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Abstract: CAN-zeolite was synthesized with a high purity from natural kaolinite via alkali fusion
by hydrothermal treatment at a pressure of 1 kbar H2O. It was characterized by X-ray diffraction
(XRD), scanning electron microscopy (SEM), infrared spectroscopy and nitrogen adsorption at 77 K.
The results show that after AK hydrothermal treatment (under specific conditions), the SBET increases
from 5.8 m2g−1 to 30.07 m2g−1 which is six times greater. The AK which was a non-porous or
macroporous solid (the nitrogen adsorption/desorption of AK is of type II) became mesoporous
(N2 adsorption–desorption isotherms exhibit typical hysteresis of type IV) with a pore size of 5.9 Å.
XRD of AK shows the presence of quartz (Q) as impurities, and illite and kaolinite as major fractions;
after hydrothermal treatment, the XRD diffractogram shows only fine pics related to CAN-zeolite
(with a good crystallinity), confirming the success of the synthesized process. These results suggest
that the synthesized CAN-zeolite has the potential to be tested in the removal of heavy metals from
waste water as part of a remediation process. Batch reactors were used to evaluate the adsorption
isotherms and kinetic studies of heavy metals, cadmium, and lead, by natural kaolinite clay (AK)
and synthesized cancrinite zeolite (CAN-zeolite). The results show that the adsorption kinetics of
the bivalent heavy metals cadmium and lead are extremely fast with either AK or CAN-zeolite.
Equilibrium was reached within 2 min. Adsorption isotherms show that the synthesized CAN-
zeolite has a higher adsorption capacity; the retention capacity of lead and cadmium was three
times greater than that presented by the natural clay mineral. According to the findings, CAN-
zeolite has a higher affinity for PbII (192 mg/g) compared to CdII (68 mg/g). The negative reactive
surface sites interacting with these cationic heavy metals resulted in a higher amount of heavy metals
adsorption than the cation exchange capacity (CEC). The adsorption information was analyzed using
the Langmuir and Freundlich equations. The Langmuir model provided a good fit to the equilibrium
data, indicating a monolayer adsorption mechanism.

Keywords: heavy metals adsorption; zeolite; kaolinite; hydrothermal treatment

1. Introduction

The occurrence of heavy metals in industrial effluents, often in diverse and significant
quantities, poses a substantial problem for human health and the environment. From
a biological point of view, heavy metals can be divided into essential metals and toxic
metals according to their physiological and toxic effects. Essential metals are essential trace
elements for many cellular processes and are very low in biological tissues [1]. Some may
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become toxic when the concentration exceeds a certain threshold such as molybdenum
(Mo), selenium (Se), vanadium (V), titanium (Ti) and arsenic (As). Zinc, for example, is an
oligo- (dehydrogenases, proteinase, peptidase) and has a significant role in the metabolic
processes of proteins, carbohydrates and lipids, but it becomes toxic at a concentration
of 1 molar [2]. Toxic metals are polluting with toxic effects on living organisms even at
low concentrations. They have no known beneficial effects for the cell and include lead
(Pb), mercury (Hg), cadmium (Cd) and antimony (Sb) [3]. The term “heavy metal” also
implies a notion of toxicity. The term “trace metallic elements” is also used to describe
these elements, as they are often found in very small quantities in the environment [4].

Cadmium is considered one of the most dangerous heavy metals and is frequently
encountered in wastewater, particularly originating from metal plating, Cd–Ni batteries,
phosphate fertilizers, mining, pigments, stabilizers and alloy production [5–7]. The World
Health Organization has established a rigorous limit for cadmium in drinking water at
0.003 mg/L [8]. Since 1950, cadmium has been recognized as highly toxic in all its forms
(metal, steam, salts and organic compounds). The presence of cadmium in water has been
linked to kidney problems and heightened tension. Moreover, it is widely considered to be
a teratogenic and carcinogenic agent (IARC) [9].

