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Abstract: Prospective environmental and technological assessment of emerging chemical processes
is necessary to identify, analyze and evaluate the technologies that are highly imperative in the
transition towards climate neutrality. The investigation of the environmental impacts and material
and energy requirements of the processes at the low technology readiness level (TRL) is important in
making early decisions about the feasibility of adapting and upscaling the process to the industrial
level. However, the upscaling of new chemical processes has always been a major challenge; and in
this context, there is no general methodological guidance available in the literature. Hence, a new
comprehensive methodological framework for upscaling of novel chemical processes is designed and
presented based on thermodynamic process modeling and simulation. The practical implementation
of the proposed methodology is extensively discussed by developing a scaled-up novel carbon
capture and utilization (CCU) process comprised of sequestration of carbon dioxide (CO2) from
blast furnace gas with a capacity of 1000 liter per hour (L/h) using methanol and its utilization as
a precursor to produce methane (CH4). It was found that thermodynamic process modeling and
simulations based on the perturbed-chain statistical associating (PC-SAFT) equation of state (EOS)
can precisely estimate the CO2 solubility in methanol and conversion to CH4 at various temperature
and pressure conditions. The achieved thermophysical property and kinetics parameters can be
employed in process simulations to estimate scaled-up environmental flows and material and energy
requirements of the process.

Keywords: technology readiness level (TRL); upscaling; emerging chemical processes; thermodynamic
process modeling; process simulation; carbon capture and utilization

1. Introduction

Emerging technologies are often characterized based on their technological readiness
level (TRL) between 2 (technology concept formulation) and 7 (demonstration plant) for
clearer delineation. During upscaling of emerging technologies in prospective life cycle
assessment (pLCA), the (emerging) technology studied is in an early phase of development,
represented as ‘to’, as shown in Figure 1, but the technology is modelled at a future more
developed phase, represented as ‘tf’ (pilot/industrial scale) [1–3].
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The upscaling of chemical processes at the early stage of development is incorpo-
rated with numerous challenges and complications, among which lack of relevant data,
uncertainties and scale-up factors are of paramount importance [4,5]. The unavailability of
sufficient inventory data for emerging chemical technologies is a major challenge due to
the scarcity of historic data on synthesis procedures and confidentiality reasons. Thus, the
available data are usually not adequate to estimate scaled-up environmental impacts and
material and energy flows [6,7].

Uncertainties in modeling novel chemical processes is another big issue because
processes at the early stage of development do not show the same level of complexity as
mature industrial processes because various process steps do not directly link with each
other at this level [8,9]. Moreover, the type of process equipment used in the development
phase are not equivalent to equipment used for the industrial scale [10,11]. In addition, the
exploitation of large material and energy flowrates and equipment in industrial chemical
processes may drastically change the transfer mechanisms and the outcome of the processes,
since high volumes may create dangerous operating conditions [12].

Other crucial problems are related to scale-up factors, the estimation of which with
high precision is very strenuous due to the huge differences between emerging and mature
technologies and could be feasible after reaching a certain production volume [4]. These
factors are concerned with processing methods complexity, sizing of unit processes and
unit operation equipment, estimation of process yields, conversion rates and various
efficiency constraints such as reuse and recycle of materials and process heat integration
and utilization [13,14]. Therefore, it is necessary to develop a systematic methodology that
can override the upscaling issues practically and predict scaled-up material and energy
requirements and environmental emissions accurately.

Many scientists have presented methodological frameworks and techniques to address
upscaling problems but it is still a huge milestone to reach because there is no standard
approach and general agreement between life cycle assessment (LCA) practitioners and
process engineers on how upscaling should be performed. The methods available in the
literature lack significant steps in calculating scaling factors and do not take into account
all process-related factors linked to recycling considerations, theoretical considerations,
thermal characteristics, complex integration of process equipment [13,15,16]. In some stud-
ies, individual methods for scale-up, e.g., scaling laws, proxies, artificial neural networks,
and theoretical methods based on engineering laws, etc. [17–20], have been used while
others used a combination of different methods [11,13]. However, none of the studies
has presented a method, technique or framework that can accommodate all previously
mentioned issues related to upscaling and integrate all the complexities associating with
modeling of chemical processes.

Hence, in this study, a novel methodological framework is developed based on ther-
modynamic process modeling and simulation with the aim of tackling all major challenges
of upscaling chemical processes, considering all process-related factors and proposing a
simpler, generic and reliable guideline. In this paper, I have proposed a comprehensive
methodological guideline to perform environmental assessment and calculated scaled-up
material and energy flows of chemical technologies in development phase with practical
implementation of framework steps on the upscaling of new process based on carbon
capture and utilization (CCU) described in Section 5. The process modelled with proposed
framework is not only composed of sophisticated processes of CO2 sequestration from
blast furnace gas (BFG) and its catalytic hydrogenation to synthetic natural gas (SNG) but
also complex process integration that makes the method implementation more constructive
and practicable for other complex and energy-intensive processes.

2. Materials and Methods

First, a literature review was conducted to assess state-of-the-art methods available
in the context of upscaling emerging chemical processes. The methods were studied in
broader context with their respective case studies and examples and their major advantages
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and drawbacks were identified. In next step, a comprehensive study was conducted to
develop a methodological framework for upscaling of novel chemical processes based
on thermodynamic process modeling and simulation. During the analysis, various ther-
modynamic models were studied and applied using mathematical modeling software
MATLAB to produce thermodynamic data. The generated results were compared with
thermophysical property databases of NIST and experimental datasets from research arti-
cles and patents. The models were then practiced on several pre-existing case studies using
process simulation software to scrutinize model and calculation method.

For scaling up the novel CCU process presented in this study, the data on thermo-
dynamic physical properties, equipment design and process intensification was collected
from chemical and process engineering books and guidelines, research articles, patents,
NIST thermo data engine (TDE), expert opinions, and laboratory and industrial visits.
Using the gathered information, the thermodynamic process models were developed and
implemented on Aspen Plus simulation software to estimate thermophysical pure and
binary interaction parameters for the components participating in the process. After model
validation by comparing the experimental data and model predictions, the process simu-
lations were carried out and scaled-up material and energy flow streams were generated
based on defined functional unit. The framework was constructed based on the steps that
has been followed during the upscaling of process and organized in chronological order as
discussed in Section 4. At the end, all steps of the resulted framework were re-considered
and implemented again on the process to authenticate the framework and expected results.

