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Abstract: High energy consumption in size reduction operations is one of the most significant issues
concerning the sustainability of raw material beneficiation. Thus, process optimization should be
done to reduce energy consumption. This study aimed to investigate the applicability of artificial
neural networks (ANNs) to predict the particle size distributions (PSDs) of mill products. PSD
is one of the key sources of information after milling since it significantly affects the subsequent
beneficiation processes. Thus, precise PSD prediction can contribute to process optimization and
energy consumption reduction by avoiding over-grinding. In this study, coal particles (−2 mm) were
ground with a rod mill under different conditions, and their PSDs were measured. The variables
studied included volume% (vol.%) of feed (coal particle), vol.% rod load, and grinding time. Our
supervised ANN models were developed to predict PSDs and trained by experimental data sets.
The trained models were verified with the other experimental data sets. The results showed that the
PSDs predicted by ANN fitted very well with the experimental data after the training. Root mean
squared error (RMSE) was calculated for each milling condition, with results between 0.165 and 0.965.
Also, the developed ANN models can predict the PSDs of ground products under different milling
conditions (i.e., vol.% feed, vol.% rod load, and grinding time). The results confirmed the applicability
of ANNs to predict PSD and, thus the potential contribution to reducing energy consumption by
optimizing the grinding conditions.

Keywords: sustainability; process optimization; energy consumption; machine learning; knowledge-
based method

1. Introduction

High energy consumption in size reduction operations is one of the biggest concerns in
terms of the sustainability of raw material processing. One report stated that approximately
3% of the world’s energy is consumed by this process [1]. Thus, the process optimization of
size reduction should contribute to energy reduction for our sustainable society. Proper
prediction of size reduction and thus the particle size distributions (PSDs) avoid over-
grinding and therefore reduce energy consumption to plant operations.

An artificial neural network (ANN) or knowledge-based artificial neural network
(KBANN) is a parallel computation model inspired by the human brain and is categorized
under the framework of machine learning [2]. While the human brain processes highly
complex computations by billions of neutrons, ANN works with sequentially constructed
input, hidden, and output layers consisting of several computation nodes called artificial
neurons or simply neurons. Neurons in each layer are fully interconnected to other neurons
in the adjacent layers, with weight vectors representing the strength of their connections.
Similar to the human brain, a neuron receives signals from neurons in the pre-layer and sig-
nals can be intensified or weakened by the assigned activation functions. Their connections
weight modulates input signals as synapsis does in the brain. The structure of the ANN
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model is different case-by-case. The independent and dependent parameters of a subjected
conundrum are allocated to the input and output layers, respectively. In a forward process
of ANN, the neutrons in the input layers receive the data from a database and transfer the
data to neurons in the hidden layer through interconnected weight vectors. Subsequently,
the forwarded values are processed by an assigned transfer function in the hidden neutrons
and then sent to the output layer through interlinked weight vectors between the hidden
and output layers. Consequently, an output value is obtained at an output layer. The
neurons in the input and output layers are the data receivers. Computed value providers
and only hidden neurons converse with other neurons.

Coal has been an energy source for several hundred years and has become increasingly
significant. In 2011, it constituted 42% of the world’s electricity, and was recognized as one
of the fastest-growing energy sources [3]. There are two types of coal in use: thermal and
metallurgical. Thermal coal is used mainly for power generation. Metallurgical coal, on
the other hand, is used in steel manufacturing. Coal can be obtained from either surface
or underground mines; for example, in Australia, the majority is surface-mined. This
determines how the coal is recovered and used as an energy source. The closer to the
surface it is recovered from, the more weathered and oxidized it becomes. The oxidized
coal shows different physical and/or surface properties from the underground coal with
unoxidized surfaces. This oxidation can make coal difficult to process, especially in flotation,
where particle surface properties are highly influenced [4,5].

Once the coal is mined, it can be classified into four size categories, i.e., coarse
(+10 mm), intermediate (1–10 mm), fine (150 µm–1 mm), and ultrafine (−150 µm) parti-
cles [6]. Density separation of larger particles is performed to separate the coal from gangue
minerals, while froth flotation is used for the fine and ultrafine particles.

