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Abstract: Federated Learning (FL) is a state-of-the-art technique used to build machine learning (ML)
models based on distributed data sets. It enables In-Edge AI, preserves data locality, protects user
data, and allows ownership. These characteristics of FL make it a suitable choice for IoT networks
due to its intrinsic distributed infrastructure. However, FL presents a few unique challenges; the most
noteworthy is training over largely heterogeneous data samples on IoT devices. The heterogeneity
of devices and models in the complex IoT networks greatly influences the FL training process and
makes traditional FL unsuitable to be directly deployed, while many recent research works claim to
mitigate the negative impact of heterogeneity in FL networks, unfortunately, the effectiveness of these
proposed solutions has never been studied and quantified. In this study, we thoroughly analyze the
impact of heterogeneity in FL and present an overview of the practical problems exerted by the system
and statistical heterogeneity. We have extensively investigated state-of-the-art algorithms focusing
on their practical use over IoT networks. We have also conducted a comparative analysis of the top
available federated algorithms over a heterogeneous dynamic IoT network. Our analysis shows that
the existing solutions fail to effectively mitigate the problem, thus highlighting the significance of
incorporating both system and statistical heterogeneity in FL system design.
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1. Introduction

Currently, the Internet of Things (IoT) and related technologies are playing a pivotal
role in designing, controlling, and managing large and complex systems, such as indus-
trial process automation and optimization, surveillance, smart lighting, parking, waste
management, leakage management, digital healthcare, smart grids, and many more. The
typical architecture of these systems often consists of various heterogeneous and distributed
interconnected devices. In traditional ML settings, the data generated by IoT devices is
collected and analyzed in central nodes, such as physical servers or cloud clusters, which
usually have powerful computational resources. However, IoT devices are usually de-
ployed at dispersed geographical locations with limited control. IoT devices are very
resource-constrained and suffer connectivity issues due to low bandwidth. Heterogene-
ity in hardware, software, and communication are also common challenges for any IoT
infrastructure. Considering the above challenges, continuous data collection from a large
number of IoT devices and their storage at a centralized location is very often not feasible.
Additionally, IoT devices can acquire highly personalized data that needs to be protected,
ensuring compliance with GDPR.

To mitigate the aforementioned issues, edge computing is becoming increasingly
popular, which facilitates analytics at the device level without the need of transferring
data to a cloud service [1]. Initially, the edge and fog computing was proposed to execute
simple queries over low-powered, distributed devices [2,3]. A few recent studies in this
field have focused on training ML models centrally and then deploying the trained models
on local devices to provide personalization, and mobile user modeling [4]. However, with
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the enhanced storage and computational capabilities of edge devices, we can leverage
the local resources on each device to train ML models using distributed data sets. One
such ML technique is known as Federated Learning (FL). In FL, the central server sends
a copy of an untrained ML model to all clients in the network. Each client computes an
update to the globally-shared central model based on its local training data set and sends
the updated local model parameters to the server. The server aggregates the updates from
all the clients, updates global model parameters, and sends the updated model back to the
clients. This process is repeated until the desired results are achieved [5]. A classic example
of this is the Google keyboard. When the keyboard shows a possible suggestion, your
phone locally stores the information about the current context and whether you clicked
the suggestion. This on-device information is then used to improve the next iteration of
Gboard suggestions.

The standard FL problem involves learning a globally shared statistical model from
data residing on tens to potentially thousands of remote devices. This model is trained
under the constraint that the data generated on the edge device is kept and processed
locally, with only periodic updates communicated to the central server. Since the data is
not shared at any point, the privacy is preserved. It also reduces communication overhead
in IoT networks as it only shares periodic model updates instead of sending huge chunks
of raw data. However, IoT systems consist of devices with different hardware capabilities
(system heterogeneity) which generate massive amounts of data in a highly disparate
manner (statistical heterogeneity), while the effects of heterogeneity are long studied and
proven in IoT networks, and there have been many attempts to mitigate the problem, these
methods cannot fully handle the scale of federated networks. Moreover, the impact of
heterogeneity is far worse in federated networks because the model training relies entirely
on distributed data sets.

