
IoT

Article

A Client/Server Malware Detection Model Based on Machine
Learning for Android Devices

Arthur Fournier, Franjieh El Khoury * and Samuel Pierre

����������
�������

Citation: Fournier, A.; El Khoury, F.;

Pierre, S. A Client/Server Malware

Detection Model Based on Machine

Learning for Android Devices. IoT

2021, 2, 355–374. https://doi.org/

10.3390/iot2030019

Academic Editors: Uday Tupakula

and Hyun-Ho Choi

Received: 27 May 2021

Accepted: 23 June 2021

Published: 24 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mobile Computing and Networking Research Laboratory (LARIM), Department of Computer and Software
Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada; arthur.fournier@polymtl.ca (A.F.);
samuel.pierre@polymtl.ca (S.P.)
* Correspondence: franjieh.el-khoury@polymtl.ca

Abstract: The rapid adoption of Android devices comes with the growing prevalence of mobile
malware, which leads to serious threats to mobile phone security and attacks private information
on mobile devices. In this paper, we designed and implemented a model for malware detection
on Android devices to protect private and financial information, for the mobile applications of
the ATISCOM project. This model is based on client/server architecture, to reduce the heavy
computations on a mobile device by sending data from the mobile device to the server for remote
processing (i.e., offloading) of the predictions. We then gradually optimized our proposed model for
better classification of the newly installed applications on Android devices. We at first adopted Naive
Bayes to build the model with 92.4486% accuracy, then the classification method that gave the best
accuracy of 93.85% for stochastic gradient descent (SGD) with binary class (i.e., malware and benign),
and finally the regression method with numerical values ranging from −100 to 100 to manage the
uncertainty predictions. Therefore, our proposed model with random forest regression gives a good
accuracy in terms of performance, with a good correlation coefficient, minimum computation time
and the smallest number of errors for malware detection.

Keywords: Android devices; mobile malware; mobile applications; malware detection; client/server
architecture; offloading; prediction; classification; regression

1. Introduction

Nowadays, mobile devices are becoming an essential part of our daily life and are
used even more than conventional computer systems such as personal computers. The
information manipulated by smartphones is diverse and is very often private or even
confidential. Therefore, smartphones are used as work tools, means of payment, or simply
as means of communication. However, they are often more vulnerable than traditional
computer systems due to the usage of all kinds of networks and protocols, such as wi-fi
and mobile networks (e.g., third or fourth generation, etc.).

For the last few years, the rapid evolution of the usage of Android has made malware
attacks on mobile devices an important challenge in research. Moreover, the existence of
Android malware is increasing rapidly. This malware can access the information of users in
the background without the users on Android devices being aware, send a short message
service (SMS) to the username, and violate the privacy of users [1].

This growth was accompanied by several methods of analysis and malware detection,
such as static analysis, dynamic analysis, or hybrid analysis, to keep Android devices secure
from malware. Therefore, accurate malware detection analysis methods require a large
number of hardware resources, which are important resource-constrained mobile devices.

Most of the defense mechanisms in Android Play Protect were already integrated
before version 8 but are now visible to users. Moreover, the Android framework is based
on Linux, and each application runs in a restricted environment due to the Android virtual
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machine, formerly Dalvik, and now known as Android Runtime (ART) [2]. This latter
guarantees a basic level of security.

Applications can be installed from the Google Play Store, which already integrates a
malware scanner called Bouncer, based only on dynamic analysis, and is unfortunately im-
perfect [3]. Bouncer aims to check for malicious apps and known malware, but it is possible
to install applications from unknown sources. A common practice is for malware authors
to repackage known applications (often paid) with malware features before redistributing
them for free to naive users through unofficial free stores, such as Aptoide [4]. This will
highlight the limitations of Bouncer.

To overcome the shortcomings of Bouncer and Play Protect, as well as to protect
themselves from applications of unknown sources, several vendors of antivirus for An-
droid smartphones are distributed, as free or premium versions, for individuals (e.g.,
Lookout) or businesses (e.g., MI:RIAM by Wandera, z9Engine by Zimperium, Skycure
by Symantec) [5–8]. However, these antiviruses do not always indicate the method used.
Therefore, more complex methods require a modification of the Android framework or even
the phone hardware, as for the CogSystems HTC D4 [9], and are therefore very uncommon.

In the context of mobile commerce (i.e., m-commerce), the previously introduced
security issues of mobile devices are all the more important. Devices, applications, networks
and servers will be required to manipulate privacy information and financial currencies,
whether virtual or not. Popular mobile payment applications, such as Apple Pay [10],
have many vulnerabilities that delay their adoption by the general public and put their
users at risk. The threat of malware and malware software leads to a serious issue in
mobile commerce.

Symantec reported over 30 million attack attempts on mobile devices in the market,
which leads to a low level of protection that users afford their smartphones [1,11]. The
number of malware programs continues to grow and target mobile platforms, such as
The-ZeuS-in-the-Mobile (Zitmo) which damages the user’s data on Android devices [12].
Malware activities on mobile devices include call and text-message recording, geoloca-
tion, and private data transmission [13]. Recently, high-profile attacks (e.g., SolarWinds,
Microsoft Exchange Server ProxyLogon attacks, the vulnerabilities found in Pulse Secure
VPN, etc.) help attackers avoid the hurdle of needing to overcome multi-factor authentica-
tion [11].

Some of the most promising methods rely on the use of cloud computing to analyze
data [14], and on monitoring the communications carried out by the device [15]. This
represents a multitude of approaches to be explored, in order to define the malware
detection method in mobile environments that best addresses our problem.

