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Abstract: Using the Internet of Things (IoT) for various applications, such as home and wearables
devices, network applications, and even self-driven vehicles, detecting abnormal traffic is one of
the problematic areas for researchers to protect network infrastructure from adversary activities.
Several network systems suffer from drawbacks that allow intruders to use malicious traffic to obtain
unauthorized access. Attacks such as Distributed Denial of Service attacks (DDoS), Denial of Service
attacks (DoS), and Service Scans demand a unique automatic system capable of identifying traffic
abnormality at the earliest stage to avoid system damage. Numerous automatic approaches can
detect abnormal traffic. However, accuracy is not only the issue with current Intrusion Detection
Systems (IDS), but the efficiency, flexibility, and scalability need to be enhanced to detect attack traffic
from various IoT networks. Thus, this study concentrates on constructing an ensemble classifier using
the proposed Integrated Evaluation Metrics (IEM) to determine the best performance of IDS models.
The automated Ranking and Best Selection Method (RBSM) is performed using the proposed IEM
to select the best model for the ensemble classifier to detect highly accurate attacks using machine
learning and deep learning techniques. Three datasets of real IoT traffic were merged to extend the
proposed approach’s ability to detect attack traffic from heterogeneous IoT networks. The results
show that the performance of the proposed model achieved the highest accuracy of 99.45% and
97.81% for binary and multi-classification, respectively.
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1. Introduction

Internet of Things (IoT) is a network that uses unique identifiers (UIDs) to connect
things, including but not limited to computing devices, automatic and digital tools, objects,
creatures, and people with the capacity to share data without needing human-to-human or
human-to-computer interaction. IoT connects the physical and virtual worlds in simple
terms. The fundamental idea behind IoT is to establish a safe, self-governing connection
that allows data to be exchanged between real-world physical objects and apps [1]. The
IoT Analytics report indicates that more than 11 billion IoT devices are connected and used
in our current lives. Moreover, it is shown that there is an increase of more than 10% of
IoT devices. The expectation is that in 2025, there will be around 21 billion IoT devices
connected around the world [1]. As a result, the IoT has experienced rapid expansion
in recent years due to widespread adoption in various sectors and industries, including
smart cities and smart homes, agriculture, transportation, logistics, and healthcare [2]. The
integration of IoT with growing and rapidly rising software such as Artificial Intelligence
(AI), big data, and 5G is also receiving much attention. However, as the world becomes
more interconnected through the Internet and the IoT ecosystem grows in size, application,
connectivity, and complexity, the need to adequately secure IoT components at all levels,
from physical to user, becomes more vital than ever. As a consequence, network security
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becomes essential. Advanced hacking techniques can compromise the security of IoT
communications and computational components. There are numerous attacks in IoT
networks, including but not limited to Denial of Service (DoS) and Distributed DoS (DDoS).
This type of attacks can make the device unreachable to handle actual demands by flooding
and over-burdening the IoT device with pointless and superfluous messages. The other
type of attack is the Replay attack. This attack can be executed by capturing the traffic
to distinguish the unencrypted information, which works with hackers to accomplish
Man-in-the-Middle (MITM). Additionally, a spoofing attack where attackers can take on
the appearance of legitimate clients and forward fake Global Positioning System (GPS)
information to the nodes. Therefore, IDS is crucial to protect IoT from these attacks and
secure the network by detecting abnormal behaviours using artificial intelligence [3]. IDS
is usually divided into two types: anomaly and misuse methods that depend on being
signature-based. Various types of machine and deep learning models for IDS have been
published and trained to detect essential and specific threats for conventional networks
and partly in the Internet of Things networks [4].