To tackle the federated network challenges, Google formulated the very first vanilla FL
algorithm known as FedAvg. However, FedAvg does not account for the intrinsic heteroge-
neous nature of federated networks. Since then, many algorithms have been developed
to balance the global model performance including stochastic-based algorithms [6,7] and
primal dual-optimization [8]. Although a significant effort has been put into developing
robust, fair, fault-tolerant, and heterogeneity-aware solutions, to the best of our knowledge,
the following questions remain unanswered:

1. How sensitive is the FL training process to the system and statistical heterogeneity? Does this
sensitivity change under different algorithms?

2. Are existing proposals effective in mitigating the statistical and system heterogeneity?
3. If so, are these solutions as effective as they claim? To what extent do they mitigate the network

heterogeneity?

To this end, we reviewed previous works in the field and conducted an extensive set
of experiments to assess the impact of statistical and system heterogeneity on FL training.
We simulated a heterogeneous federated network and collected a comprehensive set of
measurements to analyze the problem empirically. Furthermore, we carefully selected
the top six state-of-the-art FL algorithms and stress-tested them under varying levels of
heterogeneity in the network. Our experimental setup comprehensively considers statistical
and system heterogeneity to evaluate and compare these six algorithms in terms of model
performance and training time. These metrics are then used to quantify the existing
solutions’ ability to mitigate the challenge of heterogeneity in the FL environment. The
experimental environment is also carefully controlled and kept identical to ensure a fair
comparison while testing these algorithms.

Our experimental results show that heterogeneity significantly affects the FL network
and leads to model divergence. The results also show that its impact varies significantly
depending on the type of heterogeneity in the network. For example, statistical hetero-
geneity causes non-trivial performance degradation in FL, including up to 33.76% accuracy
drop in some algorithms. The impact of heterogeneity is more significant in the scenarios
where both statistical and system heterogeneity is present. We not only observed a drastic
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degradation in average performance but also 3.42× lengthened training time and under-
mined fairness. Despite the claims, our experiments show that the existing solutions are
less effective in mitigating the negative impact of heterogeneity in FL. Overall, we believe
this study highlights the grey zones in existing solutions and provides essential and timely
insights for system designers and FL researchers.

Outline: Section 2 discusses heterogeneity in federated IoT networks and covers both,
statistical and system heterogeneity. Section 3 presents an overview of background and
related previous works. Section 4 presents a brief overview of algorithms selected for
this study. Section 5 presents our experimental setup and Section 6 presents evaluation
results including the conclusions made from empirical analysis. We conclude our work
and present a few future research directions in Section 7.

2. Heterogeneity in Federated IoT Networks

IoT networks are intrinsically heterogeneous. In real-life scenarios, FL is deployed
over an IoT network with different data samples, device capabilities, device availability,
network quality, and battery levels. As a result, heterogeneity is evidentiary and impacts
the performance of a federated network. This section breaks down the heterogeneity and
briefly discusses the two main categories, statistical and system heterogeneity.

2.1. Statistical Heterogeneity

Distributed optimization problems are often modeled under the assumption that data
is Independent and Identically Distributed (IID). However, IoT devices generate and collect
data in a highly dependent and inconsistent fashion. The number of data points also
varies significantly across devices which adds complexity to problem modeling, solution
formulation, analysis, and optimization. Moreover, the devices could be distributed in
association with each other, and there might be an underlying statistical structure capturing
their relationship. With the aim of learning a single, globally shared model, statistical
heterogeneity makes it difficult to achieve an optimal performance.

2.2. System Heterogeneity

It is very likely for IoT devices in a network to have different underlying hardware
(CPU, memory). These devices might also operate on different battery levels and use differ-
ent communication protocols (WiFi, LTE, etc.) Conclusively, the computational storage, and
communication capabilities differ for each device in the network. Moreover, IoT networks
have to cope with stragglers as well. Low-level IoT devices operate on low battery power
and bandwidth and can become unavailable at any given time.

The aforementioned system-level characteristics can introduce many challenges when
training ML models over the edge. For example, federated networks consist of hundreds of
thousands of low-level IoT devices, but only a handful of active devices might take part in
the training. Such situations can make trained models biased towards the active devices.
Moreover, low participation can result in a long convergence time when training. Due to
the reasons mentioned above, heterogeneity is one of the main challenges for federated IoT
networks, and federated algorithms must be robust, heterogeneity-aware, and fault-tolerant.
Recently a few studies have claimed to address the challenge of heterogeneity; therefore,
in this paper, we focus on empirical analysis for evaluating the existing approaches and
quantifying their effectiveness in mitigating the problem of heterogeneity.