3. The Literature Review

This section focuses on state-of-the-art methods in the literature that have been ap-
plied considerably to deal with issues concerned with upscaling of emerging chemical
processes. In this section, various upscaling procedures based on engineering and empiri-
cal calculations, scientific principles, power laws, proxies, prognosis, and artificial neural
networks, etc., described in the context of early stage assessment of emerging processes are
reviewed [9,10,14,21,22] as shown in Figure 2. The literature showed that upscaling was
mainly based on expert opinions, manual calculations, molecular structure based models
(MSMs), pilot-plant data, experiments, and analogies with existing technologies which were
considered as having a similar behavior [20,23,24]. The upscaling strategies for emerging
chemical processes found in the literature review are described in following section.
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3.1. Methodologies for Upscaling Emerging Chemical Processes

In this section, the widely adapted methodologies by previous studies in the literature
for upscaling of emerging chemical processes are described in broader context. Also, it
involves brief illustration and summarization of drawbacks and advantages associated
with the methodologies.

3.1.1. Engineering-Based Theoretical Approach

Upscaling by engineering-based theoretical approach could be an effective method
because the modelling of processes is based upon theories from engineering and scientific
studies. The sources of data are usually published lab synthesis procedures, patents,
scientific articles, books and expert opinions. The estimations are mainly performed by
using engineering laws, process-related functions and equations, calculations based on
average values and case specific analysis. For example, Piccino et al., 2016 developed
first engineering-based approach to estimate environmental impact of chemical processes
during early laboratory stage at industrial production level by deriving suitable calculation
equations using formulas from different engineering-based literature [9]. Zhou et al., 2017
developed a systematic approach to convert experimental measurements into LCI data
and, thereafter, scaled it up at the industrial scale by implementing on a case study of a
multikilogram synthesis of 4—D-erythronolactone (4-DEL) [20]. The method involved
identification of all operation steps followed by scale up of material flow and energy
consumption of identified operation steps and sensitivity analysis. However, the developed
procedure did not take into account recycle or recovery of materials or solvents and energy
utilization of one unit process in other processes.

The theoretical engineering-based scale-up approach requires the availability of com-
parable chemical processes at the industrial scale, which is only feasible for specific case
studies. In addition, upon upscaling of new technologies, the underlying mechanism of
mass and heat transfer may change leading to estimation of non-linear scaling factors which
is very challenging by theoretical calculations due to addition of numerous unknown vari-
ables [8,12]. Hence, the application of this scale-up approach is highly dependent on data
availability from mature similar technologies and limited to very simple chemical processes.

3.1.2. Scaling Relationships

Empirical scaling relationships can be adapted in the form of power law correlation
between some principal parameters and properties of complex systems particularly in the
early stage of development with limited amount of available data. In various engineering
applications, scaling laws have been developed to establish a relationship and estimate
key properties in the same manner as for cost estimation methods [25]. These relationships
can be a useful tool to scale-up a system and estimate inventory data [21,26] by relate two
variables, i.e., ‘X’ and ‘Y’ to each other in the form of a power law:

Y = α Xβ (1)

In Equation (1), α is normalization constant and β is the scaling factor. For exam-
ple, Caduff et al., 2014 developed scaling laws by using two industrial heat producing
equipment for quantitative assessment of the environmental impacts with respect to equip-
ment performance [17]. Valsasina et al., 2016 applied scaling relationships and scenario
analysis to predict capacity, energy consumption and velocity as major property param-
eters for upscaling of an high-energy consuming industrial homogenizer [27] using the
upscaling relation:

Y2 = aY1b (2)

Y2 and Y1 are key property parameters for which a scaling relationship has been
derived in Equation (2). However, the scaling relationships have various tradeoffs and
limitations that must be considered before practical implementation of the method. These
relationships might be applicable for upscaling of certain industrial equipment, e.g., heat
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pumps or biomass furnaces but implementation on sophisticated chemical processes is
highly impractical. In addition, the need for empirical data to derive a scaling relationship
is imperative and they are often unavailable when modeling emerging technologies with
very low TRL.

3.1.3. Proxies

This approach is based on collecting data from mature technologies analogous to
emerging technology that need to be modelled and scaled-up. The data sources for proxy
calculations could be life cycle inventory (LCI) databases, literature and engineering case
studies, online catalogues of machines, and professional consultation by technology devel-
opers [10,18,24]. Energy flows, material flows and elementary flows can be estimated by
using this method.

For example, Simon et al., 2016 proposed a framework with the objective of developing
inventory data for a novel chemical technology by retrieving information from laboratory
scale experimental analyses [10]. The structure for process scaling was based on the
analyses of functions, dimensions and functionalities to conduct comprehensive qualitative
investigation of unique laboratory synthesis protocols; quantitative analyses on distinct
process parameters such as operating conditions and amount of reaction precursors and
products produced; and examination of process characteristics of identical industrial-scale
process. This distinctive combination of assessment techniques provides a possibility to
generate scaled-up inventory flow data.

Villares et al., 2016 presented a framework based on proxy techniques using an exam-
ple of novel bioleaching process for metal recovery [18]. The framework consisted of three
stages: (i) modelling of laboratory process using information from experimental data on
lab-scale and application of attributional LCA to assess potential hotspots, (ii) scaling up the
laboratory process to the industrial scale applying a possible scenario, and (iii) comparing
the results of scaled-up system with pre-existing industrialized processes.

However, the proxies scale-up approach is limited in terms of its practical implication
due to limited data availability based on condition that identical chemical process is
operating at the industrial scale and various uncertainties involved in calculations and
estimating scaling factors due to the differences in emerging and proxy technologies.

3.1.4. Artificial Neural Networks

Neural networks are useful for broader identification of relationships between input
and output data of processes, developing a connection between them using different
activation functions such as binary step function, linear activation functions and non-linear
activation functions. These data can be applied to analyze the process and predict data
for upscaling. Insufficient or no inventory data can lead to large uncertainties and severe
estimation errors in process-based inventory modelling.

