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Abstract: Due to the projected increase in food production by 70% in 2050, crops should be addi-
tionally protected from diseases and pests to ensure a sufficient food supply. Transfer deep learning
approaches provide a more efficient solution than traditional methods, which are labor-intensive and
struggle to effectively monitor large areas, leading to delayed disease detection. This study proposed
a versatile module based on the Inception module, Mish activation function, and Batch normalization
(IncMB) as a part of deep neural networks. A convolutional neural network (CNN) with transfer
learning was used as the base for evaluated approaches for tomato disease detection: (1) CNNs,
(2) CNNs with a support vector machine (SVM), and (3) CNNs with the proposed IncMB module. In
the experiment, the public dataset PlantVillage was used, containing images of six different tomato
leaf diseases. The best results were achieved by the pre-trained InceptionV3 network, which contains
an IncMB module with an accuracy of 97.78%. In three out of four cases, the highest accuracy was
achieved by networks containing the proposed IncMB module in comparison to evaluated CNNs.
The proposed IncMB module represented an improvement in the early detection of plant diseases,
providing a basis for timely leaf disease detection.

Keywords: convolutional neural network; leaf disease classification; Mish activation function; opti-
mization; PlantVillage dataset

1. Introduction

The growing trend of human population is a new challenge in food production, which
should increase by 70% to feed the world’s population in 2050 [1,2]. With the growing use
of data classification, deep machine learning, and precision agriculture, we are confronted
with the challenge of diagnosing diseases faster to prevent their progression and epidemic.
It is necessary to eliminate the possibility of complications that arise over time by providing
timely treatment for plant diseases [3]. Therefore, it is imperative to construct models
that provide objective assistance to experts in decision-making and expedite the process of
disease identification, such as neural networks that simulate biological organization [4].
Given the limitations of human oversight in continuously monitoring vast agricultural
fields, advancements in transfer deep machine learning and remote sensing technologies are
enabling the earlier and more precise terrestrial and visual detection of plant diseases [5–7].
As one of the essential food staples in the world, the global annual production value of
tomatoes exceeds USD 90 billion [8]. With the global impact of climate change on overall
agricultural production, causing pest and insecticide resistance, target tomato yields are at
risk [9]. The climate change crop impact model forecasts a significant rise in the potential
for two-spotted spider mite outbreaks across nine countries in Europe, Africa, and Asia [9].
As a result of international trade, the main concern is the competition of invasive species
with native organisms as well as the spread of resistance genotypes [10]. According to
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Guedes et al. [11], the tomato pinworm Tuta absoluta, the well-known tomato pest, has
developed resistance to close to a hundred active chemical ingredients [11,12]. Moreover,
the tomato yellow leaf curl virus has recently been reported as seed-transmissible, with
a potential risk of causing economic losses and decreasing agricultural production [13].
Inadequate use of pesticides can cause long-term resistance to pathogens and damage the
plant’s defense mechanism [14], but could be prevented by early detection, which allows
targeted application of pesticides or fungicides only to infected areas or specific crops
exhibiting symptoms. It could also minimize unnecessary usage of chemicals, reduce costs,
and protect healthy plants from potential harm caused by broad-spectrum pesticides [15].
For diseases without visible symptoms of infection or symptoms that are noticed too late,
the present treatment options cannot prevent damage to crop yield quality [16,17].

Deep learning algorithms have provided accurate and computationally efficient solu-
tions for the early detection of plant diseases so far. They outperform existing traditional
methods for diagnosing plant diseases that rely on human expertise, leading to potential
delays in treatment [3]. Moreover, traditional monitoring methods are labor-intensive and
cannot cover large areas effectively, allowing diseases to spread before detection [5]. The
development and use of state-of-the-art transfer deep learning methods in the last decade
have exponentially increased compared to classic machine learning methods [18]. This
statement is also confirmed by the distribution of scientific papers indexed in the Web of
Science Core Collection based on the application of deep machine learning in the detection
of plant diseases since 2015 (Figure 1). In the second half of the previous decade, the num-
ber of published papers in which deep learning methods were used for recognizing plant
leaf disease increased. Nevertheless, the research gap still exists regarding the optimization
of presently known deep learning methods [19].
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Figure 1. Distribution of papers indexed in the Web of Science Core Collection with the application
of machine learning in the recognition of plant diseases from 2015 to 2022.