3. Background and Related Work

In the recent few years, there has been a paradigm shift in the way ML is applied in
applications, and FL has emerged as a victor in systems driven by privacy concerns and
deep learning [9–11]. FL is being widely adopted due to its compliance with GDPR, and it
can be said that it is laying the foundation for next-generation ML applications. Despite
FL is showcasing promising results, however, it also brings in unique challenges; such
as communication efficiency, heterogeneity, and privacy, which are thoroughly discussed
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in [12–16]. To mitigate these challenges, various techniques have been presented over the
last few years. For example, [17] presented an adaptive averaging strategy, and authors
in [18] presented an In-Edge AI framework to tackle the communication bottleneck in
federated networks. To deal with the resource optimization problem, [19] focused on
the design aspects for enabling FL at the network edge. In contrast, [20] presented the
Dispersed Federated Learning (DFL) framework to provide resource optimization for
FL networks.

Heterogeneity is one of the major challenges faced by federated IoT networks. How-
ever, early FL approaches neither consider system and statistical heterogeneity in their
design [5,21] and nor are straggler-aware. Instead, there is a major assumption of uniform
participation from all clients and a sample fixed number of data parties in each learning
epoch to ensure performance and fair contribution from all clients. Due to these unrealistic
assumptions, FL approaches suffer significant performance loss and often lead to model
divergence under heterogeneous network conditions.

Previously, many research works have tried to mitigate heterogeneity problem in
distributed systems via system and algorithmic solutions [22–25]. In this context, hetero-
geneity results from different hardware capabilities of devices (system heterogeneity) and
results in performance degradation due to stragglers. However, these conventional meth-
ods cannot handle the scale of federated networks. Moreover, heterogeneity in FL settings
is not limited to hardware and device capabilities. Various other system artifacts such as
data distribution [26], client sampling [27] and user behavior also introduce heterogeneity
(known as statistical heterogeneity) in the network.

Recently, various techniques have been presented to tackle heterogeneity in a feder-
ated network. In [28], the authors proposed to tackle heterogeneity via client sampling.
Their approach uses a deadline-based approach to filter out all the stragglers. However,
it does not consider how this approach affects the straggler parties in model training.
Similarly, [29] proposed to reduce the total training time via adaptive client sampling while
ignoring the model bias. FedProx [6] allows client devices to perform a variable amount
of work depending on their available system resources and also adds a proximal term
to the objective to account for the associated heterogeneity. A few other works in this
area proposed reinforcement learning-based techniques to mitigate the negative effects of
heterogeneity [30,31]. Furthermore, algorithmic solutions have also been proposed that
mainly focus on tackling statistical heterogeneity in the federated network. In [7], authors
proposed a variance reduction technique to tackle the data heterogeneity. Similarly, [8]
proposed a new design strategy from a primal-dual optimization perspective to achieve
communication efficiency and adaptivity to the level of heterogeneity among the local
data. However, these techniques do not consider the communication capabilities of the
participating devices. Furthermore, they have not been tested in real-life scenarios which
keeps us in the dark regarding their actual performance in comparison to the reported
performance. Comparing the conventional and the new upcoming federated systems in
terms of heterogeneity and distribution helps us understand the open challenges as well as
track the progress of federated systems [32].

A few studies have also been presented to understand the impact of heterogeneity
in FL training. In [33], the author demonstrated the potential impact of system hetero-
geneity by allocating varied CPU resources to the participants. However, the author only
focused on training time and did not consider the impact of model performance. In [34],
the authors characterized the impact of heterogeneity on FL training, but they majorly
focused on system heterogeneity while ignoring the other types of heterogeneity in the
systems. Similarly, in [35], the authors used large-scale smartphone data to understand
the impact of heterogeneity but did not account for stragglers. However, all of the studies
mentioned above failed to analyze the effectiveness of state-of-the-art FL algorithms under
the heterogeneous network conditions. Table 1 summarizes these previous works along
with their key contributions and drawbacks.
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Table 1. Previous works along with their key contributions and drawbacks.