For modeling chemical processes, models based on molecular structure could be ap-
plied to generate cradle-to-gate material flow data and environmental emissions through
the complete production cycle by giving input data as molecular description [4,19]. Wernet
et al., 2008 predicted LCI data and generated life cycle impact assessment reports for numer-
ous chemical products by using artificial neural networks approach [19]. The training data
included accurate information on energy utilization to estimate data on energy consump-
tion. Multiple network arrangements and optimization schemes for neural networks has
been investigated to develop models which represented good prospects of the method to
predict scale-up factors for novel chemical processes. However, the methodology consists
of various aspects that are highly impractical to consider in developing ANN models
for upscaling such as collection of a huge amount of data comprising molecular descrip-
tion of various chemicals, pre-existing similar synthesis procedures and detailed product
characteristics. Another example of using ANN is learning surrogate concept which is
based on predicting inventory data by training of ANN based codes utilizing data on
products attributes and characteristics [28]. Moreover, CliCC-Tool has also been employed
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to predict inventory or impact information for typical chemicals using an artificial neural
network [22].

3.1.5. Prognosis

This scale-up approach is based on life cycle assessment of processes that have already
developed to the pilot scale. The implementation of methodology is only feasible if the
environmental assessment analysis of pilot plant is accessible in form of integrated process
modules with associated input and output streams. This method is firstly focused on
creating assumption and conditions such as specification of functional unit. The second
aspect is to prioritize relevant facets of the process, for example, significant unit operation
and unit processes and calculate material and energy requirements [13,14,16].

The third aspect of the method is deliberation of apparatus as a system, the physical
dimensional increment of which can induce significant changes in material and energy
requirements. Inclusion of optimization prospects in the integrated complex network of
unit processes and unit operation equipment and up-stream and down-stream processes
such as wastewater handling and co-product utilization are other major aspects of the
approach. Although the prognosis scale-up approach covers considerable process-related
aspects, the implementation of methodology can be executed only if pilot-scale data are
available, which is inconceivable for emerging processes, showing inapplicability of the
method for upscaling of novel chemical processes.

The exposure of different methodological aspects for upscaling of chemical processes
at the early phase of development from the literature review is summarized in Table 1,
highlighting their key advantages and drawbacks.

Table 1. Key advantages and drawbacks of methods for upscaling of emerging chemical processes.

Methods for Upscaling Advantages Drawbacks References

Engineering-based
theoretical approach

• Manual data computation
• Theoretical calculations based

on engineering laws and
mathematical equations

• Requires already existing similar
process at the industrial scale

• Determination of non-linear scaling
factors is challenging

• Can be time consuming

[9,20]

Scaling laws
• Manual data computaion

• Requires empirical data to generate
power law relationship

• Disregards system synergies
• Highly case specific

[17,21,25,26]

Proxies

• Data can be retrieved from
LCI databases, literature and
case studies, online catalogs,
and expert consultation

• Performing data estimation is
relatively simple

• Requires close resemblance of
emerging technology to already
existing similar technology

• Limited availability of data

[10,18,24]

Prognosis

• Innovative simple systematic
procedure based on
relevance analysis

• Incorporates system
synergy effects

• Requires modular LCA analysis
based on the pilot scale

• Needs essential information of
planned large plant design

[13,14,16]

Artificial neural networks • Fast calculations

• Large set of inventory data based on
pre-existing similar processes and
product characteristics is required

• Validation of model is necessary
before using scaled-up
inventory data

• Practical implication of the method
is very limited

[4,19,22,28]
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After the literature review, it was found that the major focus of the published methods
is a single technology or process without providing essential information on significant
steps or measures applicable to other case studies that are dealing with complex integrated
network of large number of process equipment. The reviewed methodologies are either
demanding a large set of data from developed similar chemical processes or lacking in
applicability to model a complex integrated network of large number of process equipment
such as reactors, separators, extractors, and distillation columns. In order to fulfil this
major gap in the state-of-the-art, comprehensive methodological guidance is developed
and presented in this study, which can accommodate sophisticated emerging chemical
processes, contemplate all process-related factors and overcome associated uncertainties in
pragmatic manner when executing the upscaling procedure.

4. A Framework for Upscaling of Emerging Chemical Processes Based on
Thermodynamic Process Modeling and Simulation

A new methodological framework is proposed as shown in Figure 3, which can give
process engineers and the LCA community a promising direction to perform evaluations,
select promising technology among various technologies, and perform upscaling from
the lab scale to the pilot scale and then to the industrial scale, by thermodynamic process
modeling and simulation. The approach consists of ten steps to perform the evaluation and
upscaling of new chemical processes involving various unit operations and unit processes.
This methodology is a practical technique to make comparisons between technologies and
scale-up at low TRL as it involves modeling based on chemistry and chemical engineering
laws and principles and model validation with experimental data. After validation, the
technology can be optimized and scaled-up to the pilot scale and then the commercial scale.
The steps involved in procedure are described in the following section.

Functional Unit Specification

The functional unit serves as the reference quantity throughout the analyses. It is a
quantified description of the function of the product that serves as the reference basis for
all calculations [29]. Specification of a functional unit is the basis of performing all material
and energy balance and design calculations for upscaling.

Mass and Energy Balance Calculations

Mass and energy conservation laws are applied on the processes to estimate material
and energy requirements based on specified functional unit, thermodynamics and kinetics
of the process. The general conservation equation for any process system can be written as:

Mout = Min + Mgeneration − Mconsumption − Maccumulation (3)

For a steady-state process, the accumulation term will be zero because mass is neither
generated nor consumed. If a chemical reaction occurs, a particular chemical species may
be formed or consumed, thus the accumulation term will not be zero. If there is no chemical
reaction, the steady-state balance reduces to

Mout = Min (4)

A general equation can be written for the conservation of energy based on first law of
thermodynamics:

Eout = Ein + Egeneration − Econsumption − Eaccumulation (5)

An energy balance can be written for any process step. If the chemical reaction involves
a process, the energy will evolve and consumed for exothermic and endothermic reactions,
respectively. For a steady-state process, the accumulation term will be zero for both mass
and energy balance equations [30].
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Process Design

This step involves identification and selection of appropriate equipment, process
integration and theoretical design of equipment for particular unit operations and unit
processes. Consulting chemical and process engineering literature, patents, proxy analysis
(pre-existing technologies at the industrial scale), expert opinions or manual selection of
appropriate best available techniques from the sectoral reference documents can perform
the appropriate techniques and equipment selection and design procedure [30–34].