The heterogeneous IoT networks utilize various protocols and sub-connected systems,
which makes learning different traffic patterns challenging for a single model. Integrating
different learning models will increase the selection of the best model performance and
decrease the risk of selecting a poorly performing classifier. Furthermore, integrating
models with different decisions may yield a more reasonable result than any individual
result. Therefore, an ensemble approach is required to enhance the model’s classification
accuracy. However, an individual model’s performance sometimes overcomes such an
approach, but it is guaranteed that the ensemble approach will decrease the total risk
of invalid selection [4]. In general, hard and soft voting are the two main approaches
to combining models decisions [5]. In hard voting, also known as majority voting, each
classifier votes for a class, and the class with the most votes is chosen. More than half
of the approaches make the same decision, which is referred to as the majority. Soft
voting in the other hands, involves predicting the class based on a classifier’s anticipated
probability (p) [6]. That is why soft voting is more reliable than hard voting since it
examines more information and includes the weight of each classifier in the decision.
Detecting cyberattacks on IoT networks requires IDS. However, the majority of IDSs can
not successfully meet IoT networks’ requirements in the real world. The current IDS suffers
from many false alarms and low detection accuracy. Moreover, the IoT network is extended
rapidly by adding more connected devices every day, making designing a scalable and
efficient IDS problematic. An ensemble detection approach is proposed in this study to
accomplish a dependable, scalable, adaptable, flexible, and speedy IDS for IoT networks.
The main contributions of this paper are listed below:

• Merge three real IoT datasets to evaluate and validate different IDS models in IoT by
applying feature selection;

• Propose an integrated evaluation metrics model for attacks in binary and multi-
classification using Spark big data processing system;

• An automated and flexible ranking and selection methods that incorporate various
evaluation metrics;

• Develop an ensemble intrusion detection model for IoT to detect different attacks un-
der heterogeneous environments utilizing different machine/deep learning algorithms
and provide complete analysis and evaluation of the proposed model’s performance
compared to other models.

The remainder of the paper is organized as follows: Section 2 introduces the prob-
lem definition. Section 3 presents the related work in IDS-IoT. Section 4 presents a brief
background of big data processing, storage system, most common cyber attacks and ma-
chine learning models. Section 5 presents a detection architecture. Section 6 presents the
methodology of the pre-proccing dataset. Furthermore, the proposed IEM, ranking and
best selection method are applied to the machine and deep learning models to handle the
data classification to detect IoT attacks. Section 7 introduces the evaluation of the proposed
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technique after conducting experiments utilizing the most common evaluation metrics.
Moreover, this section presents a comparison with the previous studies. The last Section 8
includes concluding and remarks.

2. Problem Definition

The IoT network is heterogeneous because of the various applications and devices
involved. According to the literature, detecting attacks is a classification issue since the
purpose is to determine if the packet is legitimate or malicious, which solves 50% of the
problem. However, as an IoT network is complicated, knowing the type of attack on
the network is essential; otherwise, scans would be time-consuming, giving attackers
more accessible access to obtain or modify information and even destroying the system.
Moreover, there are no standardized validation efforts for intrusion detection in IoT. The
validation strategy is critical to evaluate the model under different factors such as different
network parameters and configurations, different datasets and different scenarios. The
dataset is crucial to learn about the correctness of a model. However, traditional IDS in
several works has been validated based on data from the experiments performed, which
is an outdated dataset that does not have the latest attacks in IoT. There are also some
challenges and problems in successfully deploying an anomaly system in the real-world
environment. The challenges include high False Positive Rates (FPR), where the system
labelled the normal packets as abnormal packets because of the lack of labelled data and
low Detection Rates (DR). The high velocity, complexity, and variability in IoT networks
produce a high traffic volume from several networks that need to be extracted, aggregated,
and processed. We need to study and understand the detection process’s capabilities and
limitations under a big data environment to overcome these challenges.

The objective is to develop ensemble detection model to achieve a reliable, scalable,
adaptable, flexible, and speedy IDS for heterogeneous IoT networks that predicts if an
attack happens in real-time and, if so, determine its type in order to enable administrators to
speed up the recovery of their systems since the architecture will help to reduce scans time
to know the type and source of the attack. Moreover, producing heterogeneous networks
makes learning several traffic patterns challenging for an individual model. Therefore,
to develop classification accuracy, increase decision-making, and decrease selection of a
weaker classifier, an aggregate model that consolidates several models is the solution. For
that reason, we propose a model that can automatically evaluate various IDS proposed
in state-of-the-art by meeting several requirements. The model has two phases. The first
phase is responsible for evaluating the model using several metrics and assigning a rank
for each one. The second phase is finding the model’s overall rank and choosing the best
one to be a part of the final ensemble classifier.