The high applicability of ANN for simulating multi-parameter systems has received
significant attention in many different fields (e.g., color coordinates in dyeing [7], energy
storage tanks [8], and concrete [9,10]). Details of ANN and other soft computing tech-
nologies applications on mining engineering can be found in Jang and Topal (2014) [11].
In relation to PSD prediction, ANN has been applied to the crystallization process with
mechano-chemical alloying [12], the prediction of rock fragmentation after blasting [13],
and the prediction of PSD in a granulation process [14]. On the other hand, based on our
literature review, the ANN-based predictive modeling of size reduction in milling pro-
cesses has not been found. This is even though milling/comminution processes in mineral
processing plants are one of the most energy-intensive operations in industries, and the
presence of conventional approaches for predicting the PSDs of milling products involve
discrete element methods (DEMs) [15] and population balance modeling [16]. Thus, this
paper details our attempt to apply ANN to predict PSDs during a size reduction process
with a rod mill, which is one of the most common milling/comminution units.

This study aimed to generate ANN-based simulation models to predict the PSDs of
comminution/mill products, address the above-noted issues, and substantially improve
the model’s accuracy. In this study, ANN was used to develop reliable predicting models
to predict PSDs of comminution products. The developed models allow us to predict
the PSDs precisely to avoid over-grinding and reduce the energy consumption of plant
operations. The logical basis of adopting ANN is its significant ability in terms of nonlinear
approximation in comparison with common statistical prediction methods.

2. Materials and Methods
2.1. Materials

The coal sample used in this study was oxidized metallurgical coal, i.e., a run-of-mine
sample from the Bowen Basin, Queensland, Australia. The experimental parts were divided
into two: (1) feed coal sample preparation for the rod-milling experiments; (2) using the
feed generated in part 1 and the rod-milling experiments to generate the PSD data for
the ANN modeling and simulation. Firstly, the coal sample was spread onto a clean
sheet, and the large coal particles not suitable for immediate rod milling were crushed
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through a cone crusher, then sent back into the sample pile. Then, the sample was milled
in batches using a rod mill (ESSA, 520490). Each batch was milled for 5 min, with 10 or
20 vol.% of the mill volume loaded with the sample. The milled samples were then sorted
into plus or minus 2 mm fractions using the Ro-tap (Tyler Industrial products, Testing
sieve shaker model B). The minus-2 mm fraction was then split into subsamples to obtain
approximately 10% to 20% feed volume of the rod mill, with each using a riffle splitter for
each comminution/milling experiment. To characterize the feed, each split sample was
sieved using sieves with openings of 2 mm, 1 mm, 500 µm, 250 µm, 125 µm, 63 µm, and
38 µm to obtain the particle size distribution of the feed in each set by sieving the sample
for 5 min in a vibrating sieve shaker.

Secondly, to generate the milling experimental results used in this study, using the feed
coal sample generated in the above procedure in the first step, the load of the coal sample
(i.e., minus 2 mm) was 10 or 20 vol.% of the mill with 9 or 19 rods (i.e., 10 or 20 vol.% of the
mill), and the sample was ground for 1, 2, 4, 8, 16, and 32 min. After each grinding time,
the ground coal particles were riffled to obtain two 250 g representative samples and their
size classifications were performed separately with the same sieve set mentioned above in
the first step to obtain the PSDs. The average of the two PSDs was used for the modeling
and simulation. Since we needed to have changes in the PSDs for the ANN modeling and
simulation to capture the trend in PSD changes, 1–2 mm size fraction data sets (with a
passing cumulative that was always 100%) were not used, but the minus-1 mm size fraction
data sets were used in this study.

2.2. Methods-ANN Model Predicting Percentage Passing Cumulative

The percentage passing cumulative (PPC: %) is generally expressed as a function of
sieve opening size (SO: µm). A total of 56 datasets were collected and randomly divided
into training (40 datasets: 70%), validation (8 datasets: 15%), and training (8 datasets:
15%) datasets. For the milling study, 56 experimental datasets are considered more than
enough [17–19]. The used datasets split% is common in the literature [7,20,21]. The training
datasets were used to train the ANN model, while the validation datasets were employed
to validate each iteration. At the end of the training process, the generalization of the
trained ANN model was checked by inputting the untrained test datasets.

To generate a potential PPC, a PPC prediction ANN was formulated for the SO values
of 1000, 500, 250, 125, 63, and 38 µm. The basic structures of the six ANNs were identical
to each other. It consisted of feed load (FL: Vol.%), rod load (RL: Vol.%), and grinding
time (GT: min) as input parameters and PPC as an output. In addition, all of the six PPC
prediction ANN models were formulated with ten hidden neurons determined by trial and
error. The structure of the proposed ANN models is illustrated in Figure 1.