After selection of equipment, integration of process equipment is performed to
reuse/recycle of materials and recover process heat in efficient way that results into a
process flow diagram. The process integration step provides valuable data to conclude
equipment design and leads to a substantial reduction in the material and energy re-
quirements of a process. One of the most successful technique for investigating energy
integration is ‘pinch technology’, where a pinch usually occurs between the hot stream
and cold stream curves to form a plot of system showing temperatures versus the heat
transferred. The pinch represents a distinct thermodynamic break in the system and that,
for minimum energy requirements, heat should not be transferred across the pinch [30,35].

The theoretical design of unit operation and unit process equipment is carried out
based on defined functional unit to calculate design parameters to achieve specified pro-
cess efficiency goals. The calculated parameters are utilized as input to execute process
simulations runs.
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Process Modeling

Modeling and simulation are useful mechanisms to analyze the behavior of chemical
and petrochemical industries. These are very effective tools for design, optimize and scale
up of chemical processes and equipment by providing possibilities to anticipate and analyze
various alternatives of unit operations and unit processes in highly effective and economical
way. Phenomenological or deterministic modeling can be used to create a thermodynamic
process model where mass, energy, and momentum conservation laws are applicable. In
case these laws are not relevant, then stochastic models based on the uncertainty principle
such as empirical models or population balance are of great concern [36].

Models can be classified into two types, i.e., lumped-parameter models and distributed-
parameter models that further individually classified into steady-state and unsteady-
state models as shown in Figure 4. The lumped-parameter model assumes a system
homogeneous and consistent throughout the entire volume. Processes can be modelled
using lumped-parameter model by simple algebraic mathematical equations (AEs) under
steady-state conditions. In contrast, a distributed-parameter model considers a system
heterogeneous and vary with respect to spatial coordinates across the entire volume. Under
steady-state conditions, ordinary differential equations (ODEs) are sufficient to define the
system, whereas partial differential equations (PDEs) are required to represent the system
under unsteady-state or dynamic conditions [36]. After properly defining the system by
mathematical equations comes the solving of the complex equations, for which numerical
and analytical methods are employed using process simulations. Various computer tools,
i.e., Aspen Plus, ChemCAD, MATLAB, etc., are used to model and simulate chemical
equipment and processes in a highly convenient and effective manner [37–39].

ChemEngineering 2024, 8, x FOR PEER REVIEW 9 of 20 
 

This step involves identification and selection of appropriate equipment, process in-
tegration and theoretical design of equipment for particular unit operations and unit pro-
cesses. Consulting chemical and process engineering literature, patents, proxy analysis 
(pre-existing technologies at the industrial scale), expert opinions or manual selection of 
appropriate best available techniques from the sectoral reference documents can perform 
the appropriate techniques and equipment selection and design procedure [30–34].  

After selection of equipment, integration of process equipment is performed to re-
use/recycle of materials and recover process heat in efficient way that results into a process 
flow diagram. The process integration step provides valuable data to conclude equipment 
design and leads to a substantial reduction in the material and energy requirements of a 
process. One of the most successful technique for investigating energy integration is 
‘pinch technology’, where a pinch usually occurs between the hot stream and cold stream 
curves to form a plot of system showing temperatures versus the heat transferred. The 
pinch represents a distinct thermodynamic break in the system and that, for minimum 
energy requirements, heat should not be transferred across the pinch [30,35]. 

The theoretical design of unit operation and unit process equipment is carried out 
based on defined functional unit to calculate design parameters to achieve specified pro-
cess efficiency goals. The calculated parameters are utilized as input to execute process 
simulations runs. 
Process Modeling 

Modeling and simulation are useful mechanisms to analyze the behavior of chemical 
and petrochemical industries. These are very effective tools for design, optimize and scale 
up of chemical processes and equipment by providing possibilities to anticipate and ana-
lyze various alternatives of unit operations and unit processes in highly effective and eco-
nomical way. Phenomenological or deterministic modeling can be used to create a ther-
modynamic process model where mass, energy, and momentum conservation laws are 
applicable. In case these laws are not relevant, then stochastic models based on the uncer-
tainty principle such as empirical models or population balance are of great concern [36]. 

Models can be classified into two types, i.e., lumped-parameter models and distrib-
uted-parameter models that further individually classified into steady-state and un-
steady-state models as shown in Figure 4. The lumped-parameter model assumes a sys-
tem homogeneous and consistent throughout the entire volume. Processes can be mod-
elled using lumped-parameter model by simple algebraic mathematical equations (AEs) 
under steady-state conditions. In contrast, a distributed-parameter model considers a sys-
tem heterogeneous and vary with respect to spatial coordinates across the entire volume. 
Under steady-state conditions, ordinary differential equations (ODEs) are sufficient to de-
fine the system, whereas partial differential equations (PDEs) are required to represent 
the system under unsteady-state or dynamic conditions [36]. After properly defining the 
system by mathematical equations comes the solving of the complex equations, for which 
numerical and analytical methods are employed using process simulations. Various com-
puter tools, i.e., Aspen Plus, ChemCAD, MATLAB, etc., are used to model and simulate 
chemical equipment and processes in a highly convenient and effective manner [37–39]. 

 

Figure 4. Model classification and their derived mathematical equations.

Model Validation

The thermodynamic model is implemented on a simulation engine to compute ther-
modynamic and transport properties of species involved, and compare with experimental
data from the literature or databases. The model parameters are needed to modify for
particular process systems to make accurate estimations. If the regression model fits the
experimental data well, the model is opted to run process simulations and make analyses.

Process Simulation and Technology Evaluation

After model validation, the process flowsheet is transformed to a simulation engine
by giving mass and energy balance values and design specifications of process equipment
calculated in previous steps and process simulations are executed at various operating
conditions and process parameters to perform the analyses and technology evaluation.