3. Related Work

This section describes the literature review related to various machine learning techniques
applied to several intrusion detection datasets. Due to the lack of resources for studying the
Spark environment in ensemble IDS, many related works focus on different intrusion detection
datasets, specifically the UNSW-NB15, IoT-23, and Ton_IoT datasets. The references in the
literature review are divided into two subsections; single detection models and ensemble
detection models utilizing the three datasets. These works are summarized in Table 1.

3.1. Single IDS
3.1.1. UNSW-NB15 Dataset

Aleesa et al. [7] proposed an IDS using deep learning methods. The authors utilized a
popular dataset called UNSW-NB15 to evaluate their approach performance for binary and
multi-class classification. The authors consider accuracy as the primary performance metric
in this study. The result shows that the accuracy obtained is 99.26% and 97.89% for binary
and multi-class classification. However, They compared the performance of the proposed
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models with other published works and claimed that these results were outstanding to
current ones.

Table 1. A comparison and Summary of the literature review.

IDS Year Models Ensemble Multi Dataset Metrics Big Data

Aleesa [7] 2021 RNN, No Yes UNSW-NB15 ACC No
LSTM,

DNN
Ahmad [11] 2021 RF, Yes Yes UNSW-NB15 ACC No

ANN,
SVM

Rashid [12] 2022 RF Yes No UNSW-NB15, ACC, No
DT NSL-KDD DR,

XGBoost FPR
Moustafa [13] 2018 NB, DT, Yes Yes UNSW-NB15, ACC No

ANN NIMS ROC,
+AbaBoost DR, FPR

Smitha [14] 2020 KNN Yes Yes UNSW-NB15, ACC No
SVM UGR’16 Pr

RF Re
RF FAR

Zhou [8] 2018 gradient- No Yes UNSW-NB15, ACC No
boosted NSL-KDD Pr

trees Re
Dutta [15] 2020 LSTM, Yes No IoT-23, ACC, Re, No

DNN LITNET2020, FPR, F-Score,
NetML-2020 MCC, Pr

Amiya [16] 2021 CNN, Yes Yes IoT-23 ACC, FPR No
LSTM F-Score

Pr, Re
PuTianet [9] 2021 AE No No IoT-23, ACC, Pr, No

MNIST, F-Score
CIC-IDS 2017 Re

Nukavarapu [10] 2021 GANs No No IoT-23 ACC No
Booij [17] 2021 GBM, Yes No Ton_IoT ACC, No

RF, F-Score
MLP AUC

Alsaedi [18] 2021 LR, LDA, NB Yes Yes Ton_IoT ACC, No
SVM, KNN F-Score

CART, RF Pr, Re

Zhou et al. [8] proposed a feature embeddings model called DFEL. The authors trained
a neural network model to reduce the features matrix and construct embeddings. Then
several classifier models, such as Support Vector Machine (SVM), Decision Trees (DT),
K-Nearest Neighbor (KNN), and GaussianNB used to classify traffic. To evaluate the
performance of the model, the authors used UNSW-NB15. However, because the used
dataset is more sophisticated and reflects real-world traffic, the high-performance model
reached 91.22% accuracy.

3.1.2. Aposemat IoT-23 Dataset

PuTianet et al. [9] present DC-Adam technique. The idea is based on a federated
learning-based detection method. Asynchronous update technique enhances the stability
of the model by decreasing the impacts from the stragglers, which leads to improved model
accuracy. The authors evaluate the effectiveness of the suggested strategy corresponding to
existing state-of-the-art strategies using the publicly available dataset IoT-23. The result of
the proposed method is 89.50%.

Nukavarapu et al. [10] uses Generative adversarial networks (GANs) to construct
a multistage classifier model. The proposed model automatically extracts features from
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labelled data. The authors used IoT23 labelled data during the training to evaluate their
model. The result received is 92% of accuracy.