Ref. Key Contribution Drawbacks

[33]
Studied the impacts of hardware
heterogeneity on training time by
allocating varied CPU

• Only considers training time as the
metric to quantify the impact of
heterogeneity on FL
• Does not consider the communication
capabilities of participating devices
• Does not quantify the effectiveness of
existing solutions in mitigating
heterogeneity in FL

[34]

Characterized the impact of device
and behavioral heterogeneity on
the trained model performance and
fairness

• Does not consider the training time
• Mostly focuses on hyper-parameters
while ignoring other contributing factors,
e.g., statistical heterogeneity
• Does not quantify the effectiveness of
existing solutions in tackling
heterogeneity in FL

[35]
Characterized the impact of
heterogeneity in FL using large-scale
smartphone data

• Does not account for stragglers
• Does not quantify the effectiveness
of existing solutions in mitigating
heterogeneity in FL

Our study differs from the existing works in three aspects (i) we comprehensively consider
statistical heterogeneity as well as system heterogeneity in the experimental environment; (ii) we
focus on quantifying the effectiveness of proposed solutions in mitigating the heterogeneity in FL;
and (iii) we carefully controlled the test-bed environment to keep all setting identical ensuring a fair
comparison of the proposed solutions.

4. State-of-the-Art FL Algorithms

For this paper, we chose the top six open-source FL algorithms that are easily re-
producible. We mainly focus on algorithms that claim to incorporate heterogeneity in
their design and comprehensively evaluate and compare them in terms of training time
and model performance. Below we briefly summarize these selected six algorithms and
their characteristics.

4.1. Fedavg

FedAvg was presented as a secure, privacy-preserving, and communication-efficient
algorithm for FL over edge devices. In [21], the authors presented a practical method for the
FL based on iterative model averaging. FedAvg assumes uniform participation from all the
participating clients and drops out any slow-responding clients. Despite the early success
and adoption of FedAvg, it does not fully solve the challenges and problems associated
with the heterogeneity.

4.2. Fedprox

FedProx [6] tackles the heterogeneity problem in federated networks by allowing each
participating device to perform a variable amount of work. It incorporates partial infor-
mation from stragglers and adds a proximal term to account for associated heterogeneity,
thereby promising a more stable and accurate convergence behavior.
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4.3. Fedpd

In [8], the authors proposed a new algorithm design strategy from the primal-dual
optimization perspective. It proposes a meta-algorithm called Federated Primal-Dual
(FedPD), which attempts to deal with the general non-convex objective while achieving the
best possible optimization and communication complexity when data is non-IID.

4.4. Scaffold

In [7], the authors proposed a Stochastic Controlled Averaging algorithm (SCAFFOLD)
which uses control variates (variance reduction) to mitigate the adverse effects of data
heterogeneity. SCAFFOLD estimates the update direction for the server model and each
client and uses their difference to correct the local update. The algorithm is claimed to
overcome heterogeneity and converge in significantly fewer rounds of communication.

4.5. Fedmed

In [36], the authors modeled the unpredictability of FL settings as a Byzantine failure
and presented a distributed optimization algorithm that is robust against such failures,
with a focus on achieving optimal statistical performance. The algorithm aggregates local
solutions using a coordinate-wise median and uses only one communication round. The
algorithm is claimed to be efficient while achieving statistical optimality and guarantees
robustness against Byzantine failure.

4.6. Q-Fedavg

The naive minimization of aggregation loss in a large network may disproportionately
advantage or disadvantage the model performance. Ref. [37] proposed a novel optimization
objective inspired by fair resource allocation in wireless networks. The algorithm aims
at a more uniform accuracy distribution across the federated network. It minimizes the
aggregate re-weighted loss such that the devices with higher loss are given a higher relative
weight. The algorithm claims to be fair, robust, and efficient.

Table 2 presents a comparison of the six selection algorithms in terms of their ability
to incorporate statistical and system heterogeneity. The following section focuses on the ex-
perimental evaluation of the above-described algorithms and comparing their performance
while treating vanilla FL (FedAvg) as a performance benchmark.

Table 2. FL algorithms and incorporated heterogeneity types.

Algorithms Statistical Heterogeneity System Heterogeneity

FedAvg 7 7

FedProx X X

FedPD X 7

SCAFFOLD X 7

FedMed 7 X

q-FedAvg 7 X

5. Experimental Design

We ran extensive experiments for image processing systems to evaluate the perfor-
mance of different FL algorithms under heterogeneous network conditions. This section
thoroughly discusses the experimental methodology.