Process Optimization

This step involves estimation of optimum process conditions to acquire high process
efficiency using various methods such as statistical methods, e.g., design of experiments
(DoE), which is used to recognize significant and insignificant variables of the process
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based on their effects on process operation and behavior. Response surface methodology is
another statistical approach that represents the correlation between the process parameters
and the response variables. Some process simulation softwares, e.g., Aspen Plus and
ProSim, have built-in tools for performing process optimization. In process optimization,
the effects of changes in process parameters on the performance of process are analyzed
and compared. The optimal process configurations can be achieved by performing repeated
calculations or experiments by making alteration in process variables and identification of
most important among them.

Process Scale-Up

After a successful run of process simulations and process optimization, the process
can be scaled-up by development of the bench- or the pilot-scale operation based on
simulations. The process and design parameters can be further modified by comparing
bench- or pilot-scale experiments with simulation results and industrial scale-up can be
executed using optimized process parameters.

5. Case Study: Novel Process for CO2 Capture from BFG and Its Utilization in Synthesis
of CH4

A novel process has been developed by me as shown in Figure 5, in which CO2 in blast
furnace gas originating from the iron and steel industry is sequestrated using methanol
as an absorbent and synthetic natural gas is produced by the catalytic hydrogenation of
captured CO2. In this process, CO2 is separated from blast furnace gas using methanol by
physical absorption process in the absorption column at low temperature and high-pressure
conditions. Heat exchanger network system was designed to optimally utilize process
heat from blast furnace gas through heat exchanger ‘1’ followed by passing of off-gas
stream exiting from top of the absorption column through heat exchanger ‘2’, where BFG
exchanges heat to off gas coming from top of the absorption column and cooled down
to sub-zero temperatures. The CO2-rich methanol stream was then subjected to undergo
flash separation at low pressure and enhanced temperature conditions in a flash column
in order to separate CO2 and methanol. Then, the sequestrated CO2 stream was mixed
with hydrogen gas in a stream mixer and entered into a tubular reactor with a fixed-bed
reactor of 0.5% Ru/Al2O3 to synthesize CH4. The volume percentages of major gases in
blast furnace gas are represented in Table 2.
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Table 2. The volume percentages of the major gas components in blast furnace gas.

Components CO2 CO N2

Vol (%) 20–23 22–25 53–58

After flash separation, lean methanol at the bottom can be recycled back to the ab-
sorption column as regenerated solvent that can massively reduce the requirement of fresh
methanol. The major characteristics of this process are the CO2 capture efficiency of >95%
and the purities of recovered CO2 and lean methanol solvent of approximately 80% and
99%, respectively. In addition, the conversion of CO2 reached approximately 83% with very
high selectivity to CH4, which makes the process a valuable contribution to sustainable
production technologies for carbon capture and utilization from the iron and steel industry.

6. Results and Discussion

In this section, the proposed methodology based on thermodynamic process model-
ing and simulation described in Section 4 is implemented on the case study presented in
previous section. The realization of the framework on the process was carried out through
systematic application of methodology, i.e., practically following each step of the frame-
work and producing results, which serve as input to the succeeding step, as described in
following subsections:

6.1. Functional Unit Specification

The functional unit was defined as 1000 L/h of blast furnace gas and all mass and
energy balance and design calculations were based on it.

6.2. Material and Energy Balance

To achieve the required degree of CO2 separation from 1000 L/h blast furnace gas, the
required minimum methanol flow rate for absorption was calculated as:

Gs (Y1 − Y2) = Ls (X1 − X2) (6)

where Gs is the molar flow rate of BFG entering at Section 1 of column, Ls is the molar flow
rate of methanol entering at Section 2 of column, and Y1, Y2, X1 and X2 are concentrations of
solute in BFG, off gas, CO2-rich methanol, and methanol, respectively, as shown in Figure 6.
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If the flow rate, the composition, and enthalpy of the feed stream CO2-rich methanol
coming from the absorption column, the top product and the bottom liquid product from
the flash column are denoted as (Ls, zF,i, HF), (D, yD,i, HD), and (W, xW,i, HW), respectively,
and QBFG is the rate of supply of heat to the heat exchanger by BFG as shown in Figure 7,
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the material and energy balance equations for the steady-state flash separation unit can be
written as:
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Total material balance:
Ls = D + W (7)

Component balance
Ls zF,i = DyD,i + WxW,i (8)

Enthalpy balance:
Ls HF + QBFG = DHD + WHW (9)

where ‘i’ in the component balance represents multicomponent mixture of methanol, CO2,
CO and N2. CO2 reacts with hydrogen to form CH4 in a plug flow reactor (PFR) with
fixed catalytic bed to activate reactive species and increase methane selectivity through the
reaction equation:

CO2 + 4H2 ↔ CH4 + 2H2O; ∆H◦ (298 K) = −165 KJ/mol (10)

The rate constant ‘k’ was calculated by Arrhenius equation [40] (Equation (11)) and
employed in rate equation to estimate the rate of reaction with respect to CO2 conversion
(Equation (12)) [41]:

K = ko.exp(−Ea/R.T) (11)

rCO2 = k{(PCO2 )n(PH2 )4n − [(PCH4 )n(PH2O)2n/(Keq(T))n]} (12)

ko is pre-exponential factor and Ea is activation energy in Equation (11), where rCO2 is
the reaction rate with respect to the conversion of CO2, Keq is the equilibrium rate constant
and n is the reaction order in Equation (12). The adapted kinetic equations and related
parameters were further employed in material and energy balance calculations and input
specifications for the reactor when executing process simulations.

The material component balance of the involved species (CO2, H2, CH4, H2O) in the
fixed-bed reactor as shown in Figure 8 was derived as [40,41]:

dFi/dWcat = (vi)i (13)

In Equation (13), Fi is the molar flow rate of component ‘i’ entering the reactor at z,
moving along the reactor axis and exiting at z + ∆z; Wcat is the mass of the catalyst; vi is
the stoichiometric coefficient for component ‘i’ and r is the reaction rate.