3.2. Ensemble IDS
3.2.1. UNSW-NB15 Dataset

Ahmad et al. [11] introduced a technique to detect and remove suspicious pack-
ets from the Internet of Things. Random Forest (RF), Support Vector Machine (SVM),
and Artificial Neural Networks (ANN) were used by the authors as supervised machine
learning techniques. The authors utilize the full features related to Transmission Control
Protocol (TCP) and Message Queuing Telemetry Transfer(MQTT) in the UNSW-NB15
dataset. The proposed model reached 98.67% and 97.37% accuracy in binary and multiclass
classification, accordingly.

Rashid et al. [12] present a stacking ensemble approach. In the first phase, the authors
reduce the dimensionality of the features by applying the best feature selection method.
In the second step, an ensemble approach employs for the detection process. Their model
utilizes three different models called Decision Trees (DT), Random XGBoost, and Random
Forest (RF). The results showed that the proposed model reached 94% accuracy on the
UNSW-NB15 dataset.

Moustafa et al. [13] proposed an ensemble method composed of Artificial neural net-
work (ANN), Naive Bayes (NB), and Decision Tree (DT). The model goal is to detect botnet
attacks and suspicious activity in IoT. The results showed that their ensemble technique
reached an accuracy of 98.97% using statistical flow features of Hypertext Transfer Protocol
(HTTP) and Message Queuing Telemetry Transfer(MQTT) generated from UNSW-NB15.

Smitha et al. [14] proposed a stacking ensemble-based IDS. The authors built base clas-
sifiers utilizing Linear Regression (LR), K-Nearest Neighbour (KNN), and Random Forest
(RF). For the meta-classifier, they used a Support Vector Machine (SVM). Experimentations
have been performed on UNSW-NB15 and UGR’16 heterogeneous datasets. The outcomes
indicated that the proposed model reached 94% of accuracy on the UNSW-NB15 dataset.

3.2.2. Aposemat IoT-23 Dataset

Dutta et al. [15] developed an ensemble model including deep neural network (DNN)
and Long Short Term Memory (LSTM) for detecting and classifying anomalies. The author
conducted individual testing on three heterogeneous datasets; and determined that the
proposed technique outperformed individual and meta-classifiers such as Support Vector
Machine (SVM) and Random Forest (RF). The dataset used is IoT-23. 98% of F1 scores were
achieved, with an accuracy of 99.7%.

Amiya et al. [16] proposed a security architecture and attack detection method based
on Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN). Accord-
ing to the model’s results, 96% of attacks are detected correctly.

3.2.3. Ton_IoT Dataset

Booij et al. [17] presented a smart IDS that is suitable for the industrial field. Several
classifiers were used in the experiments, including the Random Forest (RF), Gradient
Boosting Machine (GBM), and multilayer perceptron (MLP). A 98.07% performance was
obtained when the proposed approach was applied to the ToN_IoT dataset.

Alsaedi et al. [18] introduced the ToN_IoT dataset, a current dataset for developing and
testing IDSs. Many machine learning approaches were applied such as Linear Discriminant
Analysis (LDA), Classification and Regression Trees (CART), Support Vector Machine
(SVM), Naive Bayes (NB), and K-Nearest Neighbor (KNN). CART model achieved 87% of
accuracy on the weather dataset.

Based on the literature review, non of these studies considering evaluating the ensem-
ble IDS using big data processing system.
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4. Background

This section provides general information regarding the big data processing tool used
in this research paper. Moreover, it briefly covers the machine and deep models used in
this study.

4.1. Big Data
4.1.1. Big Data Processing Systems

Spark is considered one type of big data processing tool. This tool is one of the core
components of every big data architecture. Spark analyzes stored data in repository systems
or data consumed systems. Apache Spark was founded in 2009 by AMPLab at UC Berkeley.
It is fitting for a wide scope of use cases. Generally, four libraries built on top of the Spark
processing engine are Spark SQL, Spark Streaming, MLlib for machine learning algorithms,
and GraphX for graph computations. The programming languages supported by Spark are
Java, Python, Scala, and R. It is possible to run Spark using its cluster on Hadoop YARN,
Mesos or Kubernetes. Spark supports both batch and stream processing [19,20].