The proposed method for tomato disease detection was based on the color and struc-
ture of the leaf, since most often the first symptoms of the disease appear on the tomato
leaves. To improve the present transfer deep learning models, the goal of this study was
to develop a module based on the Inception module, Mish activation function, and Batch
normalization (IncMB), which represents a versatile module that can be embedded in deep
neural networks to optimize CNNs while achieving higher accuracy. In the comparison of
pre-trained CNNs, CNNs with SVM, and CNNs with the IncMB module, the hypothesis is
that the approach of the deep network with the IncMB module is the most accurate for the
detection of tomato leaf disease.
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2. Related Works

While significant progress has been made in automated tomato plant disease recog-
nition using deep learning techniques, the scalability and robustness of these models in
real-world agricultural settings remain areas of active research and development. Previous
research had moderate success in optimizing deep learning methods for the detection of
plant leaf diseases.

Albattah et al. [20] presented a new approach using deep machine learning in the
detection and classification of plant diseases by introducing a robust classification system
based on the publicly available PlantVillage dataset [21]. While DenseNet-77 served to
extract key features and summarize them, the CenterNet network enabled the detection and
categorization of plant diseases [20]. Lee et al. [22] presented methods for the detection and
classification of plant diseases using CNNs based on pre-trained models. They examined
the performance of pre-trained models and models trained only on the observed dataset,
after which they discovered that the best performance was achieved by the pre-trained
model based on transfer learning. They also confirmed that the isolated features do not
necessarily indicate a classified disease due to the difference in symptoms during plant
development. Ramcharan et al. [23] used transfer learning to train a CNN to successfully
recognize three diseases and two pests that affect the cassava plant, which is one of the
three largest sources of carbohydrates in Sub-Saharan Africa. The used dataset contained
images of cassava diseases in different stages of growth with the observation of different
genotypes. By analyzing the performance of the InceptionV3 network with the Inception
softmax layer, the SVM method, and the k-nearest neighbor method (k = 3), the best model
achieved an accuracy of 93.00% and was implemented on Android devices [23]. Chen
et al. [24] created a model based on transfer learning and CNNs for detecting lesions on
plant leaves at an early stage, as well as detecting diseases in general. They expanded the
PlantVillage dataset with self-collected images, which consisted of diseased examples of
rice and corn. Using a pre-trained VGGNet model, they achieved an accuracy of 91.83% for
recognizing the diseases available in the PlantVillage dataset, while the accuracy of identi-
fying examples within the self-collected database was 92.00%. Saeed et al. [25] used two
pretrained CNNs, InceptionV3 and InceptionResNetV2, which were trained on 5225 images
from the PlantVillage dataset [21] to classify healthy and unhealthy tomato leaves. They
investigated the impact of using different dropout rates and concluded that the best results
were achieved using InceptionV3 with a 50% dropout rate and InceptionResNetV2 with a
15% dropout rate, with an accuracy of 99.22%. Attallah [26] proposed a pipeline for the
automatic identification of tomato leaf diseases using three compact CNNs. The results
showed that the K-nearest neighbor and support vector machine achieved the highest accu-
racies of 99.92% and 99.90%, respectively, using as few as 22 and 24 features, demonstrating
competitive performance compared to previous studies in tomato leaf disease classification.

While these studies proved the superiority of transfer deep learning models in crop
disease detection in comparison to conventional approaches, there is still potential for
future optimization to ensure a balance between computational complexity and improved
model performance. To effectively minimize crop losses from plant diseases, there is a need
for novel leaf recognition methods. Therefore, this study proposes a universal module to
enhance network performance by ensuring early detection of tomato leaf diseases, which
can be embedded in convolutional neural networks.

3. Materials and Methods

The proposed transfer deep learning method based on the novel IncMB module for
tomato leaf disease detection consisted of the following three steps (Figure 2): (1) input data
preparation for six tomato leaf diseases based on the PlantVillage dataset; (2) evaluation
of deep learning models, including four transfer deep learning models (InceptionV3,
InceptionResNetV2, MobileNetV2, and DenseNet201) and a novel IncMB module; and
(3) tomato leaf disease detection and accuracy assessment.
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Figure 2. The study workflow for tomato disease classification based on transfer deep learning and a
novel IncMB module in the following three steps: (1) input data preprocessing with six tomato leaf
disease images; (2) evaluation of deep learning base models and their combination with SVM and
the proposed IncMB module; and (3) tomato leaf disease classification and accuracy assessment of
evaluated deep learning approaches.