5.1. Data Set

Our initial study includes a model for the MNIST digit recognition task. The MNIST
data set has a training set of 60,000 28 × 28 grayscale images of the ten digits and a
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test set of 10,000 examples. This data set is used by almost all federated algorithms for
experimentation, giving us a common ground for performance evaluation.

5.2. Experiment Details

For the classic MNIST digit recognition task, we carried out experiments using a
convolutional neural network (CNN) with two 5 × 5 convolution layers (the first with
32 channels, the second with 64 each with a padding of 2 and followed by a 2 × 2 max
pooling), a fully connected layer with 512 units and ReLu activation with a final softmax
output layer. To understand the performance and optimization of different algorithms, we
also needed to specify how to distribute data over the network. We distributed the data
over 100 clients and studied two ways of data partitioning: the idealistic IID distribution
where data is shuffled and distributed among the 100 clients so that each client receives
600 examples and the real-world non-IID distribution where data is sorted by the digit
label divided into 200 shards of the size 300 images with each client receiving two shards.
These settings let us explore the degree to which the algorithms can break under the data
heterogeneity. We incorporate system heterogeneity in our experimental setup in the
following two ways:

• Fraction of active clients: where only a specified number of clients are randomly
selected to participate in a training round. For our experiments, we specified 100 clients
for our simulated IoT network, out of which only 10% will be actively taking part
in one training round. The threshold of active clients is chosen randomly but is
kept identical for all the algorithms. Moreover, active clients are chosen randomly
in each training round. This simulation is backed by the fact that even though IoT
networks consist of a large number of devices, it is common for these devices to become
unavailable for training due to numerous reasons, i.e., connectivity, low battery, and
user interruption. Thus, only a tiny fraction of devices are usually available in any
training round.

• Stragglers: which refers to the number of devices that fails to complete the local
training rounds. It is common for IoT devices to drop out during the training round
due to interruptions in network connectivity. Thus, initially, active devices can also
fail to complete the local training and significantly delay the execution of the federated
task. To simulate the problem, we set a threshold for devices that act as stragglers.

To thoroughly study the effects of system heterogeneity, we experimented with 10%,
30%, 50%, 70%, and 90% of stragglers. These settings serve as a testing bed, helping
us understand how varying levels of system heterogeneity might affect an algorithm’s
performance.

6. Evaluation & Results

This section is divided into two subsections, Statistical Heterogeneity and System
Heterogeneity, to explain the corresponding results.

6.1. Impact of Statistical Heterogeneity

To mimic the ideal conditions of IID data distribution, we randomly shuffle the data
and distribute it among the 100 clients. Only 10% of the clients were randomly chosen to
participate in a training round. Under these settings, all the federated algorithms performed
well, reaching an accuracy as high as 97%. Figure 1a shows the average accuracy of FL
algorithms over IID data. These results were expected since all the distributed optimization
problems converge faster under IID data distribution.



IoT 2022, 3 280

(a) (b)

Figure 1. Average accuracy of FL algorithms over (a) IID and (b) non-IID data distribution for MNIST
data set.

However, federated networks have non-IID data distribution across the network,
which reflects in performance degradation in real-world scenarios. The results in Figure 1b
show that the statistical heterogeneity significantly affects FL training. We observed an
accuracy drop of 7.09% in the case of FedAvg. This accuracy drop does not come as a
surprise since FedAvg does not account for any underlying heterogeneity. Our experiments
also show a drastic accuracy drop of 30.24%, 26.02%, and 19.22% in the performance of
FedPD, FedMed, and SCAFFOLD, respectively. These results were highly unexpected
considering the fact that FedPD and SCAFFOLD incorporate data heterogeneity in their
design, also claiming to outperform FedAvg.

The impact of statistical heterogeneity becomes more significant if the client population
is small or if the participating clients have small numbers of data samples. Although
recently developed solutions such as FedPD and SCAFFOLD claim to nullify the effects
of statistical heterogeneity and guarantee convergence, not all of them are as good as they
claim. We observed that FedMed and SCAFFOLD are very sensitive to local data batch
size, and even a small change can cause a drastic shift in model performance. SCAFFOLD
performs better over small data batches, but that comes at the cost of high training time
and is not feasible. On the other hand, FedPD does not show any significant change.

The results show that statistical heterogeneity slightly lengthens the training time, but
its impact is more significant on model performance. Despite the claims, all the existing
proposals fall short in mitigating the impact of statistical heterogeneity, and none of the FL
algorithms could outperform FedAvg.