4.1.2. Big Data Storage Systems

Analyzing massive amounts of heterogeneous data is unattainable with conventional
relational databases such as SQL. In terms of storing big data, scalable, fault-tolerant, and
reliable systems such as NoSQL databases or distributed databases are suitable. For that
reason Hadoop Distributed File System (HDFS) is chosen. HDFS is a big data technol-
ogy designed to run on low-cost hardware with fault-tolerance. HDFS consists of Name
Nodes and Data Nodes. Name Nodes are responsible for how data are parsed and dis-
tributed among servers, while Data Nodes are responsible for storing blocks of data. Name
Nodes controlled Data Nodes that exist on multiple servers [19,21]. HDFS provides great
scalability, fault-tolerance, and reliability.

4.2. Deep Learning
4.2.1. Long Short Term Memory (LSTM)

LSTM is a deep learning model that extends Recurrent Neural Networks (RNNs) by
enclosing the idea of gates into its units. An essential issue with (RNNs) is their inability to
maintain context information when the gradient disappears over a lengthy period [22]. The
LSTM approach, on the other hand, eliminates the gradient disappearance issue and allows
for longer retention of context information. LSTM is suitable for sequential data, such as
in the case of DoS and DDoS. A standard neural network unit only consists of the input
activation and the output activation which are related by an activation function. The LSTM
models applies the input activation and multiplies the result by some factors. Then the inner
activation value of the previous time step, multiplied by the some quantity is added due to
the recurrent self-connection. The result is then fed to the activation function after scaling.

4.2.2. Artificial Neural Network (ANN)

ANNs have recently received significant attention in many areas of study such as
engineering, medical science, and economics for a wide diversity of applications. They
have been used in classification problems, such as recognizing speech and predicting
heart problems in patients. An ANN is a set of single computational nodes that are highly
interconnected. The structure of ANN consists of input layers where the number of neurons
of the input layer equals the number of features in the dataset, the hidden layers (one or
more hidden layers) to compute the weights and then pass them to the output layer for
either binary or multi-classification. The over-fitting problem could accrue when there
are too many hidden layers. On the other hand, if there are few hidden layers, the cost of
training time will increase [23].
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4.2.3. Convolutional Neural Network (CNN)

CNN is a well-known, widely-used structure in deep learning proposed by LeCun et al. [24].
CNN has gained capability in applications and is now capable of facial recognition, text
recognition, medical and image classification [25]. It generally consists of three parts: an
input layer, a hidden layer, and a fully connected output layer. CNN can be the right
solution for creating a high-quality classifier by extraction of the relationship between dif-
ferent events. Moreover, CNN requires fewer parameters with the same depth of network
compared with other deep networks, which reduces complexity and speeds the learning
process [26].

4.3. Machine Learning Models
4.3.1. Random Forest (RF)

It is a supervised learning algorithm. In a random forest, a decision tree is built from a
sample of data taken at random, predictions are obtained from each tree, and a vote chooses
the best answer. In addition, it serves as a reliable indicator of the feature’s relevance.
Random forest refers to the collection of these decision trees, called a Forest. An attribute
selection indicator such as information gain, gain ratio, and Gini index for each attribute
creates the decision trees. To classify the trees, a random sample is used for each tree, and
then the most popular class is selected based on the results of the individual tree votes [27].

4.3.2. AdaBoost

A decision tree is enhanced with the aid of weak learners, or stumps, which each have
one node and two leaves [28]. Classification is made possible by AdaBoost’s use of several
stumps. As the preceding stump makes errors, so does the next one, and so on. Weights are
allocated to each sample in the database. After generating the first stump, these weights
will vary to guide the creation of the second stump.

4.3.3. Decision Tree (DT)

A decision tree is a straightforward model for classifying data. It is supervised
machine learning where the data are continuously split according to a specific parameter.
The components of a decision tree are:

1. Nodes: Check the value of a particular feature.
2. Edges/Branch: Connect to the next node or leaf based on the results of a test.
3. Leaf nodes/Terminal nodes: The nodes produce the final predict result.