3.1. Data Preprocessing and Experimental Setup

The PlantVillage dataset [21] is a public dataset that is widely used in crop disease
detection research as it consists of more than 50,000 images of plant diseases and healthy
plants. A total of 3300 images of six tomato leaf diseases were used for the training and
validation of CNN algorithms. The selected tomato diseases were early blight (lat. Alternaria
solani), late blight (lat. Phytophthora infestans), septoria leaf spot (lat. Septoria lycopersici),
spider mite (lat. Tetranychus urticae), tomato mosaic virus (lat. Tobamovirus), and tomato
yellow leaf curl virus (lat. Begomovirus). Each class consisted of 550 images of diseased
leaves, for which a stratified random split in a 70:30 ratio was performed to create training
and validation datasets. To avoid overfitting, a training dataset consisted of a uniform
number of images per tomato disease. Moreover, data preprocessing in the form of image
stretching, mirroring, rotation, enhancing contrast, and changing brightness was applied to
expand the dataset, as recommended in previous studies [27–29]. Images were resized to
224 × 224 pixels during preprocessing.

For preprocessing and data augmentation, as well as for implementing CNN models,
the Keras-GPU [30] and TensorFlow-GPU [31] platforms were used in the Python pro-
gramming language. Models were trained and validated using an open-access Google
Colab cloud computing platform, which provided NVIDIA Tesla K80 graphics processing
units with 12 GB of memory. Each network was trained for 30 epochs with a batch size
of 32. Adam was used as the main optimization algorithm, while the learning rate was
automatically determined and adjusted during training.
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3.2. Structure of Transfer Deep Learning Networks for Tomato Leaf Disease Recognition

CNNs are commonly used algorithms for the development of automated systems for
identifying plant diseases by detecting the symptoms on leaves [22]. As a method of deep
machine learning, CNN represents the most promising solution to this problem due to
its precise approach of extracting visual features without the use of segmentation [32–34].
It usually consists of convolution layers with different values of the kernel, which can
be in parallel and activation functions, followed by pooling layers and fully connected
layers [22,35–37].

The purpose of the activation function was to introduce nonlinearity into the network,
which can then learn from data, perform complex calculations, and make predictions. It
is preceded by a linear transformation of each mathematical operation performed during
model learning [38,39]. Activation functions also have an integral role while representing
a mathematical filter between neurons in the current and next layers [40]. By definition,
the Mish function is similar to the Swish activation function, but due to its more accurate
performance and simpler implementation, it is a more common choice when building
deep machine learning models. In addition to increasing the classification accuracy, the
smoothed and non-monotonic Mish function allows setting a lower value of the learning
rate when training the model [41]. The Mish function was implemented in the deep learning
classification method according to Formula (1):

f (x) = x ∗ tanh (softplus(x)) = x ∗ tanh (ln(1+ ex)) (1)

After pretraining, the transfer learning models contained already-learned weights,
which enabled the creation of feature maps before training the model on a specialized
dataset. This approach ensured a drastic reduction in processing time for training as well
as the ability to train for a relatively small amount of input data [35,42,43].

3.3. Structure of the Novel IncMB Module

The idea of implementing the IncMB module is to create a unique system of layers
that can be embedded into all CNNs to achieve better performance and accuracy during
the classification process. The IncMB module includes the most important parts of the
block system, using the Inception module as a base, the Mish activation function in a
separate layer, and the Batch normalization layer. To evaluate the efficiency of the proposed
IncMB module, tomato leaf disease classification was evaluated for CNNs with the IncMB
module, as well as pre-trained CNNs and CNNs with SVM. Figure 3 displays the evaluated
deep learning approaches for tomato leaf disease detection. The Inception module was
introduced in 2015 as part of GoogleNet architecture [44], which is upgraded in later
studies with the idea to minimize the computational cost without effect on the network
generalization [22,45–47]. Such an architecture combines filters of different sizes (5 × 5,
3 × 3, 1 × 1) for feature extraction and regulation of computations. The Inception module
was used as the base of the IncMB module for feature extraction. After the module, the
Mish activation function was applied in a separate layer. The batch normalization was
used to decrease training time, prevent the vanishing gradient problem, and reduce the
chance of overfitting. Feature maps were then reduced with a global pooling layer, and
smaller feature maps were created. Finally, the dense layer constituted the ending layer of
the proposed module.
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3.4. Tomato Leaf Disease Accuracy Assessment

