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Abstract: Isovaleric acidemia (IVA), an inborn error of leucine catabolism, is caused by mutations
in the isovaleryl-CoA dehydrogenase (IVD) gene, resulting in the accumulation of derivatives
of isovaleryl-CoA including isovaleryl (C5)-carnitine, the marker metabolite used for newborn
screening (NBS). The inclusion of IVA in NBS programs in many countries has broadened knowledge
of the variability of the condition, whereas prior to NBS, two distinct clinical phenotypes were
known, an “acute neonatal” and a “chronic intermittent” form. An additional biochemically mild
and potentially asymptomatic form of IVA and its association with a common missense mutation,
c.932C>T (p.A282V), was discovered in subjects identified through NBS. Deficiency of short/branched
chain specific acyl-CoA dehydrogenase (2-methylbutyryl-CoA dehydrogenase), a defect of isoleucine
degradation whose clinical significance remains unclear, also results in elevated C5-carnitine, and
may therefore be detected by NBS for IVA. Treatment strategies for the long-term management of
symptomatic IVA comprise the prevention of catabolism, dietary restriction of natural protein or
leucine intake, and supplementation with L-carnitine and/or L-glycine. Recommendations on how to
counsel and manage individuals with the mild phenotype detected by NBS are required.

Keywords: isovaleric acidemia; newborn screening; blood C5-carnitine; mild phenotype;
short/branched chain specific acyl-CoA dehydrogenase

1. Introduction

Newborn screening (NBS) for organic acidurias such as isovaleric acidemia (IVA) has been a matter
of debate [1–3]. Yet, IVA (OMIM #243500) has been included in many NBS programs, most recently in
the United Kingdom [4] (Table 1).
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Table 1. Countries with published experience in NBS for IVA.

Region Country Local Specifics IVA Targeted by NBS Since (as Available) Reference/Source

Asia Pacific

Australia [5]

China No full population screening [5]

India No full population screening; program not
government funded [5]

Japan [5]

Malaysia No full population screening [5]

New Zealand 2006 [6]

Philippines No full population screening [5]

Singapore [5]

South Korea [5]

Thailand No full population screening [5]

Taiwan [5]

Europe

Austria 2002 a [5]

Belgium 2009 (Pilot 2007) b [5]

Czech Republic 2010 c [5]

Denmark 2012 [5,7]

Estonia No full population screening [5]

Germany Bavaria 1999
Nationwide 2005 [8,9]

Greece [10]

Hungary [5]

Iceland 2008 d [5]

Italy No full population screening [5]

Liechtenstein [5]

Macedonia No full population screening 2013 e Personal
communication e

Netherlands [5]

Norway [5]

Poland [5]

Portugal [5]

Russia [5]

San Marino No full population screening [5]

Spain [5]

Sweden [5]

Switzerland [5]

United Kingdom Not in Scotland and Northern Ireland 2015 (Pilot 2012) f [5]

North
America

United States IVA included in all states but District of
Columbia and Massachusetts [5]

Canada
IVA included in all provinces/territories but

Newfoundland & Labrador;
IVA screened by urine in Quebec

[11]

South
America

Argentina Offered exclusively in the private sector [5]

Brazil Offered exclusively in the private sector [5]

Chile Offered as selective screening [5]

Colombia No full population screening;
offered in the private sector [5]

Costa Rica [5]

Dominican Republic Offered exclusively in the private sector [5]

Mexico No full population screening [5]

Uruguay No full population screening [5]

Venezuela Offered exclusively in the private sector [5]

Africa South Africa Offered exclusively in the private sector [12]

Middle East

Kuwait Pilot 2004–2006 [13] Personal
communication g

Lebanon Offered exclusively in the private sector 2006 [14,15]

Saudi Arabia [15]

Qatar 2004 [15,16]

United Arab Emirates 2011 [17]