The decision variable is categorical/discrete for classification tasks. A procedure called
binary recursive partitioning is used to create such a tree. This iterative method involves
separating the data into divisions and then further splitting it up on each branch. The
data are divided using the decision method based on the characteristic that yields the most
information gain (IG) (reduction in uncertainty towards the final decision). This splitting
operation is performed at each child node iteratively until the leaves are pure [29].

4.3.4. K-Nearest Neighbor (KNN)

Classification issues are the most common application for the k-Nearest Neighbor
method, which comes under the category of supervised learning. KNN predicts a class
or continuous value for a new data point based on the K nearest neighbors (data points).
Nearest neighbors are those data points closest in feature space to latest data point, defined
by K nearest neighbors. Each unique data point looks for the k closest neighbors and then
gives a class label to all of those K Nearest Neighbors, then used as a predicted class for the
newly data point [30].

4.3.5. Naive Bayes

In binary and multi-class classification issues, Naive Bayes is a typical technique. The
fundamental concept is that each feature contributes equally and independently to the
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outcome. It is assumed that each result has a conditional probability. When dealing with
categorical input variables, it does better than when dealing with numerical input variables.
Classifying the test data is a rapid and straightforward process. The Naive Bayes classifier
performs better and requires smaller training examples than other models such as logistic
regression [31].

4.3.6. Light Gradient Boosting Machine (LightGBM)

LGBM and XGBoost have pretty different approaches to tree growth. LGBM’s goal
is to make training faster and use less memory while maintaining high accuracy. LGBM
Leaf nodes are separated using a histogram-based technique, which significantly impacts
memory and efficiency. LGBM may lead to more significant gains in accuracy with each
iteration since leaf-wise tree development increases model complexity. However, it also
implies high risks of over-fitting. Two unique approaches, Gradient-Based One-Side Sam-
pling (GOSS) and Exclusive Feature Bundling (EFB), are used in the LightGBM algorithm
to make it a fast, efficient, and reliable model [32].

4.3.7. CatBoost

It’s a Gradient Boosting-based algorithm. It has few features optimization parame-
ters and enables faster training and testing. It employs the Ordered Boosting technique,
which increases the model’s generalization. Boost improves random forest and other gra-
dient boosting algorithms. It works well with categorical data structures, obviating the
requirement for data transformation in the middle [33].

4.4. Attack Classes

The proposed architecture is capable of detecting most common cyber attacks, few of
whom are mentioned below.

4.4.1. Backdoor Attacks

These are the type of attacks where hackers try gaining and retaining access to a
computer system by bypassing security and authentication by hiding deceitfully [34]. A lot
of research has been carried out to detect these attacks. Moreover, special signatures do
exist for these attacks that help in detecting and analyzing their behaviour preferably using
deep learning techniques.

4.4.2. Denial of Service Attacks (DoS)

In this attack a single attacker bombards the target with a large amount of data packets
(for any protocol e.g., HTTP etc.) to consume its resources with this illegitimate traffic
making it unavailable for legitimate ones. A lot of research has been carried out to detect
such attacks using simple machine learning and deep learning approaches [35].

4.4.3. Distributed Denial of Service Attacks (DDoS)

These attacks are way more complex as compared to simpel DoS as in this case a large
number of attackers send large amount of packets to a single target making it very hard
to detect and stop. Lately, deep learning and Artificial Intelligence based approaches are
proven out to detect these attacks with high accuracy [36].

4.4.4. Injection Attacks

These attacks encompass a wide variety of sub-categories where an attacker supplies
a target with untrusted data or commands to subvert the built-in security and achieve
desired malicious results. Injection attacks are more common in web applications where
attacker supply unwarranted SQL statements which get processed by the target website
resulting in exploitation. Machine learning and deep learning based solutions have proven
efficient in combating these attacks as rule based Web Application Firewalls (WAFs) show
less accuracy [37].
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4.4.5. Man in the Middle Attacks (MiTM)

In these attacks attacker sits between two communicating parties unlawfully and relays
the communication of messages between them without their knowledge and consent [38].

