’s WMT19 news translation task submission. arXiv 2019,
arXiv:1907.06616.

42. Fagni, T.; Falchi, F.; Gambini, M.; Martella, A.; Tesconi, M. TweepFake: About detecting deepfake tweets. PLoS ONE 2021, 16,
e0251415. [CrossRef] [PubMed]

43. Harrag, F.; Debbah, M.; Darwish, K.; Abdelali, A. Bert transformer model for detecting Arabic GPT2 auto-generated tweets. arXiv
2021, arXiv:2101.09345.

44. Nguyen-Son, H.-Q.; Thao, T.; Hidano, S.; Gupta, I.; Kiyomoto, S. Machine translated text detection through text similarity
with round-trip translation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Online, 6–11 June 2021; pp. 5792–5797.

45. Antoun, W.; Baly, F.; Hajj, H. AraGPT2: Pre-trained transformer for Arabic language generation. arXiv 2020, arXiv:2012.15520.
46. Clark, K.; Luong, M.-T.; Le, Q.V.; Manning, C.D. Electra: Pre-training text encoders as discriminators rather than generators. arXiv

2020, arXiv:2003.10555.
47. Jawahar, G.; Abdul-Mageed, M.; Lakshmanan, L.V. Automatic Detection of Entity-Manipulated Text using Factual Knowledge.

arXiv 2022, arXiv:2203.10343.

https://doi.org/10.1080/14703297.2023.2190148
https://doi.org/10.1101/2022.12.23.521610
https://www.ncbi.nlm.nih.gov/pubmed/36816423
https://doi.org/10.3390/bdcc7010035
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.1371/journal.pone.0251415
https://www.ncbi.nlm.nih.gov/pubmed/33984021

Big Data Cogn. Comput. 2024, 8, 32 26 of 26

48. Guo, B.; Zhang, X.; Wang, Z.; Jiang, M.; Nie, J.; Ding, Y.; Yue, J.; Wu, Y. How close is chatgpt to human experts? comparison
corpus, evaluation, and detection. arXiv 2023, arXiv:2301.07597.

49. Rajpurkar, P.; Zhang, J.; Lopyrev, K.; Liang, P. Squad: 100,000+ questions for machine comprehension of text. arXiv 2016,
arXiv:1606.05250.

50. Fan, A.; Jernite, Y.; Perez, E.; Grangier, D.; Weston, J.; Auli, M. ELI5: Long form question answering. arXiv 2019, arXiv:1907.09190.
51. Kirchenbauer, J.; Geiping, J.; Wen, Y.; Katz, J.; Miers, I.; Goldstein, T. A watermark for large language models. arXiv 2023,

arXiv:2301.10226.
52. Fernandez, P.; Chaffin, A.; Tit, K.; Chappelier, V.; Furon, T. Three bricks to consolidate watermarks for large language models.

arXiv 2023, arXiv:2308.00113.
53. Christ, M.; Gunn, S.; Zamir, O. Undetectable Watermarks for Language Models. arXiv 2023, arXiv:2306.09194.
54. Mitrović, S.; Andreoletti, D.; Ayoub, O. Chatgpt or human? detect and explain. explaining decisions of machine learning model

for detecting short chatgpt-generated text. arXiv 2023, arXiv:2301.13852.
55. Antoun, W.; Mouilleron, V.; Sagot, B.; Seddah, D. Towards a Robust Detection of Language Model Generated Text: Is ChatGPT

that Easy to Detect? arXiv 2023, arXiv:2306.05871.
56. De Bruyn, M.; Lotfi, E.; Buhmann, J.; Daelemans, W. MFAQ: A multilingual FAQ dataset. arXiv 2021, arXiv:2109.12870.
57. Martin, L.; Muller, B.; Suárez, P.J.; Dupont, Y.; Romary, L.; de La Clergerie, É.V.; Seddah, D.; Sagot, B. CamemBERT: A tasty French

language model. arXiv 2019, arXiv:1911.03894.
58. Antoun, W.; Sagot, B.; Seddah, D. Data-Efficient French Language Modeling with CamemBERTa. arXiv 2023, arXiv:2306.01497.
59. Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.; Zettlemoyer, L.; Stoyanov, V.

Unsupervised cross-lingual representation learning at scale. arXiv 2019, arXiv:1911.02116.
60. Mozannar, H.; Hajal, K.E.; Maamary, E.; Hajj, H. Neural Arabic question answering. arXiv 2019, arXiv:1906.05394.
61. Clark, J.H.; Choi, E.; Collins, M.; Garrette, D.; Kwiatkowski, T.; Nikolaev, V.; Palomaki, J. Tydi qa: A benchmark for information-

seeking question answering in ty pologically di verse languages. Trans. Assoc. Comput. Linguist. 2020, 8, 454–470. [CrossRef]
62. Lewis, P.; Oğuz, B.; Rinott, R.; Riedel, S.; Schwenk, H. MLQA: Evaluating cross-lingual extractive question answering. arXiv 2019,

arXiv:1910.07475.
63. Nguyen, T.T.; Hatua, A.; Sung, A.H. How to Detect AI-Generated Texts? In 2023 IEEE 14th Annual Ubiquitous Computing,

Electronics & Mobile Communication Conference (UEMCON); IEEE: Piscataway, NJ, USA, 2023.
64. Zerrouki, T.; Balla, A. Tashkeela: Novel corpus of Arabic vocalized texts, data for auto-diacritization systems. Data Brief. 2017, 11,

147–151. [CrossRef]
65. Shamela. Available online: https://shamela.ws/ (accessed on 3 August 2023).
66. Aldiwan: Encyclopedia of Arabic Poetry. Available online: https://www.aldiwan.net/ (accessed on 1 October 2023).
67. Antoun, W.; Baly, F.; Hajj, H. AraELECTRA: Pre-training text discriminators for Arabic language understanding. arXiv 2020,

arXiv:2012.15516.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1016/j.dib.2017.01.011
https://shamela.ws/
https://www.aldiwan.net/

	Introduction
	Arabic Language Challenges
	Arabic Diacritization Marks’ Background
	Challenges for AI Detectors in Processing Arabic Texts with Diacritics
	Large Language Models

	Related Works
	Detection of AIGT Prior to ChatGPT
	Detection of AIGT after ChatGPT

	Methodology
	Data Collection
	Detector Architecture
	Fine-Tuning Process
	Dediacritization Layer

	Pipeline Design
	Experimental Evaluation Protocol
	Hyperparameters

	Results
	Our Best Models vs. GPTZero and OpenAI Text Classifier
	GPTZero against AIRABIC Benchmark Dataset
	OpenAI Text Classifier against AIRABIC Benchmark Dataset
	Fine-Tuned AraELECTRA Model against AIRABIC Benchmark Dataset
	Fine-Tuned XLM-R Model against AIRABIC Benchmark Dataset

	Discussion
	Large Dataset vs. Custom Dataset Content Variation
	XLM-R vs. AraELECTRA Performance
	Improvement Contribution of Dediacritization Layer toward the Classifier

	Conclusions and Future Work
	References