Overall enthalpy balance in the steady state was deduced in the form:

d/dWcat·∑FiHi = dQ/dWcat (14)

Hi is the enthalpy of components (CO2, H2, CH4, H2O) participating in the chemical
reaction; and Q is the heat released due to exothermic nature of reaction in Equation (14).
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6.3. Identification/Selection of Unit Operations and Unit Processes Equipment

The selection of unit operations and unit processes equipment is highly case specific. It
strictly depends upon the process conditions, process requirements and materials involved
in the process. In this study, two major unit operations and a unit process are involved,
i.e., physical absorption of CO2 followed by the stripping/desorption and catalytic hydro-
genation of CO2 to CH4. Based on process requirements, an absorption column for CO2
capture, a flash column for CO2 recovery and a fixed-bed tubular reactor were considered
and selected to achieve required separation and reaction.

6.4. Process Design
6.4.1. Process Intensification and Heat Integration

The unit operations equipment were integrated and heat exchangers network was
designed such that the heat from blast furnace gas was recovered and utilized in first
heat exchanger to enhance temperature of CO2-rich methanol solvent to facilitate flash
separation. In second heat exchanger, the blast furnace gas was cooled down by off-
gas coming from top of the absorption column before undergo separation process. The
lean methanol regenerated from flash separation was recycled back to the absorption
column, which significantly reduced the requirement of pure solvent. Hence, the designed
integrated network of heat exchangers and flow streams facilitated maximal heat recovery
and material utilization in the process.

6.4.2. Unit Operations Design Parameters and Configuration

The design parameters and configurations of the absorption column, the flash column
and the reactor are necessary as input specifications in process simulation software. Based
on functional unit of 1000 L/h BFG, these parameters were estimated from the literature,
chemical engineering books, and commercialized processes and specified in Aspen Plus
process simulation software.

The Absorption Column

The absorption column was rigorous two or three-phase fractionation column with
internal packing. The mass transfer rate-based (non-equilibrium) calculation type was
used to model the absorber because in the case of CO2 absorption, the phase equilibrium
assumption was adequate due to the contemporary existence of mass transfer. In the
rate based model, the two film theory concept was considered using a mass transfer
correlation. The number of stages was taken as 10 arbitrarily with BFG entering on stage
10 and methanol solvent entering on stage 1. The dimensions of absorber were taken as
diameter = 1 m and section packed height = 7 m. The column internal type was packed
with Intalox Saddles of ceramics with dimension of 0.5 inches.

The Flash Column

The flash column was a simple one inlet and two-outlet separation vessel into which
CO2-rich methanol stream was entered at process conditions, i.e., T = −5 ◦C and P = 1
bar, resulting in the separation of gas and liquid phases through equilibrium vaporization.
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The input specifications were given in terms of temperature, pressure, flow rates and
phase compositions.

The Reactor

A packed-bed plug flow reactor was used for the catalytic hydrogenation of CO2 into
CH4. The packet bed consisted of 0.5% Ru/γ-Al2O3 with a particle density of 12.41 gm/cm3.
The catalyst loading was calculated as 8169.58 gm based on gas hourly space velocity at
standard temperature and pressure conditions (GHSV) = 5 L(STP)/h/gcat.

6.5. Thermodynamic Process Modeling and Model Validation

Thermodynamic process modeling was performed for system of blast furnace gas
methanol, H2, CH4, and H2O to estimate scalar and temperature dependent pure and binary
interaction parameters of all components. The perturbed-chain statistical associating (PC-
SAFT) equation of state (EOS) thermodynamic model was used to describe the solubility of
CO2 in methanol and CO2 conversion to CH4. With conventional one-fluid mixing rules,
the PC-SAFT EOS can be applied to mixtures of small spherical molecules such as gases,
non-spherical solvents, and chainlike polymers [42,43]. The PC-SAFT equation is usually
written in terms of residual Helmholtz free energy. The equations for compressibility
factor, fugacity coefficients, and caloric properties can be derived from the Helmholtz free
energy by applying classical thermodynamics [43]. The equation of state could be extended
to mixtures of gases and solvents by applying one-fluid mixing rules. The parameters
for a pair of unlike segments, i.e., CO2 and methanol were obtained by conventional
Berthelot–Lorentz combining rules:

σij = (σi + σj)/2 (15)

εij = (εi·εj)1/2 (1 − kij) (16)

where ‘σ’ is the segment diameter and ‘ε’ represents depth of pair potential. One binary
interaction parameter, ‘kij’, was introduced to correct the segment-segment interactions
of unlike chains. The binary pairs of CO2 and methanol can be corrected by estimating
values of ‘kij’ and PC-SAFT model can predict the phase behavior of the system. The model
was implemented on Aspen Plus process simulation software by modifying various scalar
and temperature dependent interaction parameters and the model was analyzed at various
temperature and pressure conditions using experimental data as shown in Figure 9.

The experimental values for vapor-liquid equilibrium (VLE) data of CO2-Methanol
were gathered from the literature [44] to compare the estimated VLE data by PC-SAFT
EOS model at various temperatures and pressures covering the operating range of process
conditions of the process. The regression results showed close approximation of estimated
values to the experimental data at defined temperature and pressure conditions. Specifically,
at temperature of −23.15 ◦C, the P-x and P-y plots drawn by PC-SAFT EOS model exhibited
high accuracy and model authentication to estimate CO2 solubility in methanol at operating
process conditions. Hence, the process modeling and model validation results show
high capability of PC-SAFT EOS model to run the simulations under process operating
conditions with high accuracy.

To study the model behavior for the catalytic hydrogenation of CO2, the reaction was
simulated in a packed-bed reactor with design input specifications explained in Section 6.4.
The simulations were executed at temperature range of 250–410 ◦C to investigate the
effect of temperature on CO2 conversion under atmospheric pressure and GHSV = 5
L(STP)/h/gcat and the results were compared with experimental data from Falbo et al.,
2018 as shown in Figure 10. CO2 conversion at 250 ◦C is 11.3% estimated by model and the
value increased by increasing the temperature until it reached the maximum value of 82.3%
at 370 ◦C. The trend of the graph was changed and conversion value started to decrease
upon further increment in temperature due to attaining of thermodynamic equilibrium.
It was found that the model behaved very well to predict values for CO2 conversion to
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CH4 at various temperatures when compared with laboratory-scale data by following the
experimental trend line [40,41].