4.4.6. Password Attacks

These attacks aim at subverting password based authentication using any means
ranging from cryptanalysis, hash matching or using social engineering techniques. There
are many software solutions available which aid the process of password cracking and
hash matching. These attacks can be categorized through special signatures and the use of
such cracking solutions [39].

4.4.7. Ransomware Attacks

These attacks make the user data unavailable by encrypting it only to be rehabilitated
once a hefty ransom is paid. These attacks have grown rapidly in the recent past and many
machine and deep learning based techniques have been employed for their early detection
and remediation [40].

4.4.8. Scanning and Enumeration Attacks

These are basically the preattack steps attackers take in order to gain information
about open ports, services running, vulnerable applications and enumerating users and
groups etc. in the target system or network. This information later helps in maintaining
and retaining access to the victim system. Attackers generally use tools such as NMAP and
HPING for scanning and enumeration but the smart attackers can come up with custom
scripts. Detection o these scanning payloads is important as they curb the attack before
actually having it materialized [41].

4.4.9. Cross Site Scripting Attacks (XSS)

These attacks are specifically for web applications where the attacker uploads a mali-
cious JavaScript to a remote website so that anyone visiting the website gets infected with
it when his client (broswer) executes that JavaScript. Machine and Deep learning based
solutions have been used to detect such attacks with high accuracy and precision [42].

5. Propose Ensemble Attack Detection Architecture

The decision to use assembling as a strategy to address complex problems is based on
various reasons. The total risk of an ensemble model is lower than the individual model.
Additionally, an individual classifier cannot solve complex problems. For these reasons,
combining simple models to create ensemble learning allows the boundaries to be learned
smoothly. A further advantage of such an approach is giving each decision a confidence
probability, which decreases false alarms generated by IDS, increasing the performance
and robustness of the ensemble model.

The proposed architecture is shown in Figure 1. The cloud layer contains different
databases with different IoT network traffic. These databases are merged to generate a
complex dataset used to create various machine and deep learning models using cloud
resources. Once the models are created and trained using the training dataset, they will be
placed on the edge layer for validation using the testing dataset on the Spark framework
to obtain the model performance score. There are two separate phases; the first phase
contains the integrated evaluation metrics (IEM) introduced in Section 5.1. The second
phase contains the Rank and best selection method (RBSM), where all models will be
ranked based on integrated evaluation metrics; the model with rank = 1 in all evaluation
metrics means the model is the best and will be selected as part of the final classifier. The
process of selection models is performed after the final and summation rank value are
calculated. The model with the high final rank value or the model with a low summation
rank value will be chosen to be a part of the final ensemble model. Our methodology is
based on soft voting as it improves on hard voting.
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Figure 1. Proposed architecture for detection model.

5.1. Integrated Evaluation Metrics (IEM)

From the cybersecurity perspective, detecting attacks earlier is an essential aspect
of any IDS. The detection time of the model plays a fundamental role in discovering
and terminating the attack’s process without reducing the accuracy. For that purpose,
time is required while simultaneously evaluating the model performance with model
accuracy. We have integrated four evaluation metrics in our model, namely, F-score, Cohens
Kappa, Matthew’s Correlation Coefficient (MCC), and logloss. In order to determine the
performance of each suggested evaluation metric, we divide it by the detection time
except for the logloss metric to obtain the efficiency score value. The high value of the
efficiency score determines the most suitable model, and it is assigned with the high rank
as metrici = 1 where i = F-measure, Kappa, MCC, and logloss.

1. The efficiency score value of F-measure: It considers both precision and recall [43]. A
more suitable model has a greater efficiency value based on Equation (1).

The efficiency score value of F-measure =
F-measure

Detection time
(1)

2. The efficiency score value of Kappa: Cohens Kappa was first proposed to measure
psychological behaviour observers’ agreement. It was designed to evaluate the degree
of agreement or disagreement between two or more persons who were viewing the
same phenomena [44]. The higher Kappa value should be assigned to the better-
performing model using Equation (2).