In the long-term lead contributes to a disease called “lead poisoning”. It may have
effects on the nervous, hematopoietic and cardiovascular systems [10]. High doses of
lead in the body can lead to various neurological, renal and hematological disorders.
In children, it can cause cerebral developmental disorders, with learning disabilities and
psychological disruptions.

Lead can also disrupt different physiological processes at high doses and cause blood
anemia and kidney effects (kidney failure). Lead has a range of negative impacts on the
central nervous system such as developmental delay, irritability, sleep disorders and loss of
memory. Additionally, it has long-term effects on the fertility of men. The effects of lead
are generally amplified in the fetus and the child (congenital abnormalities, long-lasting
neurobehavioral deficits).

On the other hand, the International Agency for Research on Cancer (IARC) has classi-
fied it with its inorganic derivatives in Category 2B (potentially carcinogenic to humans).

Various techniques have been devised for eliminating Cd, Pb and heavy metals from
wastewater, including chemical precipitation, ion exchange, solvent extraction, reverse
osmosis and membrane filtration [11]. Nevertheless, these approaches exhibit certain
disadvantages, including incomplete removal of metal ions, elevated reagent and energy
demands, the production of hazardous sludge and protracted desorption periods. Adsorp-
tion is widely recognized as a cost-effective and efficient approach to metal ion removal.
Presently, numerous research endeavors are directed toward the development of natural,
renewable and budget-friendly adsorbents, such as clays [12] and zeolites [13–18].

Within this array of materials, clays and zeolites stand out as cost-effective options
with significant potential as adsorbents. Zeolites, in particular, hold a prominent position
due to their porous three-dimensional structure, enhanced cation exchange capacity (CEC),
outsize surface area and distinguished structural attributes, making them crucial materials
in the realm of wastewater treatment.

Zeolites have a wide range of applications, in environmental cleanup, catalysis, biotech-
nology, gas sensing and medical purposes. Despite the abundance of naturally occurring
zeolites, there is a growing focus on synthesizing zeolites due to their ease of production in
a pure form, enhanced ion exchange ability and consistent size maintenance. Furthermore,
producing zeolites from cost-effective sources, like rice husk, and clay has gained significant
attention [19–21].

Zeolites are renowned for their excellent adsorption properties, enabling them to
efficiently adsorb and exchange metal cations with positive charges within their struc-
ture. Several studies have investigated the use of both natural and synthetic zeolites as
ion exchangers for the removal of heavy metals [22–25]. In comparison to their natural
counterparts, synthetic zeolites exhibit high levels of purity, a uniform crystal size and are
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well-suited for specific industrial applications. On the other hand, natural zeolites typically
contain various impurities and lack a consistent crystal size [21].

Cancrinite (CAN), which is a low-silica zeolite (Si/Al = 1.5), can be hydrothermally
synthesized from gels containing cations such as Na+ and anions such as CO3

2− and OH−.
Cancrinite accommodates a wide range of both anions and exchangeable cations in the
micropore [26]. The merit of the cancrinite structure can therefore be utilized for adsorption
of heavy metals.

Within the scope of this investigation, CAN-zeolite was prepared by hydrothermal
alkali-activation of aluminosilicate materials at appropriate temperatures and pressures in
high-pressure autoclaves.

The chemical and morphological composition of the produced adsorbent underwent
examination through techniques such as X-ray diffraction (XRD), scanning electron mi-
croscopy (SEM) and N2 adsorption/desorption isotherms. Subsequently, the zeolite com-
posite created in this manner was assessed for its effectiveness as an adsorbent in removing
cadmium and lead heavy metal from aqueous solution. According to the World Health
Organization, the acceptable limits of some heavy metal ions in drinking water are as
follows: Pb (50 µg L−1), Cd (5 µg L−1) [27].

Kinetic and adsorption isotherms were determined. The Langmuir isotherm was
employed to ascertain the anticipated greatest adsorption capacity, and ∆G thermodynamic
parameters was assessed.