The statistic metrics used for the accuracy assessment of evaluated deep learning
approaches for tomato leaf detection were precision, recall, F1-score, and accuracy. All of
the stated metrics were calculated through the values of the confusion matrix according to
the Formulas (2)–(5):

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

, (4)

Accuracy =
TP + TN

TP + FP + TN + FN
, (5)

where TP (true positive) represents the number of leaves that are correctly classified as
infected. They are usually yellow or brown and have changes in leaf shape, such as
hollowness. The FN (false negative) represents the number of leaves that are incorrectly
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classified as healthy when, in reality, they belong to one of the disease-determining classes.
The FP (false positive) represents the number of leaves misclassified as diseased when, in
reality, they are healthy. The TN (true negative) represents the number of correctly classified
leaves that are healthy and do not belong to any disease-determining class.

4. Results

The accuracy assessment results of tomato leaf disease detection based on four different
network architectures using transfer deep machine learning are presented in Table 1.
The experiment was conducted using 3300 images to identify six different tomato leaf
diseases. The best performance was achieved by the InceptionV3 network containing the
IncMB module, with an accuracy of 97.78%. Following were the InceptionResNetV2 and
MobileNetV2 network architectures, both combined with the IncMB module. Comparing
each network with its version with the IncMB module and the version with the SVM, in
three out of four cases the highest accuracy was achieved by the network with the IncMB
module. In the remaining case, the accuracy of the DenseNet201 network version with
the IncMB module was 92.00%, while in combination with the SVM, it was 92.44%. In the
comparison of other methods, it was observed that the network with the IncMB module
achieved superior results and increased the performance of the classifier in recognizing
tomato diseases. The precision, recall, and F-score confirmed the observations that were
made based on the analysis of accuracy values.

Table 1. Accuracy assessment of evaluated transfer deep learning classification variants for tomato
leaf disease detection.

Transfer Deep
Learning Model

Classification
Approach Accuracy F1-Score Precision Recall

InceptionV3
Base model 0.9333 0.9329 0.9338 0.9335
with SVM 0.8889 0.8866 0.8976 0.8888

with IncMB 0.9778 0.9778 0.9779 0.9778

InceptionResNetV2
Base model 0.9667 0.9662 0.9673 0.9667
with SVM 0.9311 0.9309 0.9337 0.9312

with IncMB 0.9733 0.9733 0.9734 0.9733

MobileNetV2
Base model 0.9156 0.9125 0.9325 0.9155
with SVM 0.8444 0.8443 0.8829 0.8445

with IncMB 0.9500 0.9496 0.9502 0.9500

DenseNet201
Base model 0.8589 0.8569 0.8610 0.8588
with SVM 0.9244 0.9247 0.9288 0.9246

with IncMB 0.9200 0.9195 0.9198 0.9200
The highest accuracy assessment metrics per transfer deep learning model are bolded.

Although the dataset used in the study was balanced considering the number of used
images per tomato leaf disease, the F1-score was evaluated for a particular tomato disease
to present an objective indicator of test accuracy due to the harmonic mean of precision
and recall. Table 2 contains the obtained F1-score values for every tomato disease for
classification trained on CNN with the IncMB module. According to the obtained results,
the highest value of the F1-score was achieved in the class of individuals affected by the
mosaic virus, followed by the tomato yellow leaf curl virus.
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Table 2. The F1-score values for analyzed tomato leaf diseases per classification variant based on the
novel IncMB module.

Tomato Leaf
Disease InceptionV3 InceptionResNetV2 MobileNetV2 DenseNet201

Early blight 0.9498 0.9533 0.8993 0.8407
Late blight 0.9637 0.9530 0.9408 0.8829

Septoria leaf spot 0.9797 0.9701 0.9199 0.9247
Spider mite 0.9834 0.9835 0.9610 0.9373

Mosaic virus 0.9967 0.9865 0.9933 0.9699
Yellow leaf
curl virus 0.9934 0.9934 0.9835 0.9615

The highest F1-scores per tomato leaf disease are in bold.