In our previous publication [16], we presented our proposed model for malware
detection on Android devices based on client/server architecture to reduce the heavy
computation of data on the mobile device and doing the processing remotely on the server,
but we focused on the mobile device part by directly performing the tests offline on the
device. We gradually optimized the classification method of malware detection from Naive
Bayes to binary classification, then to regression algorithms for better classification of the
newly installed applications on Android devices. The random forest regression algorithm,
with numerical values ranging from −100 (benign) to 100 (malware), gives good results for
malware detection.

The main contributions of this paper are as follows:

(1) Describe the client/server architecture and the remote processing (offloading) on the
server for prediction of the newly installed applications to reduce the computation
time on the mobile device, and by using numerical values for classification (i.e., −100
for benign and 100 for malware) to manage the uncertainty predictions;

(2) Implement our proposed model for malware detection to validate our proposed
methodology;

(3) Detail the Naive Bayes method and present the results of more classification and
regression algorithms from the Waikato environment for knowledge analysis (Weka)
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version 3.8.2 [17] to emphasize our choice of the most accurate classifier (i.e., the
random forest algorithm) for prediction in terms of performance with a good correla-
tion coefficient, a minimum computation time and the smallest number of errors for
malware detection.

(4) Add more graphics and tables to clearly visualize our choice of the best regression
algorithm, with high coefficient correlation and low computation time.

The rest of the paper is organized as follows. In Section 2, we present a brief back-
ground in malware detection and an overview of the existing methods for malware de-
tection, then at the end, we perform a comparative study of these methods to highlight
the strengths and the shortcomings of each. We describe the proposed model for malware
detection on Android mobile devices in Section 3. In Section 4, we present the imple-
mentation of the proposed model, and we illustrate the different functionalities of our
implemented application entitled “ATISCOM Malware Detection”. We detail the differ-
ent stages of the optimization of our proposed classification methodology for malware
detection in Section 5. In Section 6, we discuss the evaluation performance of the proposed
classification methodology. Finally, we provide a conclusion in Section 7.

2. Background and Related Work

In this section, we first introduce a brief background of malware detection; secondly,
we present a general overview of the available malware detection methods; and thirdly, we
highlight the strengths and the shortcomings of these methods.

2.1. Background

Hereafter we define the different terminologies and concepts related to Android apps,
machine learning and evaluation metrics that we will use within this paper [1,10–13,18–24].

Malware is an Android package kit (APK), also known as an Android app, used to
serve illegal purposes, such as espionage or extortion. Therefore, malware detection is
a classification problem, which consists of determining the class of an application. The
different classes presented in this paper are of two types: (1) malware; and (2) benign. An
application is benign if it is legitimate and harmless.

There are three analysis methods for malware detection: (1) a static analysis method
that is based on different data structures, represents the code in various ways, and has a
variable sensitivity of analysis; (2) a dynamic analysis method that is separated according
to the level of inspection (i.e., application, kernel, virtual machine) and the generation of
application entries; and (3) a hybrid analysis method that combines static and dynamic
analysis to benefit from both types of analysis, with the gaps of one minimized by the
forces of the other.

Machine-learning technology consists of many different methods and objectives. The
common denominator of these methods is the input of a very large amount of data, labeled
for supervised learning, or unlabeled for unsupervised learning in a learning algorithm.
In our case, the purpose of a learning algorithm is to take some known features of many
applications identified as malware or not, then to determine whether new samples are
malware or not based on the rules recently established by this algorithm.

Permissions are considered as features. We think about the presence or not of each of
the 151 permissions of the Android system in the “Manifest” file of a specific application,
which gives a Boolean vector, and the last feature defining whether the application is
malware or a benign application. The latter can be a class that can only take the value of
malware or benign, or a number that defines the probability of its being malware. In the
first case, we face a classification problem, and in the second, a regression problem.

The classification problem is considered as a problem whose challenge is to manage
only the certainty predictions and to determine the class of a given sample as malware
or benign. However, we address in this paper the regression problem. Therefore, we
associate numerical probabilistic values to manage the uncertainty predictions: (1) −100
if the algorithm is certain that the application is benign; (2) 100 if it is certain that the
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application is malware; (3) 0 if the model is totally unable to recognize the class of the
sample; and (4) any other value that gives an indication of the certainty of the model, when
it applies the rules that it has previously built on this new sample. Note that many of these
regression algorithms require heavier computations, and potentially require offloading if
they are run on a mobile.

An offloading is referred to whenever calculations are uploaded to the server from the
client to be handled in a performed and quick way, because of the limitation of Android
phone processing. Moreover, the efficiency of this operation depends on the quality of the
network linking the client and server. In this research work, we will focus on reducing the
processing time.

Performance is distinguished from accuracy. It will be used to describe the speed
of execution of the algorithms, taking into account the storage space and the capacity
of the random access memory (RAM) used by the application. The performance can be
expressed during the training phase of the algorithm, especially during the classification or
prediction of a new sample, since this operation will generally be performed in real-time
on the user device.

Evaluation metrics are quantifiable measures that determine if the detection model
efficiently differentiates malware from benign applications. Among these metrics, let
us quote:

(1) The accuracy, which designates in our case the ability of the system to correctly
predict whether a new application is malware or benign. The accuracy criterion will
be considered to evaluate a classification algorithm that indicates the percentage
of correctly classified applications, and the correlation coefficient in the case of a
regression algorithm to show the percentage of correlation between predicted and
actual values. We will obviously seek to maximize accuracy in priority;

(2) The precision is the proportion of correct positive predictions. A detection model
producing no false positives has an accuracy of 1;

(3) The recall is the proportion of actual positive results that have been correctly identi-
fied. In addition, the recall is called the true positive rate (TPR). A detection model
producing no false negatives has a recall of 1;

(4) A false positive rate (FPR) represents the total percentage of wrongly classified appli-
cations.