These findings underscore the value of creating cost-effective water purification com-
posite adsorbents derived from locally sourced materials.

2. Experimental
2.1. Materials

The CdCl2 2.5H2O and Pb(NO3)2 used in these study were obtained from the Aldrich-
Sigma chemical company.

Clay mineral was used in this investigation, kaolinite, provided from Ghardimaou
(North West of Tunisia) and denoted AK. The sample taken underwent the following
unit operations:

- Crushing of the sample rocks into pieces using a mortar;
- Drying in the oven for 24 h (T = 308 K);
- Grinding pieces of the clay sample in a grinder;
- Sieving the sample powder (50 µm sieve).

Prior to utilization, the clay underwent a purification process to eliminate organic
matter and impurities. This involved adding 0.1 M of HCl to the clay suspension (20 g of
raw AK mixed with distilled water). The mixture was agitated for 12 h until it reached
complete homogenization. The fine fraction, characterized by particle sizes less than 2 µm,
was isolated by centrifugation at 4000 tr.min−1, a process repeated five times. The clay was
subsequently rinsed with distilled water until the supernatant was free of chloride ions, as
confirmed by the AgNO3 test. The resulting sample was then dried at 353 K, crushed and
passed through a 63 µm mesh sieve. The AK obtained through this process was used in the
synthesis of CAN-zeolite.

2.2. Preparation of Cancrinite Zeolite

CAN-zeolite was synthesized by the conventional alkaline fusion method prior to
hydrothermal treatment using kaolinite clay (AK) (Figure 1). For that, 10 g of AK was
subjected to heating at 923 K for a duration of 2 h within an air-filled furnace. The resulting
amorphous solid (referred to as AKC) was subsequently blended with 250 mL of NaOH
solution (4 M) and subjected to another 2 h heating period at 923 K in the furnace.
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Figure 1. Protocol of CAN-Zeolite synthesis [28,29].

The AKC powder was allowed to cool and then underwent a grinding process. Subse-
quently, this powder was introduced into Teflon containers, which were filled with distilled
water. These Teflon containers were then sealed and positioned inside a high-pressure
autoclave (Autoclave Engineers unit from the USA, measuring 6 cm in length and 3 cm in
width). They were securely closed and positioned vertically within a furnace, where they
remained for a period of 21 days within the temperature range of 403 K to 433 K.

Upon reaching the desired furnace temperature, an external water pressure was
applied by means of a Sitec manual hydraulic piston pump (Switzerland). This pump was
utilized to introduce distilled water into the autoclave at a water pressure of 1 kbar.

2.3. Characterization of Clay and Zeolite

Conventional methods were employed to characterize the samples (AK and CAN-
zeolite). This included mineralogical analysis using X-ray diffraction (Leipzig, Germany,
Bruker D-8 FOCUS diffractometer). Data collection was carried out in the 2θ range of 0–60◦.
Additionally, the chemical composition of the samples was determined through energy
dispersive X-ray analysis (EDAX), enabling a semi-quantitative assessment of their chemical
composition under specific conditions. To examine their morphology, a scanning electron
microscope (SEM) was employed (SEM) (FEI Quanta 200, Hillsboro, OR, USA). Specific
surface areas were calculated using the BET equation, employing nitrogen adsorption data
obtained with a Micrometrics ASAP 2010 surface area analyzer.

For thermogravimetric analysis, we used a TA Instruments TGA Q500 instrument
(New Castle, DE, USA) equipped with a furnace capable of reaching temperatures up
to 1000 ◦C and various carrier gas options (Ar, He, N2, Air. . .). The experiments were
conducted under a dry air flow (100 mL/min) in a temperature range from 25 to 900 ◦C
with a ramp rate of 5 ◦C/min. The mass of the adsorbent used was approximately 30 mg.
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2.4. Kinetics Study

The adequate adsorption time is an important parameter to be determined in our work.
Thus, to determine the equilibrium time of maximum adsorption, a series of adsorption
experiments were carried out at different durations via a batch process.