ChemEngineering 2024, 8, x FOR PEER REVIEW 15 of 20 
 

where ‘σ’ is the segment diameter and ‘ε’ represents depth of pair potential. One binary 
interaction parameter, ‘kij’, was introduced to correct the segment-segment interactions of 
unlike chains. The binary pairs of CO2 and methanol can be corrected by estimating values 
of ‘kij’ and PC-SAFT model can predict the phase behavior of the system. The model was 
implemented on Aspen Plus process simulation software by modifying various scalar and 
temperature dependent interaction parameters and the model was analyzed at various 
temperature and pressure conditions using experimental data as shown in Figure 9.  

 
Figure 9. Comparison between experimental and PC-SAFT EOS model estimated equilibrium P-x 
and P-y plots of CO2-methanol. 

The experimental values for vapor-liquid equilibrium (VLE) data of CO2-Methanol 
were gathered from the literature [44] to compare the estimated VLE data by PC-SAFT 
EOS model at various temperatures and pressures covering the operating range of process 
conditions of the process. The regression results showed close approximation of estimated 
values to the experimental data at defined temperature and pressure conditions. Specifi-
cally, at temperature of −23.15 °C, the P-x and P-y plots drawn by PC-SAFT EOS model 
exhibited high accuracy and model authentication to estimate CO2 solubility in methanol 
at operating process conditions. Hence, the process modeling and model validation re-
sults show high capability of PC-SAFT EOS model to run the simulations under process 
operating conditions with high accuracy. 

To study the model behavior for the catalytic hydrogenation of CO2, the reaction was 
simulated in a packed-bed reactor with design input specifications explained in Section 
6.4. The simulations were executed at temperature range of 250–410 °C to investigate the 
effect of temperature on CO2 conversion under atmospheric pressure and GHSV = 5 
L(STP)/h/gcat and the results were compared with experimental data from Falbo et al., 2018 
as shown in Figure 10. CO2 conversion at 250 °C is 11.3% estimated by model and the 
value increased by increasing the temperature until it reached the maximum value of 
82.3% at 370 °C. The trend of the graph was changed and conversion value started to de-
crease upon further increment in temperature due to attaining of thermodynamic equilib-
rium. It was found that the model behaved very well to predict values for CO2 conversion 
to CH4 at various temperatures when compared with laboratory-scale data by following 
the experimental trend line [40,41].  

Figure 9. Comparison between experimental and PC-SAFT EOS model estimated equilibrium P-x
and P-y plots of CO2-methanol.

ChemEngineering 2024, 8, x FOR PEER REVIEW 16 of 20 
 

 
Figure 10. Comparison of experimental CO2 conversion to model predictions at various tempera-
tures. 

To further investigate the model suitability for its implementation in process simula-
tions, a comparison between predicted and experimental CO2 conversion data was carried 
out by studying the effect of change in GHSV on conversion at two different temperatures, 
i.e., 310 °C and 290 °C as shown in Figure 11. The trend lines showed that CO2 conversion 
reduces from 65.6% to 30.6% and 45% to 18.7% at 310 o C and 290 °C, respectively, by 
increasing GHSV from 3.75 to 10 L/h/gcat. The model estimated values at 310 °C repre-
sented some disparity from experimental data by increasing GHSV, which showed that 
some kinetic or thermodynamic model parameters would need to be identified and mod-
ified if the process is run at high GHSV values [40,41]. However, the PCSAFT-EOS model 
provided fair approximations for CO2 solubility in methanol and its conversion to CH4. 
Hence, the model was implemented to simulate the whole process. 

 
Figure 11. Comparison of experimental CO2 conversion to model predictions at various gas hourly 
space velocities (GHSV). 

6.6. Process Simulation, Technical Evaluation, Process Optimization and Upscaling 
After performing thermodynamic process modeling, the process flow diagram was 

added in Aspen Plus as shown in Figure 12. All the unit operation and unit processes 
equipment were modelled using design parameters defined in Section 6.4. The technical 
evaluation of the process was performed using sensitivity analysis. The assessment was 
carried out by executing numerous simulation runs by manipulating various design spec-
ifications and process parameters, i.e., temperatures, pressures, flow rates and composi-
tions to analyze uncertain process response and effects of process variables.  

In process optimization, the Aspen Plus optimizer tool based on the sequential quad-
ratic programming algorithm was employed for flowsheet optimization. It was used to 
minimize or maximize the objective functions by manipulating process variables. The de-
fined objective functions were minimizing the mole fraction of CO2 in outlet stream 
GASOUT from the absorption section, maximizing CO2 mole fraction in the outlet stream 
CO2 from desorption section and maximizing CH4 yield in the outlet stream CH4 + H2O 

Figure 10. Comparison of experimental CO2 conversion to model predictions at various temperatures.

To further investigate the model suitability for its implementation in process simula-
tions, a comparison between predicted and experimental CO2 conversion data was carried
out by studying the effect of change in GHSV on conversion at two different temperatures,
i.e., 310 ◦C and 290 ◦C as shown in Figure 11. The trend lines showed that CO2 conversion
reduces from 65.6% to 30.6% and 45% to 18.7% at 310 o C and 290 ◦C, respectively, by in-
creasing GHSV from 3.75 to 10 L/h/gcat. The model estimated values at 310 ◦C represented
some disparity from experimental data by increasing GHSV, which showed that some
kinetic or thermodynamic model parameters would need to be identified and modified if
the process is run at high GHSV values [40,41]. However, the PCSAFT-EOS model provided
fair approximations for CO2 solubility in methanol and its conversion to CH4. Hence, the
model was implemented to simulate the whole process.
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6.6. Process Simulation, Technical Evaluation, Process Optimization and Upscaling

After performing thermodynamic process modeling, the process flow diagram was
added in Aspen Plus as shown in Figure 12. All the unit operation and unit processes
equipment were modelled using design parameters defined in Section 6.4. The technical
evaluation of the process was performed using sensitivity analysis. The assessment was
carried out by executing numerous simulation runs by manipulating various design speci-
fications and process parameters, i.e., temperatures, pressures, flow rates and compositions
to analyze uncertain process response and effects of process variables.
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In process optimization, the Aspen Plus optimizer tool based on the sequential
quadratic programming algorithm was employed for flowsheet optimization. It was
used to minimize or maximize the objective functions by manipulating process variables.
The defined objective functions were minimizing the mole fraction of CO2 in outlet stream
GASOUT from the absorption section, maximizing CO2 mole fraction in the outlet stream
CO2 from desorption section and maximizing CH4 yield in the outlet stream CH4 + H2O
from the reaction section represented in Figure 12. The manipulated variables were tem-
perature and pressure for absorption and desorption section; for reaction section, these
were temperature, pressure and GHSV. Based on results, an optimized range was specified
for process operation to achieve required CO2 capture efficiency and recovery shown in
process flow sheet diagram (Figure 5).