2.2. Malware Detection Methods

The detection of malware is becoming an important challenge for researchers. In this
section, we present a literature review based on three categories of malware detection
analysis methods for applications installed on Android devices: (1) the static analysis
method; (2) the dynamic analysis method; and (3) the hybrid analysis method. Different
solutions have been developed to ensure the accuracy of detection of malware, and by
taking into account the context (e.g., real device, emulator, etc.) in which the malware
detection process takes place.

MADAM [21] presents itself as one of the most advanced recent solutions for real-time
mobile malware detection by dynamic analysis and machine learning. This framework
uses self-learning to recognize malware. It classifies them based on different malicious
behaviors observed at different levels of Android: kernel, application, user, and package.
In this paper, 2800 malware from 125 different families, from three databases, were tested
on a real device, giving a detection rate of 96.9%. In addition, 9804 legitimate applications
were tested to show that the false positive rate (FPR) is very low: 0.2%. This solution
is not intended for the general public but seeks to prove the strength of such a dynamic
multi-level approach on the device, and eventually encourage smartphone system builders
to integrate MADAM into their OS. Therefore, this is the most important gap, apart from
meeting all the requirements of such a system, and is perfectly in line with our work.
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CrowDroid [22] presents a relatively simple detection method. However, its great
innovation is to propose a client/server architecture for crowdsourcing the information
retrieved from each end-user’s phone to create the online database.

T2Droid [25] is a dynamic analysis method for malware detection, with an excellent
detection rate ranging from 98% to 99% and an FPR of 2% tested on 160 applications.
It runs partially in the secure zone of the ARM TrustZone, which is included in several
latest-generation phones as a trusted execution system, in order to start the system and then
the applications. Therefore, the system is secure, unlike conventional antivirus software,
and requires full control over the hardware and access to the secure area to deploy the
software. It is difficult or even impossible to include such a system in a lambda device.

IntelliAV [26] is an on-device malware detection system that uses static analysis
coupled with machine learning. The application is already available on Google Play Store,
allowing for possible accuracy comparisons. Based on a training and validation set of
19,722 VirusTotal applications [27], including 9664 malware ones, the authors obtained a
true positive rate (TPR) of 92.5% and an FPR of 4.2%, with only 1000 attributes generated
by the training process. This is much smaller than the static analysis methods based on
machine learning off-device. Moreover, the authors evaluated their model on a set of 2898
benign applications and 2311 malware from VirusTotal, dated from February 2017. The
accuracy is 71.96%.

Aonzo et al. [28] developed an application available on the Google Play Store called
BAdDroIds. They proposed a static analysis method using on-device machine learning
that is supposedly efficient. This method has an accuracy of 98.9% and an FPR of 0.6%.
When installing a new application, BAdDroIds extracts the permissions declared in the
Manifest file and calls to the AAPI (Android application program interface) from the DEX
code (i.e., the bytecode that runs in the Android virtual machine). To reduce false results,
when the classification algorithm has less than 70% confidence, the application lets the user
choose whether to classify the installed program as malware or not. The model was built
in the best experiment from 12,000 samples, outside the device and before experimentation
with the 1000 applications installed on the LG Nexus 5 test device. The method of feature
extraction does not change, but the analysis of an Android package (APK) takes an average
of 64.474 s and the stored file weighs 5539 kibibytes (Kib).

ADroid offers lightweight monitoring and dynamic analysis methods directly on
the device [29]. ADroid does not require root access but needs numerous permissions to
monitor the Android application space. ADroid’s assumptions are not valid in the case of
a compromised device, and it does not detect privilege escalations. ADroid has on the one
hand a blacklist of malware signatures in the manner of traditional antivirus, and on the
other hand a user whitelist. For applications that do not belong to either list, behaviors are
observed and recorded to create a behavioral vector, which will be compared to normal
behavior. The testing results on 720 applications give an FPR of 5.9% and a detection rate
of 97%. The processing takes 0.53s every 5s to generate the vector. However, the operation
of ADroid gives some interesting ideas and can be improved: clustering the vector can
be used to reduce its size and false positives, and adding an off-device detection as a
complement could improve performance when the network allows it.

Monet [30] implements a client/server architecture using signatures representing the
behavior of the running application. The signature is generated on the device and then
sent to the server for comparison with the database. The client application intercepts the
calls using hooks and kernel modules, which can be problematic to implement on any
device. Root exploits appear to be detectable through suspicious system calls. This method
does not seem to be able to detect completely new malware, but only variants of existing
malware. The article presents very good performances, with a detection rate of 99% and
an FPR of 0% tested on 4223 applications. However, we should note the limitations of the
experiments performed only on the detection of DroidKungfu variants with legitimate
applications in the set, and on original malware manually transformed into variants for the
performance of the client application.
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SAMADroid [31] is a hybrid method with three levels. It combines static and dy-
namic analysis, an on-device client and a remote server, and machine learning. Drebin’s
dataset [18] is used to train the algorithm, which contains 5560 malware from 179 different
families, as well as a selection of 123,453 benign applications extracted from different stores.
SAMADroid’s accuracy is remarkable. The static analysis has a detection rate of 99.07%
for an FPR of 0.03%, and the dynamic analysis has a detection rate of 82.76% for an FPR of
0.1%. Nevertheless, it should be noted that the static analysis can only be performed via
the remote server. The performances are therefore not guaranteed without a stable internet
connection. Finally, the used dataset contains many legitimate applications, but sometimes
less malware than other newer datasets.