In fact, the adsorption kinetics of Pb2+ and Cd2+ were carried out by adding 50 mg of
adsorbent to 20 mL of a known-concentration solution of each adsorbate ([Cd2+] = 10−3 M)
and ([Pb2+] = 0.510−3 M) respecting the maximum quantities that can be present in the
discharge water. These solution were prepared by utilizing a stock solution of CdCl2·2.5H2O
and Pb(NO3)2 at 0.1 mol L−1. The agitation time ranged from 1 min to 2 h; after agitation in a
thermostatic orbital shaker at room temperature, the solutions were filtered and the resulting
filtrates were analyzed using appropriate wavelengths in atomic absorption spectroscopy.
Blank samples (without solids) were prepared to confirm that there was no adsorption onto
the used filters. Filtration allowed quick analyses compared to centrifugation.

The amounts of each adsorbed heavy metal (Qads) were calculated by the following
relations (Equation (1)):

Qads =
(C0 − Ce)V

m
(1)

C0 and Ce (or Ceq) are the initial and equilibrium concentrations of heavy metal
(mg L−1), respectively. V is the volume of the heavy metal solution (L) and m is the mass of
the adsorbent (g).

2.5. Adsorption Isotherms of Cd and Pb by Clay and CAN-Zeolite

Batch experiments were conducted using bottles containing 10 mL of Cd(II) and
Pb(II) solutions with varying initial concentrations (those solutions were prepared by di-
luting a concentrated stock solution) along with 0.025 g of adsorbent (either clay AK or
CAN-zeolite), then the samples were agitated in a thermostatic orbital shaker at room
temperature (298 K). Upon reaching equilibrium, the adsorbent was separated by centrifu-
gation at 7000 rpm.min−1. The initial and final concentrations of heavy metals within
the solutions were determined through atomic absorption spectroscopy. The quantity
of heavy metal adsorbed when the system reached equilibrium, Qe = Qads (mg/g), was
determined (Equation (1)).

The pH levels before and after adsorption were measured fell within the range
of 6 to 6.7; no significant variation was noted.

3. Results and discussion
3.1. Characterization of Purified Kaolinite Clay before and after Heating and NaOH Treatment

Elemental chemical analysis of the clay sample was carried out using a Fluorescence
Spectrometer X of the “Axion” type, with 1 kW wavelength dispersion.

The chemical compositions of AK are detailed in Table 1. Based on the aforementioned
result and referring to some reviews [17,30,31], it is evident that this sample is an alumi-
nosilicate source with a Si/Al molar ratio 1.24 (Table 1) since the results indicate that the
predominant constituents are Silica and Alumine.

Table 1. Purified kaolinite composition.

Element O Na Mg Al Si K Ti Fe Si/Al

% atomic 45.74 21.54 0.57 13.70 16.99 0.70 0.16 0.60 1.24

The percentage of silica and alumina is very significant, indicating the presence of
kaolinite (Al2Si2O5 (OH)4) [22,32].

X-ray diffraction analysis was employed to examine the structural characteristics of
the used clay mineral before and after treatment.

The results show the presence of quartz (Q) as an impurity (peaks at 3.34 Å and 4.25 Å
(Figure 2a)) which disappears after heating the sample at 923 K (Figure 2b). Furthermore,
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the XRD data (Figure 2a) indicate that the clay mineral is predominantly composed of illite
(Il), as evidenced by the peaks at 10 Å, 4.97 Å and 2.57 Å, associated to the kaolinite (K)
fraction [22,24,32], identified by the appearance of peaks at 7.15 Å and 3.57 Å in the
diffractograms, but these last peaks disappear after heating AK at 923 K (AK heated at
923 K was labeled AKC, Figure 2b).
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heated at 650 ◦C treated with NaOH/AKC = 4.

Upon the addition of NaOH to AKC and calcination at 923 K (Figure 2c), we observe
the complete dissolution of all clay mineral fractions and the formation of other phases,
such as Na2CO3, SiO2 and Na6Si8O19. These formed phases could serve as promising
materials for the synthesis of CAN-zeolite.