IVA: isovaleric acidemia; NBS: newborn screening; a Personal communication by Maximilian Zeyda; b Personal
communication by François Boemer; c Personal communication by Viktor Kožich; d Personal communication by
Leifur Franzson; e Personal communication by Violeta Anastasovska; f Personal communication by Jim Bonham;
g Personal communication by Laila Bastaki.
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IVA is due to a defect of isovalery-CoA dehydrogenase (IVD; Mendelian Inheritance in Man
[MIM] #607036; enzyme commission [EC] 1.3.8.4), an acyl-CoA dehydrogenase (ACAD) catalyzing the
third step in the intramitochondrial breakdown of leucine (Figure 1). It is caused by mutations in the
isovaleryl-CoA dehydrogenase (IVD) gene and is inherited as an autosomal recessive trait. More than
60 disease-causing mutations in the IVD gene have been described. The majority are point mutations,
but splice site mutations, nonsense mutations, missense mutations, deletions, and insertions have also
been described [18–33].

Deficiency of IVD results in an accumulation of derivatives of isovaleryl-coenzyme A (CoA),
the metabolite before the block, such as isovaleric acid, 3-hydroxyisovaleric acid, isovaleryl
(C5)-carnitine, and isovalerylglycine (IVG) (Figure 1). The pathogenesis of the disease is still not
fully understood. Mechanisms thought to be involved include the induction of oxidative stress
through accumulating metabolites as seen in the rat brain cortex [34], the reduction of Na+, K+-ATPase
activity by free isovaleric acid as shown in synaptic membranes from the cerebral cortex in young
rats [35], and abnormal cellular growth signaling through activation of the mammalian target of
rapamycin complex 1 (mTORC1), as suggested from studies with human IVD deficient cells [36].
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Figure 1. Leucine catabolism pathway. Isovaleryl-CoA dehydrogenase (IVD) catalyzes the degradation
of isovaleryl-CoA to 3-methylcrotonyl-CoA. Deficiency of IVD leads to the accumulation of derivatives
of isovaleryl-CoA and reduced production of acetyl-CoA and acetoacetate. BCAT: branched-chain
amino acid aminotransferase; BCKDH: branched-chain alpha-ketoacid dehydrogenase.

The phenotypical spectrum of IVA is wide and has been further broadened by NBS. Available data
suggests that early diagnosis by NBS may improve the clinical outcome of IVA, as supported by reports
of less frequent relapsing episodes of metabolic decompensation [37] and short-term improvement of
neurodevelopmental symptoms [37,38], even though studies on the long-term outcome of screened
patients are still lacking.

Two clinical phenotypes have been observed in unscreened patients. They may become symptomatic
within the first days or weeks of life, presenting with poor feeding or vomiting and severe metabolic
acidosis accompanied by neurological signs including lethargy, potentially progressing to coma or
death [39]. Alternatively, patients may present later in childhood with acute acidotic episodes often
triggered by catabolic stress such as intercurrent illness [32,40]. In 1966, IVA was first reported by
Tanaka and coworkers [41], who described two siblings of preschool age with recurrent episodes of
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vomiting and lethargy and an unusual odor of “sweaty feet”, in whom a massive urinary excretion of
isovalerylglycine and other metabolites of isovaleryl-CoA were detected using gas chromatography
(GC) and mass spectrometry (MS) [42].

Besides, a third distinct phenotype of IVA has been identified by NBS [30]. Individuals show
a less pronounced accumulation of isovaleric acid and its derivatives than clinically detected patients
and present with a potentially asymptomatic phenotype. So far, no severe metabolic crises have been
reported in these subjects. A certain missense mutation, c.932C>T (p.A282V), in either a homozygous or
compound heterozygous state, is associated with this “mild” form of IVA [30]. However, the long-term
outcome of screened individuals with different types of IVA still needs to be defined.