ServiceMonitor [32] is a method for dynamic analysis on a real device. The dataset
used contains 4034 malware taken from Drebin’s dataset and 10,370 legitimate applications
from the Android store. Experiments with this database show a detection rate of 96% for a
true false positive (TFP) of 4.4%. On the device, the overheads are, for the CPU, 0.8%, and
for memory, 2%. However, ServiceMonitor requires root access to implement analysis on
the phone. Its algorithm is trained on an emulator, then tested on a physical device.

Wang et al. [33] proposed a new method of malware detection based on two observa-
tions: usage and application anomalies. This method claims to detect new malware using
zero-day (i.e., vulnerabilities unknown to date). This method works through a sandbox
included in a framework called CuckooDroid, and not on a real device. For use on a
real device, the phones will call the cloud computing service containing the emulator
and retrieve the results afterward. It allows identifying features by static and dynamic
analysis of the tested application. They used a one-class support vector machine (SVM) for
classification. If the analyzed application deviates from the categorized behavior (benign
applications) by more than the threshold, it is classified as new malware using a new
vulnerability (zero-day). Indeed, the obtained accuracy is very good, with a detection rate
as high as 98.76% for an FPR of only 2.24%, and a false negative rate (FNR) of 1.24%. This
method is validated on a set of 5560 malware from Drebin’s dataset and 12,000 benign
applications from Chinese application markets, validated by VirusTotal.

De C. Souza et al. [34] developed a hybrid expert system in the identification of
malware using the artificial intelligence and fuzzy system approach, as well as the linearly
scaled hyperbolic tangent (LiSHT) activation function to increase the accuracy (97.82%) of
fuzzy neural network outputs. The proposed model shows a significant improvement in
runtime (27.28s for training and 0.01s for testing) compared to other hybrid models.

Almshari et al. [35] adopted a method of descriptive analysis of the power consump-
tion data of the machines and their clusters, connected on a smart grid, to detect if they are
infected without violating the privacy of the users. The authors used two-way analysis
of variance (ANOVA) and autoregressive integrated moving average (ARIMA) methods.
This approach proves that there is a correlation between electric power and which software
application is running, and it is possible to create power consumption profiles for various
software applications including normal and abnormal behavior like a virus. The results
validate the good detection of what type of application is running, and if an individual
machine or its cluster is infected. This method is considered a good management tool for
administrators and could serve as a future extension of our proposed model in terms of
monitoring the behavior of the running application.

2.3. Comparision of the Existing Malware Detection Methods

Table 1 represents a comparison study of the existing malware detection methods de-
tailed in the previous section to highlight the strengths and the shortcomings of each, as well
as to justify our choice of the malware detection method on Android devices [25,26,28–33].

Table 1 shows that most of the methods have a good, or even very good detection rate:
the most vulnerable method already achieves 92.5%, and some methods are close to 100%.
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Table 1. Comparison of the malware detection methods.

Method Type Total Number of
Tested Apps

Detection Rate
(%)

False Positive
Rate (%) Overhead

MADAM Dynamic
on device 12,604 96.9 0.2 1.4%

T2Droid Dynamic
on device 160 98 to 99 2 N/A 1

IntelliAV Static
on device 19,722 92.5 4.2 4–16s

BAdDroIds Static
on device 14,988 98.9 0.6 64,67s

5539KiB

ADroid Dynamic
on device 720 97 5.9 N/A 1

Monet Static
client/server 4223 99 0 7%

SAMADroid Hybrid
client/server 129,013 Static: 99.07

Dynamic: 82.76
Static: 0.03

Dynamic: 0.1 0.6%

ServiceMonitor Dynamic
on device 14,404 96 4.4 0.8-2%

CuckooDroid Hybrid
on emulator 17,560 98.76 2.24 N/A 1

1 Not provided in the literature.

It is important to point out the high false-positive rate (e.g., 5.9% for IntelliAV),
which can quickly invalidate the method whatever the announced detection rate (97%) of
accuracy. In addition, it is crucial to highlight in the case of BAdDroIds the high capacity
of the storage (5539 KiB), and the enormous process time for malware detection (64.67 s)
that invalidate the method despite its high detection rate (98.9%). Ideally, we will try to
reach a detection rate of 100% with a false positive rate of 0% by taking into account the
performance and the management of constraints. However, in reality, it will often be a
compromise between these two values. The distinction in this fuzzy area for the method
that requires this compromise can however be left to the user. In other words, the user will
have the choice to classify the installed program as malware or not.

The 19,722 applications analyzed by IntelliAV have more validation weight than the
720 of ADroid. Therefore, we intend to maximize the number of applications tested by
our system.

As for the context where the process of the existing method is performed, we can see
that Monet and SAMADroid have a good detection rate close to 100% for a false positive
rate that is close to 0% in client/server architecture, regardless of the quality of internet
connection. This will be a good choice for our solution.

Moreover, Alzaylaee et al. [36] offered a detailed study of the differences between the
execution environments on an emulator versus a real phone. This study recommended per-
forming the detection on a real device, rather than an emulator such as with CuckooDroid.