For upscaling the process with a capacity of 1000 L BFG/h, having a degree of CO2
separation from BFG > 95% and CO2 conversion into CH4 (XCO2 ) =̃ 83%; the process simu-
lations were performed with scaled-up material and energy flows and equipment design
specifications based on optimized process conditions and modified design parameters;
obtained after technology evaluation and process optimization. The employed process
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conditions were T = −30 ◦C, P = 28 bar in absorption section; T = −5 ◦C, P = 1 bar in
desorption section; and T = 370 ◦C, P = 1 bar, and GHSV(STP) = 5 L/h/gcat in reaction
section. The upscaling results with process stream data are presented in Table 3.

Table 3. Process streams results from process simulations on Aspen Plus based on 1000 L/h BFG.

Description Units BFG CO2 CO2 RICHM OFFGAS LEANMETH METHANOL CH4 + H2O H2

Phase Vapor Vapor Liquid Vapor Liquid Liquid Vapor Vapor
Temperature ◦C −30 −5 −21.875 −29.979 −5 −30 370 20

Pressure Bar 28 1 28 28 1 1 1 1
Molar

Enthalpy kJ/kmol −1.17 × 105 −3.24 × 105 −2.48 × 105 −3.29 × 104 −2.43 × 105 −2.44 × 105 −1.46 × 105 −142.43

Molar
Entropy kJ/kmol-K −6.712 7.106 −245.88 −4.507 −249.54 −259.045 −2.557 −0.487

Molar
Density mol/L 1.489 0.045 25.841 1.428 25.324 26.065 0.0189 0.042

Enthalpy
Flow kJ/h −2.12 × 105 −1.33 × 105 −2.38 × 106 −4.35 × 104 −2.23 × 106 −2.21 × 106 −1.66 × 105 −185.021

Mole Flows kmol/h 1.814 0.412 9.565 1.321 9.153 9.072 1.137 1.299
Mole

fractions − − − − − − − − −
Methanol − 0 0.027 0.948 0.0002 0.989 1 0.0098 0

CO2 − 0.23 0.788 0.043 1.152 × 10−10 0.010 0 0.033 0
CO − 0.22 0.069 0.0029 0.281 2.79 × 10−5 0 0.025 0
N2 − 0.55 0.114 0.0049 0.719 3.09 × 10−5 0 0.041 0

CH4 − 0 0 0 0 0 0 0.253 0
H2 − 0 0 0 0 0 0 0.133 1

H2O − 0 0 0 0 0 0 0.504 0
Mass Flows kg/h 57.501 16.772 311.17 37.011 294.39 290.68 19.394 2.618

The resulted process streams data analyses from upscaling showed that thermody-
namic process modeling and simulations could be very useful tool in realization of processes
at higher scales. The detailed material and energy process streams generated from up-
scaling would be of great significance for process improvement and further development.
However, the industrial scale-up is incorporated with numerous protocols, efficiency and
safety measures and uncertainty factors that could not be estimated only by practicing
thermodynamic process modeling and simulations but bench-scale and pilot-scale opera-
tions are necessary before proceeding to the industrial scale. The design parameters and
process conditions estimated for a particular process would need further optimization by
comparing experimental and simulation results at the bench and pilot scales. The scaled-up
parameters and material and energy balances calculated by the applied method are very
beneficial for preliminary assessment of emerging chemical processes and mechanical de-
sign of equipment internals and executing computational fluid dynamics (CFD) simulations
to develop bench- and pilot-scale demonstration plants, prior to industrial transformation.

Performing pilot/bench-scale operations is necessary to modify and optimize the
process parameters before industrial scale-up because the uncertainties and complexities
involved at actual industrial plant cannot be compromised and neglected. Also, if various
technologies need evaluation for particular functional unit, the results achieved by the
implementation of the proposed methodological framework would be of immense signif-
icance because the detailed analyses on material and energy data and their comparison
can provide a good insight into the technology and assist in making early decisions about
adapting and further scaling it to a mature level.

7. Conclusions

A new methodology for upscaling of emerging chemical process technologies based on
thermodynamic process modeling and simulation is proposed and practically applied on
an example of a novel CCU process. The early-stage investigation of developing processes
is of paramount importance for decision makers about the adaptability and feasibility of
technology for further development. Data requirements from similar pre-existing mature
technologies, inability to handle integrated complex process units, and uncertainty factors
while performing scale-up of emerging technologies are major shortcomings of state-of-
the-art methods. However, the practical implementation of the presented framework on
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this case study showed that the method can simulate complex and high-energy intensive
chemical processes, estimate thermodynamic and kinetic process parameters and investi-
gate the process behavior at different process conditions. In addition, the results generate
in the form of process streams with detailed information about material and energy flows,
which could be conveniently employed for process modification and advancement.

Although the method is highly practicable, reliable and considers all process-related
factors and issues of upscaling, it consists of several steps and each step is associated with
individual measures to take and objectives to fulfil that require good chemical and process
engineering knowledge. Thermodynamic process modeling requires thermodynamic
data to validate the model predictions. The implementation of thermodynamic model
equations on simulation software and determination of precise values for thermodynamic
properties and interaction parameters are very complicated. The achieved results can
be very beneficial for the initial analysis of the process and its scale-up but industrial
demonstration would be feasible only after investigating the process at the bench and
then the pilot scale. However, the framework proposed is a very effective tool to estimate
the material and energy requirements, and environmental emissions of the technologies
and to make comparisons among various technologies in the emerging phase and gives
new ground for future research to deal with upscaling challenges of more complicated
and high-energy intensive chemical processes using thermodynamic process modeling
and simulations.
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