2. IVA Newborn Screening: Diagnosis, Birth Prevalence and Differential Diagnosis

Introduction of tandem mass spectrometry (MS/MS) for NBS allowed the detection of elevated
levels of C5-carnitine in dried blood spots [43]. In urine, the elevation of IVG confirms the metabolic
diagnosis of IVA [44]. The first countries that introduced IVA to their NBS programs were Australia,
where IVA was included in the New South Wales NBS program in 1998 [45], and Germany, where it
was first included in the Bavarian NBS program in 1999 [8]. Since then, it has been implemented in
national NBS programs in about 30 countries worldwide (Table 1), and most recently (2015), in England
and Wales. In addition, in the absence of government-run screening programs, NBS for IVA is offered
on a private basis in some countries, e.g., South Africa and Lebanon.

Using a data set of 1.6 million newborns from Germany, the birth prevalence of IVA was calculated
to be 1 in 67,000 [8]. Prevalences from other countries were reported to be lower, such as 1 in 660,000 in
Taiwan [46] or 1 in 105,000 in Portugal [47]. In Australia, the prevalence of IVA has been shown to be 1 in
775,600 in the unscreened population and 1 in 230,750 in a screened cohort [48]. Similarly, an analysis of
available evidence by Dionisi-Vici et al. showed a more than four times higher incidence of IVA in the
screened population as compared to clinical diagnosis [37], suggesting that the phenotypic spectrum of
IVA detected by NBS is different and may include individuals that would not have presented clinically.

Because C5-carnitine represents several isomers, such as isovalerylcarnitine, 2-methylbutyrylcarnitine,
or pivaloylcarnitine, elevated levels detected in NBS may account for several differential diagnoses of
IVA, including short/branched chain specific acyl-CoA dehydrogenase deficiency (SBCADD) (also
called 2-methylbutyryl-CoA dehydrogenase deficiency [2-MBCD] or 2-methylbutyrylglycinuria).
SBCADD, an autosomal recessive condition caused by an error in the degradation pathway of
L-isoleucine [49], is detected by IVA NBS programs because it shows elevated 2-methylbutyryl
(C5)-carnitine, which has the same mass to charge on MS/MS as isovalerylcarnitine [49]. The first
patient with SBCADD was reported in 1999 [50]. The ACADSB gene structure was described
in 2000 [51], and several mutations in this gene have been reported [49,52,53]. In individuals
with this disease, urine analysis reveals marked elevations of 2-methylbutyrylglycine [51,54].
Symptoms reported in the literature range from developmental delay, seizures, and autism to neonatal
crises [49,55], and protein restriction and supplementation with L-carnitine have been suggested for
treatment [49,55,56]. However, most patients seem to be asymptomatic despite metabolic abnormalities.
While the frequency of SBCADD was found to be higher and its variability greater following the
introduction of MS/MS into NBS programs, the last report focusing on this condition was published
in 2013 [49]. There is little information on the long-term clinical outcome of individuals with SBCADD,
but overall, this condition is assumed to be benign.

With NBS becoming an important part of pediatric preventive strategies worldwide, several
diagnostic pitfalls have come to attention. Pivaloylcarnitine, a derivative of antibiotics containing
pivalic acid, can be mistaken for isovalerylcarnitine in NBS blood samples, and treatment of mothers
with these antibiotics before delivery has been blamed for a number of false positive NBS results [57–61].
Sivelestat, a neutrophil elastase inhibitor used to treat acute respiratory distress syndrome, also contains
pivalic acid and can lead to false positive NBS results for IVA [62]. In order to differentiate SBCADD
from IVA and to exclude interference from antibiotics, urine acylglycine analysis and/or quantitative
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organic acid analysis are performed. Furthermore, several strategies for second-tier testing in dried
blood spots have been developed, including stable isotope dilution MS/MS analysis to determine
isovalerylglycine [63,64] and ultra-performance liquid chromatography (UPLC)-MS/MS analysis of
C5-carnitines [59,65].