3. Proposed Model

Our proposed model is based on a static analysis method for malware detection on
Android devices. This model comprises four modules: (1) collection of permissions; (2)
dataset collection; (3) training of the dataset; and (4) prediction of the newly installed
applications based on client/server architecture.
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3.1. Collection of Permissions

We collected 151 permissions of the Android system from the official site of Android
development, which are categorized into three security levels [37,38]: (1) normal permis-
sions to protect the API calls that could annoy but not harm the user and do not need user
approval (e.g., SET_WALLPAPER, VIBRATE, WAKE_LOCK, READ_SYNC_SETTINGS,
etc.); (2) dangerous permissions that let an application performs harmful actions (e.g.,
CLEAR_APP_CACHE, RECORD_AUDIO, SEND-SMS, RECEIVE_SMS, BIND_VISUAL_
VOICEMAIL_SERVICE, READ_PHONE_NUMBERS, READ_SMS, READ_CONTACTS,
etc.); and (3) signature permissions that regulate access to extremely dangerous priv-
ileges (e.g., CLEAR_APP_USER_DATA, BIND_NOTIFICATION_LISTENER_SERVICE,
REQUEST_INSTALL_PACKAGES, READ_VOICEMAIL, BIND_DEVICE_ADMIN, etc.).
Therefore, malware with dangerous or signature permissions can spy on users, delete data,
and abuse their billing accounts.

These permissions will be declared in the “Manifest” file, in order to provide an
overview of which parts of the system the analyzed application can access. For example,
many malware applications ask for permission to send SMS messages, while few benign
applications do and are generally identifiable. Moreover, Android uses INSTALL_TIME
permissions where their requirements (e.g., location, network communication, personal
information, storage, hardware controls and system tools) are declared in the “Manifest” file
and need user approval during the installation of an application from the Android market.

To extract those permissions used for our dataset, we ran the multi-platform command
line (aapt dump permissions <app.apk>) based on the Android asset packaging tool (aapt).
This tool is composed of the application dump permissions that take a package as an
argument, and lists the permissions given by its “Manifest” file.

We then compared these permissions with the list of official permissions of the Android
system to obtain a Boolean vector indicating 1 (i.e., the presence of permissions) or 0 (i.e.,
absence of permissions). Furthermore, we indicated whether the application was malware
or benign, as shown in Figure 1. On the phone itself, the PackageManager class allows
finding the “Manifest” file and the permissions associated with the installed applications
or readable archives on the file system.
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3.2. Dataset Collection

We collected applications from two sources that contain the most recent applications:
theZoo [39] and contagio [40]. Then, we gathered 5560 malware applications from 179
different families using Drebin’s dataset [18].

However, these databases do not provide benign applications to build a balanced
database, in order to have as many benign applications as malware applications. Therefore,
we download about 27,965 applications from the Google Play Store [41], taking the top 500
in each category with a high detection rate and a favorable public rating.

Furthermore, we conducted a double-check with concurrent antivirus programs, such
as the VirusTotal database [27], to prepare our dataset for training and have good precision
in our result. We then verify that each collected application is indeed a valid APK or Java
Archive (JAR) package whose permissions can be determined via the “Manifest” file.
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3.3. Training of the Dataset

For the training, we constructed two sets. The first was a test set consisting of the
latest TheZoo and contagio malware, which make up a total of 251 valid malware, and the
same number of benign applications randomly selected from the 27,965 downloaded. The
second is the training set, consisting of 5304 of Drebin’s malware and an equal number of
benign Google Play Store’s applications, randomly selected from the remaining 27,714.

We used at first the Naive Bayes algorithm included in Weka 3.8.2 [17] software to
build our training model, as shown in Figure 2. This software is written in Java and has, in
addition, a graphical interface and a command-line API to use from a Java program.
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Therefore, it is possible to remove the code from the graphical interface of the program
and include the Java archive thus generated in an Android project, to make predictions
from the model.

We built the training model on the server. For this reason, we wrote several batch
scripts to extract the permissions of our 32,000 applications, compared them to the system
permissions to get the Boolean vector composed of 151 attributes of values 0 or 1, and
added at the end our knowledge of their classification (i.e., malware or benign), as shown in
Figure 1. All this is written in an ARFF type file, which corresponds to a data file exploitable
by Weka 3.8.2.

At a second stage, we optimized our training model by replacing the benign value
with −100 and the malware value with 100, to take into account the uncertainty predictions,
as shown in Figure 3. We used the random forest regression algorithm integrated into
Weka 3.8.2, which gives a good accuracy for prediction in terms of performance with a
good correlation coefficient, a minimum computation time and the smallest number of
errors for malware detection.
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3.4. Prediction of the New Installed Applications Based on Client/Server Architecture

Our prediction model is based on a client/server architecture, as shown in Figure 4.
This architecture is composed of three components: (1) mobile device; (2) server; and (3)
client/server communication.
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In this architecture, we present the six steps to perform the prediction: (1) labeling on
the server by assigning a class to each application (i.e., benign or malware); (2) building
the model by the training set on the server; (3) acquiring a new application by the client; (4)
the client sends the analysis request to the server for processing remotely (i.e., offloading);
(5) performing the prediction on the server by using the static analysis method and the
machine learning algorithms for classification; and (6) sending the prediction result to
the client.

3.4.1. Mobile Device

This represents the client’s side. It has a hybrid operation to detect malware with vary-
ing degrees of efficiency, depending on whether it is offline, on mobile networks or online,
to the best of its capacities. We focused on methods for offline mobile devices that will not
require a lot of resources. However, we adopted the assumption that all computations and
storage could be handled on the device itself and sending only instructions that slow down
the execution to the server for processing remotely (i.e., offloading) and prediction.