IR spectroscopy characterization of AK (Figure 3) reveals broad bands at around
3639 and 3713 cm−1 which are characteristic of the OH-stretching vibrations of the illite
and kaolinite phases [33], they correspond to the vibration in the plane of Al-Si-O and the
mode of deformation of Mg-Al-OH in illite. The absorption band around 3450 cm−1 has
been attributed to the OH frequencies of the water molecule adsorbed in the clay surface.
The band at 1650 cm−1 corresponds to the bending mode of the water molecule [34]. After
calcination (AKC), these different bands disappeared, confirming its amorphization. On the
other hand, after calcination, the characteristic bands of Quartz, Si–O–Si vibrations which
are located at around 800 and 1080 cm−1, disappeared, supporting the X-ray analysis.

To examine AK morphology, a scanning electron microscope was employed (SEM).
SEM imagery is essential to show the transformation of the morphological surface of
AK after zeolite synthesis. The result displayed by Figure 4a shows small and large
agglomerates of sizable particles. seemingly created through the aggregation of multiple
flaky particles stacked together.

The specific area of clays is estimated by the BET method (Brunauer, Emett and
Teller) [34]. This technique consists of determining the adsorption isotherm of gaseous
dinitrogen at a temperature close to its boiling point (77 K). To conduct these adsorption
measurements, the sample surfaces must be well degassed and the adsorbed water must
be removed to make the surfaces accessible to nitrogen molecules.
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A total of 100 mg of AK clay sample is first subjected to pressure desorption reduction
(<1 Pa), at a temperature between 160 and 250 ◦C overnight. The degassing temperature
was chosen based on the TGA results.

In Figure 4b, we present the adsorption and desorption isotherms of dinitrogen on the
AK clay sample studied.

The adsorption/desorption nitrogen isotherms for AK exhibit a type II behavior
(Figure 4b). In accordance with the guidelines established by the IUPAC (International
Union of Pure and Applied Chemistry), this isotherm is very widespread for non-porous
or macroporous solids. The fact that there is no point clearly identifiable (corresponding to
the filling of a monolayer) and a continuous increase in the adsorbed quantity is a sign of
the energetic heterogeneity of the surface with respect to adsorbate/adsorbent interactions.
In this case in AK, there is a superposition of monolayer and multilayer adsorption.

In addition, it is noted that the adsorption/desorption nitrogen isotherms for AK are
characterized by a hysteresis loop but lacking a saturation plateau (Figure 4b), indicating a



ChemEngineering 2023, 7, 113 8 of 17

non-rigid structure in this case [29,34]. This type of hysteresis (H3) is commonly observed
in the case of platelet-shaped particles, which is the case for clays including slit-shaped
pores. The specific surface area (SBET) of AK clay is 5.85 cm2 g−1.

For thermogravimetric analysis (TGA), the study was conducted using a TGA Q500
instrument equipped with a furnace capable of reaching temperatures up to 900 ◦C. The tem-
perature gradient was set at 5 ◦C/min.

The thermogram as shown in Figure 5 clearly demonstrates a high thermal stability of
AK even at very high temperatures. Four mass losses are observed between 90 ◦C and 520 ◦C.
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The first mass loss, occurring around 90 ◦C and more pronounced, indicates the loss
of hydration water (dehydration).

A second mass loss at high intensity, typically extending from 400 ◦C to 700 ◦C,
corresponds to the dehydroxylation of clay layers.

3.2. Characterization of Synthetic CAN-Zeolite

The X-ray diffraction pattern of the synthesized CAN-zeolite (Figure 6) shows a good
crystallinity of the cancrinite sample suggested by the presence of reflections at 2θ angles of
approximately 14◦, 18◦, 24◦, 27◦, and 33◦ [32,35,36]. These peaks point to the crystallization
of the released aluminum and silicon components.