3. Emerging Spectrum of the Disease

3.1. Clinical Presentation

Today, an increasing number of patients are diagnosed by NBS using MS/MS before the onset of
symptoms. A large study analyzing 1.6 million newborns from Germany found that nearly half of
the cases detected by NBS (11/24) were defined as “metabolically mild or intermediate” [8]. It may
be assumed that individuals with the mild phenotype identified by NBS may remain asymptomatic
throughout their lives [30]. This hypothesis is supported by family studies identifying asymptomatic
individuals with biochemical evidence of IVA and genotypes identical to their younger siblings
identified by NBS [30] and by the reported increase in the prevalence of organic acidurias in screened
cohorts as compared to clinical ascertainment [32,37,48,66,67].

Potentially life-threatening episodes of metabolic acidosis associated with lethargy or impaired
consciousness—often but not always following situations of catabolic stress—are common in IVA.
The first life-threatening catabolic episode in patients with the acute form usually occurs by the end
of the first week of life (“acute neonatal form”) [38,39,66]. Depending on the time of NBS sampling
and turnaround time, patients with this form may even present clinically before the NBS result is
reported [32]. Early symptoms are nonspecific. Newborns are feeding poorly and present with emesis
often associated with dehydration, lethargy, and sometimes seizures [39,66,68]. Metabolic acidosis with
an elevated anion gap representing the accumulation of organic acids, secondary hyperammonemia,
and hyperglycemia or hypoglycemia are reported as laboratory findings [39,66,67]. An unpleasant
smell of “sweaty feet” is characteristic for IVA and can be noticed in acutely sick infants [39], but may
not be recognizable in otherwise well patients. If left untreated, the clinical condition can worsen
to coma and ultimately death [39]. The incidence of acute life-threatening catabolic episodes is
highest in early infancy and decreases with age. Still, patients may become sick later in childhood
with intermittent bouts of illness with vomiting and metabolic acidosis [39,66,67], often precipitated
by infections or other physiologic stressors [39]. Interestingly, in a study of 21 children with
symptomatic IVA, no such event was observed after nine years of age [39], although acute metabolic
decompensations have been reported in adult life [69,70].

Apart from life-threatening metabolic crises, unscreened patients may first present later in life
with neurological symptoms and cognitive impairment (“chronic intermittent presentation”) [39,66].
Symptoms are often nonspecific and include feeding difficulties, vomiting, and failure to thrive
and/or developmental delay and cognitive impairment. Neurological manifestations of IVA relate
to EEG abnormalities or seizures and motor dysfunction [71,72]. Similar to findings in other organic
acidurias [73], there have been single reports of patients with pancreatitis [39,74–76]. Liver fibrosis [28]
and, most recently, optic nerve atrophy [71] have also been associated with IVA. Pregnancies of affected
women have been reported as uneventful [77–79].

3.2. Management/Treatment

Long-term treatment strategies aim to: (1) reduce the production of toxic metabolites by the
restriction of protein or leucine intake; and to (2) enhance the conjugation of potentially toxic free
isovaleric acid to its non-toxic conjugates isovalerylcarnitine and isovalerylglycine, which are excreted
by the kidneys via supplementation of L-carnitine and/or L-glycine [44,80,81].

Many patients with a clinically symptomatic type of IVA follow a protein-restricted diet to reduce
their intake of leucine and limit the production of toxic metabolites. In order to cover age-appropriate
amounts needed for normal growth and to avoid malnutrition, leucine-free amino acid supplements
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enriched with micronutrients may be needed. However, wide differences in actual dietary practices
in IVA have been documented [82]. L-carnitine is usually given at a dosage of 100 mg/kg × day in
three doses. Because it remains unknown if subjects with the mild IVA phenotype detected by NBS
might experience metabolic crises or long-term neurological manifestations, these individuals may be
advised to take L-carnitine, although it is unclear whether it prevents metabolic crises. A low dosage
of 30 to 50 mg/kg × day has been proposed for these individuals [44]. L-glycine may be omitted from
long-term treatment, especially in individuals with the mild phenotype. If given, the dosage is usually
between 100 and 300 mg/kg × day in three doses [56].