An output of an artificial node can be calculated as follows [14]:

y = f

(
n

∑
i=1

ωixi + θ

)
(1)

where f is the transfer function, n is the input vector dimension, ωi is the connection weight
of input xi, and θ is a bias value of the node.

In these PPC-prediction ANN models, the hyperbolic tangent function was applied in
hidden neurons as a transfer function that receives values from −1 to 1. The mathematical
equation of the hyperbolic tangent function is shown in Equation (2) [7].

ftanh =
ex − e−x

ex + e−x (2)
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Figure 1. Schematic of the proposed ANN models for PPC predictions. (FL—Feed Load (Vol.%),
RL—Rod Load (Vol.%), GT—Grinding Time (min.), SO—Sieve Opening (µm), and PPC—Percentage
of Passing Cumulative (%)).

The input net (xi = (x1, x2, x3)) was connected to the hidden neurons in every hidden
layer. For example, the net input values to the hidden layer of SO: 1000 were:

Netj
(SO: 1000) =

3

∑
i=1

xiωij
(SO: 1000) + θj

(SO: 1000) (3)

where, Netj
(SO: 1000) was a computed net value in the hidden layer for the sieve opening of

1000 µm, xi was the input values, ωij
(SO: 1000) was the connection weights between the input

neurons and hidden neurons in SO: 1000, and θj
(SO: 1000) was a bias neuron from the input

to the hidden layers. As the six hidden layers were identical to each other, the computation
process of the net input values to the other SO hidden layers were also identical.

As the hyperbolic tangent function was adopted in the hidden layers, for example, the
output of hidden layer of SO: 1000 was:

oj
(SO: 1000) = f

(
Netj

(SO: 1000)
)
=

e(Netj
(SO: 1000)) − e−(Netj

(SO: 1000))

e(Netj
(SO: 1000)) + e−(Netj

(SO: 1000))
(4)

Thus, the input net to the output layer of SO: 1000 was:

Netk
(SO: 1000) =

10

∑
i=1

ωjk
(SO: 1000)oj

(SO: 1000) + θk
(SO: 1000) (5)

where ωjk
(SO: 1000) was connection weights between the hidden and output layers of

SO: 1000, and θk
(SO: 1000) was a bias neuron from hidden to output layers.

In the early backward process, the mean square error (MSE = 1
N ∑N

i=1(y − ŷ)2 where
y and ŷ were measured and predicted the output of the testing or training data [20]) of the
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predicted output (ok
(SO: 1000)) and target experimental output (tk

(SO: 1000)) were calculated.
For instance, the MSE for SO: 1000 was calculated as:

E(SO:1000) = MSE(SO:1000) =
1
n

n

∑
i=1

(
tk
(SO: 1000) − ok

(SO: 1000)
)2

(6)

The E(SO:1000) was back-propagated to update the randomly assigned connection
weights for the next iteration using the Levenberg–Marquardt algorithm (LMA) [22,23].
The LMA weights update rule, i.e., the learning rule, was:

ωp+1 = ωp −
(

JT
p Jp + µI

)−1
JpEp (7)

where ωp+1 represents the updated connection weights for p+ 1 step, ωp represents the weights
for p step, Jp represents the Jacobian matrix for p step, and µ the combination coefficient.

In order to develop ANN models, the following steps were taken: (1) experimental
data collection (see Section 2.1); (2) division of the data for training, testing, and validation;
(3) creation of the network for the selected parameters; (4) configuration of the network
by selecting the number of hidden layers and the desired training and necessary learning
functions; and (5) training of the ANN models to obtain the MSE target. Figure 2 shows
an example of an ANN learning process results within the MATLAB neuron toolbox
indicating the structure, learning algorithm, and results of the learning parameters. The
ANN structure is 3-10-1 in all particle size fractions. It consists of the input and output
layers as well as the 10 hidden nodes. The outcomes of the ANN represent the particle
percentage passing of each size fraction.
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3. Results and Discussion