To ensure that there was no overfitting or underfitting during model training and
validation, Table 3 also displays the training and validation accuracy values and validation
losses over 15 and 30 epochs. While comparing performances within the models, it was
noticed that InceptionV3 consistently achieved the highest training accuracy across all
approaches (CNN, CNN with a support vector machine, and CNN with the proposed
IncMB module). MobileNetV2 demonstrated strong performance, particularly with IncMB,
achieving high training and validation accuracy with lower validation loss compared to
other models at 30 epochs. InceptionResNetV2 and DenseNet201 showed improvement
with additional techniques (SVM, IncMB) but generally fell behind InceptionV3 and Mo-
bileNetV2. While increasing epochs from 15 to 30, it generally led to improved performance
training and validation accuracy for most models, particularly InceptionV3 and Inception-
ResNetV2. However, MobileNetV2 showed minimal improvement in validation accuracy
as the number of epochs increased. While SVM integration improved validation accuracy
slightly for InceptionV3 and InceptionResNetV2 at 30 epochs, it could negatively impact
performance for MobileNetV2. This suggested SVM might not be universally beneficial.
On the other side, the IncMB module consistently improved performance across all models,
leading to higher training and validation accuracy and lower validation loss at 30 epochs.

Table 3. Accuracy and validation loss during 15 and 30 epochs of training.

Transfer Deep
Learning Model

Classification
Approach

15 Epochs 30 Epochs

TA VA VL TA VA VL

InceptionV3
Base model 0.9529 0.8650 1.2822 0.9859 0.9330 0.3108
with SVM 0.9890 0.8549 0.5262 0.9956 0.8884 0.3553

with IncMB 0.9743 0.9143 0.7250 0.9996 0.9762 0.2369

InceptionResNetV2
Base model 0.8813 0.8125 0.6906 0.9862 0.9665 0.2297
with SVM 0.9496 0.8411 0.8032 0.9950 0.9344 0.0567

with IncMB 0.9325 0.8578 1.3071 0.9983 0.9733 0.1889

MobileNetV2
Base model 0.9892 0.9167 1.0077 0.9967 0.9156 0.5614
with SVM 0.8908 0.8074 0.4561 0.8935 0.8380 0.3068

with IncMB 0.9235 0.8750 0.4299 0.9693 0.9489 0.2386

DenseNet201
Base model 0.6874 0.6060 0.5483 0.9122 0.8583 0.4427
with SVM 0.8154 0.8811 0.4195 0.9063 0.9244 0.2126

with IncMB 0.8104 0.8678 0.4792 0.8942 0.9200 0.2657

(TA) training accuracy; (VA) validation accuracy; and (VL) validation loss.

The confusion matrix presented in Figure 4 contains the absolute and relative numbers
of corrected classified individuals for the approach in which the IncMB module is embedded
in the CNN. The best performance and the largest number of correctly classified examples
were achieved by the InceptionV3 network with the IncMB module, followed by the
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InceptionResNetV2 network with the IncMB module. The least accurate performance was
achieved by the DenseNet201 network version with the IncMB module.
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Figure 4. Confusion matrix for CNN with proposed IncMB module. (A) early blight; (B) late blight;
(C) septoria leaf spot; (D) spider mite; (E) tomato mosaic virus; and (F) tomato yellow leaf curl
virus. The upper number per square indicates classified values, while the lower number indicates the
percentage of classified values per leaf disease.

5. Discussion

From the author’s knowledge based on searching the Web of Science Core Collection,
there were no similar studies with the same set of evaluated deep learning networks.
However, the study by Chen et al. [24] confirmed that the InceptionV3 network was more
accurate than DenseNet. Despite lower individual performance, DenseNet201 combined
with SVM achieved moderate accuracy in tomato leaf disease detection. This was likely
achieved due to its specific architecture, in which the feature maps of each layer are
connected to the previous one, so the network contains replicated data multiple times. The
connectivity of DenseNet could be particularly advantageous for capturing the subtle visual
patterns characteristic of plant diseases, providing the SVM with a richer set of features for
accurate classification [48–50].While SVM is a classical machine learning method, recent
research showed that combining SVM with deep learning methods could improve overall
classification accuracy. [51,52]. The performance of the MobileNetV2 network with the
IncMB module opened up the possibility of implementing the model on mobile devices to
facilitate its use by agricultural experts and ensure the early detection of tomato diseases.
In the study by Minango et al. [53], it was observed that the MobileNet architecture was



Big Data Cogn. Comput. 2024, 8, 52 10 of 14

also used in deployment. During the training process, the accuracy and validation loss
values were evaluated to prevent overfitting or underfitting of the models. By increasing
the number of epochs, training, and validation, accuracy values increased, which in almost
all cases are significantly lower than those of training. At the same time, increasing the
epochs reduced the validation loss, which confirmed the learning trend of the algorithm.