On the other hand, the FTIR spectrum of the synthesized zeolite (Figure 7) shows bands
at 1445 and 1417 cm−1, which suggests the presence of carbonates as anions occluded in the
internal cavities of the cancrinite zeolite [12,35]. The bands observed at 1638 and 3450 cm−1

correspond to water molecules occluded inside the cancrinite structure [36]. The bands in the
range of 1120–426 cm−1 correspond to the symmetric and asymmetric vibrations of atoms
that form the structural units of the zeolite. Those bands are considered as the fingerprint of
the zeolite, especially the asymmetric vibrations between 685 and 344 cm−1 [37].

The N2 adsorption–desorption isotherms of the synthesized zeolites at high temper-
atures (Figure 8a) exhibit typical hysteresis of type IV, which suggests the presence of
mesopores, though they may be predominantly intergranular.

However, the adsorbed quantities remain low for a mesoporous material. In fact,
the pore size in cancrinite zeolite measures 5.9 Å (Figure 8c), which should be sufficiently
large to accommodate N2 molecules. Yet, the presence of intercalated carbonate in the
cancrinite channels, as confirmed by FTIR (σ = 1445 cm−1), obstructs them and restricts
nitrogen adsorption to the external surfaces of the CAN zeolite. These results align with
the literature [35,38].
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Figure 7. FTIR spectrum of synthesized CAN-zeolite.

The specific surface area (SBET) of CAN-zeolite is estimated (30.07 m2·g−1) using the
BET (Brunauer, Emmett, and Teller) method, and it was found to be higher than that of
the used clay (5.85 m2·g−1): it was six times greater. This suggests that the synthesized
CAN-zeolite holds potential for testing in the removal of heavy metals from wastewater as
part of a remediation process.

The SEM imagery of CAN-zeolite is exhibited in Figure 8b. The results show the
presence of crystals in the form of rods which correspond to the expected morphology of
CAN-zeolite. The highly symmetric hexagonal needle or stick-like shapes observed are
a suggestion of the cancrinite’s hexagonal symmetry (P6), which is an indication of high
crystallinity that aligns with some authors [35]. The syntheses are replicable and have been
confirmed through three repetitions.
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The EDAX analysis (Figure 9) allowed us to determine the Si/Al ratio (Si/Al~1.5),
a value that corroborates the findings from XRD and SEM. These results are in good
agreement with those reported previously [35,38].
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Figure 9. EDAX spectrum of the CAN-zeolite.

The thermogravimetric analysis of CAN-zeolite is illustrated (Figure 10), showing two
regions: The first region between 40 ◦C and 400 ◦C is associated with water loss. The initial
peak around 100 ◦C could be attributed to the dehydration of surface water on the CAN-
zeolite. The peaks at approximately 180 ◦C and 230 ◦C are linked to the water loss from
the cancrinite cages. The presence of two peaks could be explained by the heterogeneous
nature of compensating cations in CAN, such as Mg2+, K+, Fe2+, and Na+.
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Figure 10. The thermogravimetric analysis of CAN-zeolite.

The second region at temperatures between 400 ◦C and 800 ◦C is associated with
water loss from narrow pores and the decomposition of carbonates. The total weight loss is
approximately 16% at 950 ◦C [34].

3.3. Cadmium and Lead Immobilization by AK and Synthesized CAN-Zeolite
3.3.1. Effect of Contact Time

The contact time for the adsorption capacity of cadmium and lead onto AK and CAN-
zeolite has been studied (Equation (1), Figure 11a,b). The findings indicate a sharp initial
increase in the adsorption quantity for both heavy metals, followed by a gradual rise until
equilibrium was attained, which occurred around the 2 min mark. Several studies can
be referenced in the same context [33,34,39,40]. Chen [40], Rybick [33], Gupta [34], and
Kriaa [35] have shown in their previous work that the adsorption of cadmium and lead on
various clay minerals and in different types of zeolites was achieved in over 20 min.