3.4.2. Server

The server handles the remote processing (i.e., offloading) of the prediction using the
pre-trained model to determine the result of the prediction, ranging from −100 to 100 and
return it to the client (i.e., mobile device), in order to decide whether it is malware (100) or
benign (−100), as justified in the next section.

3.4.3. Client/Server Communication

The communication between the client (i.e., mobile device) and the server is es-
tablished by using USSD (unstructured supplementary services data). USSD is a user-
interactive, menu-driven, cheaper, faster solution and is better than SMS regarding cost,
security and channel usage [42]. It provided accuracy and good performance in our
detection environment.

4. Implementation of the Proposed Model

In this section, we present the implementation of our proposed model for malware
detection based on the static analysis method and the random forest regression algorithm
for prediction on client/server architecture.
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We used: (1) Android Studio and Java for development; (2) various types of Android
devices (i.e., MotoG LTE (first generation) and Nexus 5 API 28) for the test; (3) a Linux
server for remote processing (offloading) of the prediction; and (4) USSD technology for
communication between the client (i.e., mobile device) and the server, by sending a remote
request from the client to the server for remote processing of the prediction when a new
application is installed and sending the prediction result (i.e., −100 for benign and 100 for
malware) from the server to the client for decision-making.

Our application is called “ATISCOM Malware Detection”. It aims to protect the private
information of mobile payment applications against malware attacks. Our application
provides the ability to manually scan one or many of the existing installed applications
and files on an Android mobile device (Figure 5), and automatically make predictions of
the newly installed applications (Figure 6).
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Figure 6. Automatic malware detection on Nexus 5 API 28: (a) alert for prediction of a newly installed
application; (b) notification of the prediction result.

Figure 5b depicts a list of installed applications on a Nexus 5 API 28, with the possi-
bility to select manually one or multiple applications for scanning, by pressing the button
SCAN (Figure 5c), or all at once by pressing the button SCAN ALL (Figure 5e). The re-
sults of the predictions are illustrated, respectively, for one or multiple installed scanned
applications or files in Figure 5d, and for the installed applications scanned all at once, in
Figure 5f.

Figure 6 represents the second functionality of the “ATISCOM Malware Detection”
application, which aims to automatically scan the newly installed applications on the
Android mobile device Nexus 5 API 28. In other words, the program detects any new
installation through Android’s BroadcastReceiver and scans the installed package. The
prediction appears as a notification after a few seconds (Figure 6b).

5. Optimization of the Classification of the Applications

In this section, we performed measurements and tests of the collected applications on
Android devices, in order to determine the best algorithm to choose for the classification
of the applications (i.e., benign or malware). We conducted our tests by using: (1) the
Naive Bayes algorithm to build the model; (2) the default classification algorithms included
in Weka 3.8.2 to manage the certainty predictions and to determine the binary class (i.e.,
benign or malware); and (3) the default regression algorithms included in Weka 3.8.2, by
associating numerical probabilistic values (i.e., −100 for benign and 100 for malware) to
manage the uncertainty predictions.

5.1. Naive Bayes Method

We used the Naive Bayes algorithm to build the model on the collected data. To test
the model, Weka offered cross-validation. The model was then trained on 90% of the data
and tested on the remaining 10%. This was performed 10 times, in order to have tested the
model on all the data by having trained it on all the others.

With our current dataset and the algorithm chosen, the accuracy of the model in
cross-validation was as follows:

• Accuracy (correctly classified instances): 92.4486%;
• False positive rate (incorrectly classified benign applications): 0.217;
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• False negative rate (malware not detected): 0.047.

In our case, it was more important to detect malware, which is the minority class, so
we used the balanced sets. This was tested in cross-validation for Naive Bayes in Weka 3.8.2
on a representative set (i.e., 27,000 benign applications for 5000 malware) versus a balanced
set (i.e., 5000 benign applications for 5000 malware), as illustrated in Tables 2 and 3.

Table 2. Global performance in cross-validation for Naive Bayes: representative set versus balanced set.

Set Representative Balanced

Correctly Classified Instances 31,016 9483

Correctly Classified Instances (%) 93.23 89.39

Kappa statistic 0.743 0.788

Mean absolute error 0.075 0.114

Root mean squared error 0.240 0.288

Relative absolute error (%) 28.01 22.98

Root relative squared error (%) 65.60 57.51

Total Number of Instances 33,269 10,608

Table 3. Detailed performance in cross-validation for Naive Bayes: a representative set versus a
balanced set.

Set Representative Balanced

Class Malware Benign Average Malware Benign Average

TPR 0.768 0.964 0.932 0.850 0.938 0.894

FPR 0.036 0.232 0.201 0.062 0.150 0.106

Precision 0.800 0.956 0.931 0.932 0.862 0.897

Recall 0.768 0.964 0.932 0.850 0.938 0.894

F-Measure 0.783 0.960 0.932 0.889 0.898 0.894

MCC 1 0.743 0.743 0.743 0.791 0.791 0.791

ROC Area 2 0.964 0.964 0.964 0.964 0.964 0.964

PRC Area 3 0.836 0.993 0.968 0.960 0.967 0.963
1 Matthews correlation coefficient. 2 Receiver operating characteristic. 3 Precision recall curve.