The six ANN models were trained separately. Figure 3 shows typical correlation
plots between the output and target during the training and validation. The correlation
coefficient R for the trained model was close to 1 (i.e., R = 0.999), and thus it indicates the
successful training of the model. As shown in the validation, the estimated ANN values
were close to the experimental target results with R = 0.987. Therefore, the developed
model can be used to predict the PSDs of milling products with good precision. In the
literature, the other studies including the crystallization process with mechano-chemical
alloying [12], the prediction of rock fragmentation after blasting [13], the prediction of PSD
in a granulation process [14], and also confirmed the applicability of ANN to predict PSD.
Figure 4a shows the changes in parameters during the model optimization and indicates
the validation process to prevent the over-fitting of the model. Figure 4b shows the mean
squared errors (MSEs) and indicates that the MSE reached the best value after 30 epochs in
the trial and 70 epochs in the validation. They are comparable with the number of epochs
described in the literature [12,14]. The best validation performance was determined with a
minimum MSE and thus the largest correlation with the experimental data/outcome [12].
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As introduced in the materials and methods, the six ANN models were trained
separately, and the results are demonstrated in Table 1 and Figure 5. As shown in Table 1 and
Figure 5, strong positive correlation coefficients (R > 0.90) were obtained in all the models,
and thus confirmed the statistical reliability of the models. In terms of the correlations of SO:
38 are comparatively lower than other models, which could be due to the too-narrow ranges
of the output datasets. As can be seen in Figure 6, among the eight datasets kept for testing
the developed ANN models, four datasets were randomly selected, and the simulated data
were compared by using the proposed ANN models with the experimental data.

Table 1. Training results of six PPC prediction ANN models.

ANN Model SO: 1000 SO: 500 SO: 250 SO: 125 SO: 63 SO: 38

Max. Iteration * 8 55 79 54 69 56

Correlation
coefficient (R)

Training 0.994 0.997 0.999 0.998 0.987 0.893
Validation 0.974 0.999 0.987 0.996 0.981 0.901

Test 0.973 0.995 0.993 0.938 0.926 0.809

* The max iteration is the number of feed-forward computations in the neuron toolbox that stops when validation
fails six times consecutively.

The results shown in Figure 6 indicate that very good predictions were made with
our models of the PSDs of mill products under different conditions (i.e., feed load, rod
load, and milling time). The root mean squared error (RMSE) was calculated for each
milling condition, and it was between 0.165 and 0.965. These values are smaller than that
of the literature [12] on crystallite size prediction (RMSE = 3.34). It was found that with
1 min of milling at a 10 vol.% feed load and 10 vol.% rod load, there was no significant size
reduction. On the other hand, with a higher rod load and milling time, the size reduction
achieved and thus PSD of coal particles decreased, and this size reduction can be explained
by the higher probability of collision between coal particles and mill media (i.e., rods in this
study) (e.g., [24]). Our results confirmed the applicability of ANN to predict the particle
size distributions of the milled products. Our proposed approach can be applicable not
only to a specific mill type (i.e., rod mill in this study) and feed (i.e., coal in this study)
but also to many other combinations (e.g., ball milling of gold-bearing ore), and can be
beneficial for other scholars and practitioners.
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Figure 6. Comparisons between the ANN-predicted PPC (ANN) and experimental PPC (EXP). The
numbers in the figure legend represent FL (Vol.%), RL (Vol.%), and GT (Min.). The feed (EXP) particle
size distribution without grinding (GT = 0 min) was also added as a reference value.
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4. Conclusions

This study aimed to investigate the applicability of artificial neural networks (ANNs)
to predict the particle size distributions (PSDs) of mill products. Coal particles (−2 mm)
were ground with a rod mill under different conditions, and we obtained their PSD. The
parameters studied were vol.% feed (coal particle), vol.% rod load, and grinding time. The
results showed that the particle size distributions predicted by ANN fit very well with
the experimental data after training the dataset. The root mean squared error (RMSE)
was calculated for each milling condition and it was significantly smaller (i.e., 0.165 and
0.965) than that found in the literature in terms of crystallite size prediction (RMSE = 3.34).
Furthermore, the developed ANN models can predict the PSDs of ground products under
different milling conditions (i.e., vol.% feed, vol.% rod load, and grinding time). The results
indicated the applicability of ANN to predict PSD. The proposed approach can be used not
only for coal particles but also for other minerals/materials to predict their PSD in order to
reduce energy consumption by optimizing the grinding conditions.

Author Contributions: Conceptualization, A.O. and H.J.; methodology, A.O. and H.J.; software,
A.O. and H.J.; validation, A.O. and H.J.; formal analysis, A.O. and H.J.; investigation, A.O. and H.J.;
resources, A.O. and H.J.; data curation, A.O. and H.J.; writing—original draft preparation, A.O. and
H.J.; writing—review and editing, A.O. and H.J.; visualization, A.O. and H.J.; supervision, A.O.;
project administration, A.O.; funding acquisition, A.O. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.
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