The phenomenon described above can be attributed to the abundance of empty surface
sites available for adsorption during the initial phase. As time progresses, it becomes
increasingly challenging for the remaining vacant surface sites to be occupied due to
repulsive forces between the heavy metal ions in the aqueous solution and those present
on the adsorbent surface [41]. According to the study of Muayad et al. [32], the existence
of anionic components within the CAN-zeolite channel system significantly reduces the
activation energy required for cation transport.

Several studies have shown that the required time to reach equilibrium, in the same
experimental condition, is greater than that found in this investigation [19,32,42–45].

3.3.2. Cadmium and Lead Adsorption Isotherms

Adsorption isotherm experiments were conducted by introducing 0.025 g of adsor-
bants (AK and CAN-zeolite) into 10 mL of cadmium or lead solutions at desired concen-
trations. The mixture was agitated using a thermostatic shaking batch at 298 K for 60 min
to reach saturation. The initial pH of the solution was approximately 6. To ensure there
was no heavy metal precipitation, the pH after adsorption was controlled and it was found
to be 7 in all cases. Based on the cation speciation diagram in the solution, the pH level at
which precipitation occurs is 8 for Cd2+ and 7–8 for Pb2+.
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The equilibrium adsorption of heavy metals (Qe (mg g−1)) was performed using
Equation (1).

The adsorption isotherms reveal differences in the adsorption capacities of cadmium
and lead depending on the nature of the adsorbent matrix (Figure 12). The comparative
study of these isotherms demonstrates the superiority of the CAN synthesized compared
to the natural clay used.

For cadmium (Figure 12a), very high adsorbed quantities exceeding 60 mg·g−1 were
obtained at low residual concentrations, indicating a strong affinity between Cd2+ and
the synthesized CAN-zeolite. The amount of Cd2+ adsorbed by the synthesized CAN is
threetimes higher than that adsorbed by AK used as a reagent for CAN-zeolite synthesis.

The lead adsorption isotherms exhibit the same characteristics as those of cadmium
(Figure 12b). Specifically, we observe that the CAN-zeolite synthesized adsorbs four times
more Pb2+ (192.7 mg/g) than AK. This type of zeolite demonstrates a Pb2+ adsorption
capacity three times greater than the one (52.3 mg/g) reported by Borhade [41]. This differ-
ence is credited to variations in the structure and adsorption capacities of each adsorbent
and to the good purity of our synthesized CAN-zeolite.

In this study, the adsorption capacity of CAN-zeolite for these heavy metals exceeds
the value reported in the literature (Table 2). By analyzing the outcomes gathered from
various experiments, we can infer that the CAN-zeolite synthesized from the AK reagent
exhibits the highest affinity for these two heavy metals (Table 3).
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It should be noted that the adsorption capacity and affinity of Pb2+ for these adsorbents
are higher than those of Cd2+. These findings align well with Coulomb’s law; in this context,
it is observed that the exchange affinity rises with the ion’s valence. Additionally, when the
charge is equal, the cation with a smaller hydrated radius is preferentially adsorbed: the
hydrated radius of Pb2+ (0.401 nm) is smaller than that of Cd2+ (0.426 nm).

The experimental sorption data were correlated with the Langmuir model (Equation (2)):

Qe =
QmKLCe

1 + KLCe
(2)

Qe (mgg−1) is the amount of ions adsorbed per unit weight of adsorbents, Ce (molL−1)
is the equilibrium concentration, and Qm and KL are the Langmuir constants related to the
capacity and energy of adsorption, respectively.

The Langmuir isotherm assumes (Figure 12) that the adsorption takes place at a
homogeneous surface with all the adsorption sites having an identical adsorbate affinity.
It was introduced to illustrate the monolayer sorption process. As can be seen from
Figure 12a,b, the experimental adsorption data closely align with the Langmuir model,
indicating a monolayer adsorption process for both heavy metals using either the AK or
CAN adsorbents.