After testing in cross-validation for Naive Bayes, we constructed the confusion matri-
ces based on representative and balanced sets, as shown in Figure 7.
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It can be seen from the comparative Tables 2 and 3 and Figure 7 that, even if the
overall accuracy (Table 2) seems better with the representative set, the detailed results tell a
different story. The confusion matrices in Figure 7 clearly show that the classifier trained
on the balanced set was better at detecting malware, even though, in proportion, more
benign applications were misclassified. Therefore, we used the balanced set rather than the
representative set for the remainder of the tests.
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However, the detection of benign applications was our second criterion after malware,
and the difference is not significant enough to justify taking this criterion into account
ahead of the number of correctly classified malware.

5.2. Classification Method

We performed our tests on 37 complex classification algorithms included by default in
Weka 3.8.2. We applied these tests on our dataset with two classes, benign, or malware.

Figure 8 depicts the overall performance (i.e., global accuracy and false-positive rates)
of each of the 8 complex classification algorithms presented among the 37 tested ones. This
allows us to define a numerical score showing the certainty of each of these classifiers.
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Moreover, these two classifiers are updateable, where data can be added to them after 
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We take into consideration for each classifier the following hyperparameters:

• The global accuracy (GA) corresponds to the percentage of correctly classified applica-
tions compared to the whole of the tested applications;

• The false-positive rate of malware (FPR-M) corresponds to the percentage of the
number of benign applications classified as malware, divided by the number of benign
applications in total;

• The false-positive rate of benign (FPR-B) applications represents the percentage of
the number of malware applications that will not be detected, which corresponds to
the number of malware applications classified as benign, divided by the number of
malware applications in total.

Figure 8 highlights the superiority of some algorithms that we then studied in more
detail. The classifiers in question with their exact configuration are as follows.

(1) Simple Logistic: weka.classifiers.functions.SimpleLogistic -I 0 -M 500 –H 50 -W 0.0
(2) SMO: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K

““weka.classifiers.functions.supportVector.PolyKernel –E 1.0 -C 250007”” -calibrator
““weka.classifiers.functions.Logistic –R 1.0E-8 -M -1 -num-decimal-places 4””

(3) SGD: weka.classifiers.functions.SGD -F 0 -L 0.01 -R 1.0E-4 -E 500 -C 0.001 -S 1
(4) MCCU: weka.classifiers.meta.MultiClassClassifierUpdateable -M 0 -R 2.0 -S 1 -W

weka.classifiers.functions.SGD—-F 0 -L 0.01 -R 1.0E-4 -E 500 –C 0.001 -S 1

We then constructed confusion matrices, as shown in Figure 9, for each of these
classifiers, and determined that the stochastic gradient descent (SGD) and multi-class
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classifier updateable (MCCU) matrices are the most accurate classifiers among the above-
presented classifiers.
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Moreover, these two classifiers are updateable, where data can be added to them after
the construction of the model without having to rebuild everything. The only difference is
that the second one is multiclass, which allows processing datasets with more than two
classes. However, we can imagine cases where we would have, for example, three classes—
malware, benign, and unsure. Hence, the drawback of this classification approach is that
it does not manage the uncertainty predictions, and we must allow for the introduction
of the user’s judgment to decide about the uncertain cases. To manage the uncertainty
predictions, we decided to use a probabilistic numerical attribute rather than increasing
the number of classes. This will be discussed in the following subsection.

5.3. Regression Method

As noted above, one of the drawbacks of our classification approach is that it does not
manage the uncertainty predictions or allow for the introduction of the user’s judgment.
This is therefore one of the motivations for the second approach using regression methods.
Since these regression methods require numerical attributes to manage the uncertainty
predictions, we prepared the data of our dataset by replacing our class dataset CLASS of
type character (i.e., benign and malware) with a numerical value IS_MALWARE (i.e., −100
for benign and 100 for malware).

Table 4 represents the performance of the six selected regression algorithms among
the 20 tested regression algorithms included by default in Weka 3.8.2: (1) random forest;
(2) random committee; (3) random tree; (4) instance-based learner (IBK); (5) multilayer
perceptron; and (6) linear regression.

The following algorithms, once trained, perform their prediction by assigning an
IS_MALWARE score to the tested samples, and it was up to us to perform a second
processing to decide which score was sufficient to guarantee our prediction. Unlike
classifiers, we did not have a precise number of correct predictions or a confusion matrix,
since the predictions can very well give −13, 0 or 56 and not 100 or −100 like labeled
samples. Therefore, it is necessary to refer to the correlation coefficient, located between 0
and 100%, which indicates whether the predictions are close to reality, and the different
error values are between reality and prediction. Moreover, it is crucial to take into account
the time for the use of certain algorithms on the mobile phone.

Figure 10 depicts the correlation coefficient and the computation time of each of the 6
above selected regression algorithms.

In Figure 10a, we observe that the predictions of the random forest, random committee,
random tree regression and instance-based learner algorithms give the best correlation
coefficients on the validation set, compared to the multilayer perceptron and linear regres-
sion algorithms. On the other hand, the instance-based learner, multilayer perceptron and
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linear regression algorithms indicate clearly that they require a significant computation
time to do the predictions and they do not have a much better correlation coefficient than
random forest, as shown in Figure 10b.

To be able to compare these above results (see Table 4 and Figure 10) to the classification
methods, we further investigated the predictions of the algorithms with the best correlation
coefficients on the validation set and the minimum computation time: (1) random forest;
(2) random committee; and (3) random tree. We did not study the Multilayer Perceptron
for the moment since it requires a great deal of resources to be computed and does not
have a better performance than random forest, but we had to keep in mind that its study
would be interesting, with the possibility of varying the hyperparameters to customize the
neural network.