During intercurrent illness, the production of isovaleryl-CoA might be increased due to a higher
rate of breakdown of the endogenous protein. Therefore, the prevention of catabolic episodes is crucial.
Anabolizing measures including oral glucose polymer solutions or high-dose glucose and potentially
lipid infusions may be necessary to secure an adequate energy supply [44,83]. A short-term decrease
of protein intake should also be part of the acute treatment protocol [44,83,84]. In order to prevent the
accumulation of toxic metabolites, increased doses of L-carnitine (up to 400 mg/kg × day) [83,84]
and L-glycine (by 50% to 100%) [85] have been recommended. As for other classic organic
acidurias, treatment with N-carbaglutamate has been suggested for the treatment of acute neonatal
hyperammonemia in IVA [86]. As it cannot be entirely excluded that periods of illness might trigger
unfavorable effects in patients with the mild type of IVA, individuals with this condition should also
be counseled to follow an emergency protocol and to increase the intake of L-carnitine and energy
during febrile illnesses.

3.3. Outcome

Mortality is highest in patients with an early clinical onset: an analysis of 155 published patients
with symptomatic IVA showed a mortality rate of about one-third during the initial metabolic crisis
in patients diagnosed within the first five weeks of life, whereas patients diagnosed thereafter had
a low mortality rate of only 3% [39]. Patients with an early presentation who died during the initial
catabolic episode had a significantly earlier onset of symptoms than patients who survived this initial
catabolic episode.

Early initiation of treatment in IVA, i.e., starting therapy during the first weeks of life, was shown
to decrease the frequency of severe ketoacidotic crises and was associated with an overall good
clinical outcome [85]. Patients diagnosed by NBS often appear asymptomatic [87,88], and early
diagnosis of IVA has been reported to correlate with a good neurocognitive outcome: an extensive
review of published patients found that in patients diagnosed in the first five weeks of life, 85% had
an unremarkable neurocognitive outcome as opposed to only 45% of patients who were diagnosed
after the fifth week of life [39]. Similarly, in a South African population, all patients diagnosed within
the neonatal period, but only 43% of patients diagnosed thereafter, had a normal neurocognitive
outcome [67].

However, not all studies available to date appear to support the relevance of early diagnosis:
an analysis of 52 patients from the European Registry and Network for Intoxication Type Metabolic
Diseases (E-IMD) showed a statistical trend for normal development in patients diagnosed by NBS as
compared with patients who were diagnosed after the onset of symptoms. This trend disappeared
after the omission of patients with the “mild” phenotype from the analysis [38]. Cognitive function in
a series of 16 Spanish patients was shown to be within the normal range in both patients diagnosed
clinically and patients detected by NBS [32]. Overall, neurological sequelae and organ manifestations
in IVA have been shown to be less common as compared with other classic organic acidurias [39,71,89].

Whether patients with a biochemically mild type of IVA may develop any clinical symptoms under
certain circumstances remains open, since long-term data on the outcome of individuals diagnosed by
NBS are still lacking.
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4. Conclusions

IVA Newborn Screening—Outlook and Challenges

The possibility of pre-symptomatic diagnosis through NBS and the apparent benefit that has
been demonstrated for patients diagnosed and treated early [39] make IVA an ideal candidate for
NBS programs. An additional “mild” form of IVA with only slight biochemical abnormalities and
a potentially asymptomatic phenotype has been discovered by NBS. Still, there is little information
on the long-term outcome of patients with this mild type of the disease, and it is not known whether
these patients are actually at risk for severe catabolic episodes. With IVA being included as a target
disorder of NBS programs in a growing number of countries worldwide, more of these individuals will
be identified. Overall, longitudinal studies of screened individuals with IVA are needed to allow for
a better understanding of the long-term outcome and clinical spectrum including the “mild” phenotype
and to provide the basis for management recommendations and counseling. Results may also allow
considering the adjustment of NBS cut-off levels in order to not detect individuals with benign variants.
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