Deep machine learning models achieved significant levels of accuracy and high
performance, although their implementation is more time-consuming and hardware-
demanding [36,54,55]. The feature extraction process was fully automated with deep
machine learning methods because it was already built into the algorithm itself. In the
examples of diseased and healthy plant individuals whose life cycle takes place under con-
trolled conditions, it was demonstrated that previously trained models of CNNs achieved
results with greater accuracy compared to models trained for the first time. Furthermore,
the dependence on background features in the classification of plant diseases has been
noted, so background removal by segmentation methods is not performed because it re-
duces the efficiency of the model [27]. It was observed that evaluated approaches better
recognize examples of the individuals affected by the mosaic virus and tomato yellow leaf
curl virus. This likely occurred due to the specificity of the symptoms of viral diseases.
Namely, in individuals infected with these viruses, the main symptom is yellowing of the
leaves, while in the case of the tomato yellow leaf curl virus, the curvature of the leaf surface
also occurs [13,56,57]. In the case of other observed diseases, the main symptoms are black
dots and/or black circles of an irregular shape, so due to over-lapping symptoms, as well
as the presence of the same in different stages of development, the algorithms have a harder
time recognizing what an individual tomato is infected with [13,16,56]. Moreover, while
analyzing the results from the confusion matrix, the number of misclassified individuals
was the lowest for the mosaic virus and the tomato yellow leaf curl virus.

The proposed models could be further applied with other state-of-the-art technolo-
gies, such as hyperspectral imaging sensors, for improving plant disease recognition. By
analyzing the spectral signatures of plants, CNNs could identify signs of disease even
before visible symptoms appear, potentiate early intervention, and minimize crop loss [58].
Moreover, proposed CNN models could automatically learn and extract relevant features
from the hyperspectral data while eliminating the need for manual feature engineering,
which can be a time-consuming and expertise-intensive process [58,59]. The proposed
models could also be optimized for faster processing on powerful hardware and analyze
images captured by smartphones or embedded systems in the field, enabling real-time
disease identification [60]. The lightweight MobileNetV2 with IncMB module, developed
in this research, has the potential to be used through a mobile application offering real-time
disease detection support to agricultural experts [61,62].

The availability of a larger dataset for training deep machine learning models could
likely improve the performance of the model. In addition to diseased tomato individuals,
the dataset could be expanded with other examples of diseased tomato leaves as well as
healthy ones, enabling the creation of a dataset containing examples of diseased leaves of
other crops to expand the scope of the proposed IncMB module. Enriching the used dataset
with new images would also give insight into the current breadth of application areas and
assist experts in crop management decisions. To achieve better performance, it is planned
to improve the IncMB module in future studies by including the additional convolutional
layers and expanding the application of state-of-the-art activation functions that have been
proven to contribute to the accuracy of the model.

6. Conclusions

The conventional early identification of plant diseases requires intense human super-
vision, and without proper automatic identification, sufficient food production according
to 2050 forecasts may not be achievable. For the recognition of tomato leaf diseases, the
deep machine learning method, CNN, was used together with transfer learning to take
advantage of pre-trained networks in this study. To optimize their performance, a unique
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block of layers with built-in CNNs was proposed, labeled the IncMB module, and designed
to perform image classification for tomato leaf diseases, thus achieving higher accuracy
than base networks. In the experiment, the performance of pre-trained CNNs with the
IncMB module was superior to pre-trained CNNs without the module and to CNNs with
the SVM method.

The IncMB module presented a novel technique for improving the performance of
CNNs for image classification. Experimental results showed that the best performance was
achieved by the InceptionV3 network containing the IncMB module, with an accuracy of
97.78%. While evaluating the results for tomato disease recognition, it was observed that
the CNN with the IncMB module nevertheless achieves notable results, and it is possible to
increase them by expanding the used dataset. For future improvements and to enhance the
universal applicability of the IncMB module, its effectiveness will be investigated across a
wider range of similar plant disease datasets. This will involve testing the proposed models
on various plant disease datasets beyond tomato diseases. However, the MobileNetV2
network with the IncMB module, developed in this study, has demonstrated promising
results for real-world use. As a lightweight network, its efficiency will make it ideal for
embedding within a mobile application. This application could function as a valuable
virtual assistant for agricultural experts by providing real-time plant disease detection
support in the field.
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