The simplest regression method consists of converting the predicted IS_MALWARE
into a binary by adopting 0 as the value of the threshold, either in the case of the numerical
prediction being strictly less than 0, where the prediction is considered to be benign, or in
the case that the numerical prediction is greater than or equal to 0, where the prediction is
considered to be malware. Therefore, the results are not ideal with this threshold, and we
obtain important prediction errors for the regression algorithms (41 prediction errors for
random forest, 42 for random committee, and 44 for random tree) even greater than the 27
(12 + 15) errors for 502 samples that were shown in Figure 9 for the classifiers.

We then conducted our simulations on different thresholds ranging from −90 to 90 in
increments of 10. The results are much more promising on certain thresholds, the smallest
numbers of errors, in this case, being: (1) 17 for random forest with a threshold of −30;
(2) 18 for random committee with a threshold of −20; and (3) 19 for random tree with a
threshold of −20 or −30. Consequently, the random forest algorithm is considered the best
regression algorithm compared to the other tested ones.

For a more complex model that manages the uncertainty predictions, we could define
not one but two thresholds for the algorithm. The idea would then be to have a margin
between the two thresholds such that any prediction whose value is within the margin is
considered uncertain.

Table 4. Comparison of the regression algorithms with the numerical class dataset.

Algorithm Set Correlation
Coefficient

Mean
Absolute

Error

Root Mean
Squared

Error

Relative
Absolute
Error (%)

Root
Relative
Squared
Error (%)

Time (s)

Random
Forest

Training 0.9657 8.4154 26.040 8.415 26.040 7.13

Test 0.9180 16.399 39.904 16.399 39.904 0.02

Random
Committee

Training 0.9680 6.218 24.937 6.218 24.937 1.4

Test 0.9170 15.312 39.984 15.312 39.984 0.01

Random Tree
Training 0.9680 6.218 24.937 6.218 24.937 0.15

Test 0.9090 13.822 42.119 13.822 42.119 0.01

IBK
Training 0.9680 6.218 24937 6.218 24.937 43.04

Test 0.9060 14.784 42.401 14.784 42.401 2.13

Multilayer
Perceptron

Training 0.9550 11.0169 29.513 11.016 29.513 1259.67

Test 0.9150 16.708 40.669 16.708 40.669 0.13

Linear
Regression

Training 0.8730 36.578 48.772 36.578 48.772 6.73

Test 0.8500 37.729 52.902 37.729 52.902 0.9
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One possible avenue to refine the proposed model would be to find an optimal margin
for the uncertainties and to indicate to the user that our prediction was not precise enough
for an application falling within this margin. However, for the moment, we limited our
research work to the use of a simple threshold that gives very good results. Indeed, in our
current proposed model, the addition of a third category has as yet no interesting uses.

6. Discussion

In this section, we evaluate the gradual improvement of the accuracy of the proposed
malware detection method through three factors: (1) algorithm changes; (2) data additions;
and (3) potential increase in computation time.

Indeed, in the first method using the Naive Bayes algorithm, the prediction of the
class of an application is almost instantaneous. However, the accuracy of the model is less
than 90%.

In the second method using both classification algorithms of stochastic gradient
descent (SGD) and multi-class classifier updateable (MCCU), we obtained 93.85% as global
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accuracy on the training set and 94.62% on the test set. On the other hand, these classifiers
do not manage the uncertainty predictions.

To remedy the problem of uncertainty predictions, we adopted the third method
of regression by converting the character values of the class (i.e., benign and malware)
to numerical values (i.e., −100 for benign and 100 for malware). With the model of
regression based on random forest, which is our best method, we obtained a good accuracy
for prediction in terms of performance with a good correlation coefficient, a minimum
computation time and the smallest number of errors for malware detection.

On the other hand, making a prediction on a mobile device (i.e., off-device) takes
10 to 15 s for each application on MotoG LTE (first generation), which is an important
element to be taken into account. Moreover, it becomes very significant when we try to
scan on a mobile device all the installed applications in one shot. This can therefore become
a problem for the user and even seems unpractical, especially if the user thinks that the
application has crashed and will close it down. To reduce the computation time, we adopt
a client/server architecture that allows data to be sent to the server for remote processing
(i.e., offloading) of prediction using the Random Forest regression algorithm, and returns
to the client the result of prediction as a simple integer, between −100 and 100. This latter
is considered a very low data weight for communication between the server and the client
using USSD technology.

7. Conclusions

In this paper, we proposed a prediction model to secure mobile payment applications
on Android devices based on client/server architecture to palliate the heavy computational
load on mobile devices for malware detection. Furthermore, we optimized our malware
detection methodology for better accuracy and minimum computation time. We adopted
the random forest regression algorithm included by default in Weka 3.8.2 for remote
processing (i.e., offloading) of the predictions on the server, with a numerical class ranging
from −100 to 100. We obtained a good accuracy for prediction in terms of performance
with a good correlation coefficient, a minimum computation time and the smallest number
of errors for malware detection. We have limited our research work to the prediction of the
newly installed applications by adopting a fixed threshold value for decision making (i.e.,
−100 for benign or 100 for malware). In addition, we implemented our proposed model to
validate our methodology. Our “ATISCOM Malware Detection” application was tested on
various Android devices (i.e., MotoG LTE (first generation) and Nexus 5 API 28) and we
obtained good prediction results.

In future work, it will be crucial to make our model a hybrid that will be able to support
both static and dynamic malware detection methods, as well as to take into account the
automatic update of our dataset implemented on the server with data of the most recent
applications. Moreover, to refine our proposed model it would be fundamental to find an
optimal margin between two thresholds instead of one fixed threshold value, in order to
manage the uncertainty predictions.
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