6.2. Impact of System Heterogeneity

System heterogeneity is deep-rooted in IoT networks and often leads to divergence of
the model, bias, etc. In order to estimate the effects of system heterogeneity in federated IoT
networks, we set a threshold for the number of stragglers to have a controlled environment
and keep the testing set up the same for all algorithms. In our experiments, every client
has ten local epochs to complete one training iteration successfully. If a client fails to
complete a training round in the given time frame, it is considered a straggler. We carried
out experiments over IID and non-IID data distribution with varying levels of stragglers to
explore the degree to which algorithms can break. We considered model performance and
total training time the key performance metrics for our evaluation. The results, as shown in
Figure 2, demonstrate that system heterogeneity lengthens the training time irrespective of
whether data distribution is IID or non-IID.
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(a) (b)

Figure 2. Training time of FL algorithms over (a) IID and (b) non-IID MNIST data for varying levels
of stragglers.

The results also show that the impact of heterogeneity varies depending on the scenario
and sensitivity of the algorithm. A small threshold of stragglers is less likely to affect the
model performance if the network has IID data distribution. However, this impact becomes
more significant in the scenarios where both statistical and system heterogeneity come
into the picture. For instance, we did not observe any accuracy drop for a threshold of
10% stragglers over IID data distribution, as can be seen in Figure 3. On the other hand,
Figure 4 shows the same 10% threshold reports an accuracy drop of 16.04% over non-IID
data for FedMed.

(a) (b) (c)

(d) (e)

Figure 3. Average accuracy for (a) 10%, (b) 30%, (c) 50%, (d) 70%, and (e) 90% stragglers over IID
data for MNIST data set.

We extended our experiments to include the highly heterogeneous environment where
data is distributed in a non-IID manner and up to 90% of the participating devices are
stragglers. Under these settings, FedAvg reported an accuracy drop of 22.54% and a
lengthened training time up to 3.42×. This behavior can be expected because it does not
account for system or statistical heterogeneity in its design. We also observed an accuracy
drop of 20.03% and 4.84% in the performance of qFedAvg and FedProx, respectively, while
FedMed, FedPD, and SCAFFOLD led to model divergence.
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(a) (b) (c)

(d) (e)

Figure 4. Average accuracy for (a) 10%, (b) 30%, (c) 50%, (d) 70%, and (e) 90% stragglers over non-IID
data for MNIST data set.

Our experiments show that the existing solutions are less effective in improving the
training process when heterogeneity is considered. Instead, they are proved to be more
sensitive to heterogeneity and thus lead to model divergence.

Figure 5 shows that all the FL algorithms report performance degradation under
heterogeneous network conditions. The impact is more significant on model performance in
scenarios where both system and statistical heterogeneity are present. Here, the devices are
chosen at random for each training iteration which skews the distribution more and results
in model divergence. Hence, we conclude that both statistical and system heterogeneity
affects a federated network’s performance and we cannot simply ignore the repercussions
of either.

(a) (b)

Figure 5. Average accuracy of FL algorithms over (a) IID and (b) non-IID MNIST data for varying
level of stragglers.

7. Conclusions

We present a comprehensive experimental study to anatomize the potential impact of
statistical and system heterogeneity on the performance and training time of the collabora-
tively learned models in FL settings. We evaluate state-of-the-art FL algorithms in their
ability to mollify the negative implications of heterogeneity. Although, recent FL algorithms
claim to be resilient and guarantee convergence under heterogeneous settings, this study
shows that the existing solutions are less effective when system and statistical heterogeneity
are considered. This situation is especially distressful for smart system manufacturers and
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IoT solution providers who demand highly optimum and adaptable mechanisms, while
FL aims at laying the foundation for technology that extends security, the lack of resilient,
heterogeneity-aware solutions is a major roadblock to achieving this goal.

We believe that our study not only highlights the limitations of existing algorithms
but also provides timely insight for FL system designers. Although an optimizer’s choice
depends on the nature of the learning problem, FL researchers can use this study to design
more efficient and heterogeneity-aware FL systems. The choice of local epochs and batch
size has to be moderate since there is a trade-off in training time and model performance.
The performance benchmarks should be introduced for all learning domains to keep track
of progress in federated IoT networks. Finally, we emphasize the importance of testing
and fine-tuning the proposed solutions in realistic, heterogeneous environments to achieve
better performance.
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