The free standard molar energy of adsorption ∆adsG0
m is performed using the follow-

ing equation:
∆adsG0

m = −RTLn(KL) (3)

R: universal gas constant = 8.314 Jmol−1; T: temperature (K); KL equilibrium constant
of adsorption obtained from the Langmuir model.
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The negative values of ∆adsG0
m (Table 3) indicate the spontaneity of the adsorption

process of Pb2+ and Cd2+ by AK and CAN. This outcome aligns with prior research
conducted by Sari [39], Kriaa [35], and Brodrade [41], which also observed the adsorption
process to be spontaneous due to the negative value of the thermodynamic parameter: the
Gibbs energy.

Table 2. Comparison study of CAN-zeolite adsorption capacity of cadmium and lead with differ-
ent adsorbents.

Metal Adsorbent Qmax (mg g−1) References

Cd(II)

Fe2O4-P(Cys/HEA) hydrogel 27.37 [13]

Iron-modified zeolite 6.72 [13]

Cancrinite 45.46 [33]

Fly ash zéolithe X 97.78 [23]

Kaolinite 9.9 [21]

Nanocomposites 1.94 [46]

Azide cancrinite 37 [41]

Cancrinite 20.6 [41]

Nanosillica 72.13 [47]

Natural kaolin 24.17 This study

Cancrinite zeolite 68.42 This study

Pb(II)

Cancrinite 52.3 [33]

Cancrinite zeolite 90 [32]

Fe2O4-P(Cys/HEA) hydrogel 39.06 [13]

Fly ash zeolite 70.6 [48]

Azid cancrinite 38.46 [41]

Azide cancrinite 52.63 [33]

Kaolinite 11.2 [22]

Na-Bentonite 38 [48]

Natural kaolin 37.97 This study

Cancrinite zeolite 192.7 This study

Table 3. Estimated isotherms parameters for cadmium and lead adsorption.

Metal Sample Qm (mg/g) KL R2 ∆adsG0
m (KJ·mol−1)

Cd(II)
AK 24.17 3357 0.952 −3.87

Synthesized CAN 68.42 100,617.7 1 −28.53

Pb(II)
AK 37.973 47.633 0.884 −9.572

Synthesized CAN 192.708 28.224 0.774 −8.275

3.4. Adsorption Mechanism

CAN has the formula Na8 (H2O)2CO3 [Al6Si6O24], whose channels contain anionic
species such as CO3−, OH−, and sometimes NO3

2− [33,48]: these anionic species are not
exchangeable with metal cations (Pb2+ and Cd2+). The adsorption of heavy metals can be
interpreted by the cation exchange phenomenon with sodium cations which play the role
of compensating cations in the structure of the CAN-zeolite (Figure 13). By comparing
the amounts of adsorbed lead and cadmium with respect to the amount of the CEC
exchangeable sodium cations, we note that these adsorbed quantities are higher. This
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difference can be explained by the adsorption on the surface of the CAN. The superior
exchange which is accomplished with Pb2+ can be explained by the fact that lead has a
smaller cation size in comparison to Cd2+ or by the formation of the lead clusters in the
cages of the CAN-zeolite, since the lead is in the bivalent Pb2+ and monovalent Pb (OH)+

forms in the studied pH.
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4. Conclusions

In this work, hexagonal cancrinite crystal was synthesized with a well-defined crys-
talline structure and a good purity, with Si/Al~1.5, from the natural kaolinite clay mineral.

Adsorption experiments revealed that cancrinite zeolites are considerably more effec-
tive than natural kaolinite at removing heavy metals such as lead and cadmium. According
to the Langmuir isotherm model, the maximum adsorption capacity of Cd2+ and Pb2+ by
cancrinite are three and four times higher than those noted for AK, respectively. Adsorption
phenomena are governed by a monolayer mechanism. The kinetic adsorption is very fast
(2 min) compared to the results presented in the literature. In conclusion, the nonporous
material (CAN-zeolite) is an environmentally friendly and very low-cost material which
will be a very promising candidate for heavy metal wastewater treatment for reuse.
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