The efficiency score value of Kappa =
Kappa

Detection time
(2)

3. The efficiency score value of Matthew’s Correlation Coefficient (MCC): Is a technique
used for evaluate model ability in both binary and multi-class classification. The MCC
value is always between −1 and +1, where −1 indicating perfect misclassification and
+1 indicating perfect classification [45]. The higher value MCC should be assigned to
the better-performing model using Equation (3).

The efficiency score value of MCC =
MCC

Detection time
(3)
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4. The efficiency score value of logloss: Logloss is the most critical classification metric.
It is based on probabilities, and it is used for comparing models and can be calculated
as shown in Equation (4) [46]. The Lower logloss should be assigned to the better-
performing model. Therefore we will sort this value by descending order.

The efficiency score value of Logloss = − 1
N

N

∑
i=1

yi· log(p(yi)) + (1− yi)· log(1− p(yi)). (4)

Each metric will be ranked based on the obtained efficiency value. Then the rank
will be used to determine the model performance score using the Spark big data
processing system.

5. The model performance score: We proposed the new equation to determine the Spark
system’s best model performance for our scenarios. The equation has two parts. The
first part is the summation of the model rank (r) of all metrics (F-measure, Kappa,
MCC, and 2× logloss). The second part is the time of the model to process all datasets
using Spark. All models will be ranked based on time to process all datasets as modeli
rank = 1, 2, . . . , N where i = name of the model and N = number of the model in the
list. The model with rank (r) = 1 is considered the model with low processing time, as
defined in Equation (5). A more suitable model has a low-summation value with low
processing time.

Model performance score = F(r) + Kappa(r) + MCC(r) + 2× (Logloss(r)) + Process(r) (5)

5.2. Rank and Best Selection Method (RBSM)

To design an efficient IDS for an IoT heterogeneous environment, we need to enhance
decision-making and work with various network features. The proposed model is fully
automated and flexible to create a robustness ensemble classifier. The classifier consolidates
the top high performance of the machine and deep learning models using (IEM) and
detection time, taking into account the total time of the model to process all the datasets
using Spark. All suggested models will be trained using Stratified k fold cross-validation
technique on our merged dataset, as shown in Algorithm 1. During inference, the mean
results of integrated evaluation metrics of every model on these 5-folds are stored in JSON
files. The rank model will use this file.

The detection time is an essential factor in utilizing the proposed integrated evaluation
metrics. For this reason, the first step is to obtain the detection time per packet for each
model. The second step is dividing all metrics by detection time to obtain the efficiency
value of the metric to perform the ranking step except for the logloss metric. The model
with a high value of logloss is identified as the worst model, and the model will be assigned
with a low-rank. The strategy of the ranking algorithm is based on descending order, where
the model with rank = 1 for each metric means more promising model than others. In our
case, the ranking range is from (1 to 10) as our list contains ten machine/deep learning
models. The proposed algorithm for the ranking model is presented in Algorithm 2.

After the ranking step is performed, the best selection method will be performed
using the final rank (FR) and summation rank (SR). All metrics ranked with ones will be
added to obtain the final rank. On the other hand, the summation rank can be found by
accumulating all metrics rank. The proposed algorithm for the best selection method is
presented in Algorithm 3. The final (FR) and summation rank (SR) values are essential
to perform the best selection method. The proposed ensemble classifier required three
different models. To accomplish this task, the best selection method has two different cases
that can appear and need to be addressed to ensure that our algorithm is performing in
the best way. In the first case, three or more models are found after the final rank is added.
In this case, the best selection method will choose the model with the final rank’s high
value. In the second case, less than three models are found after adding the final rank. In
this case, the best selection method will choose the model with the summation rank’s low
value to be sure the algorithm is accurate and has selected the best model. Moreover, the
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proposed model will automatically update the ensemble classifier to meet the IoT traffic
heterogeneity in the case of changing IoT networks. A detailed explanation is shown in the
result section.

Algorithm 1: Training list of models using 5 Folds.
Data: Merged data, StratifiedKFold, Feature Selection Method (FSM), Model List

(ML)
Result: Trained List of Models (TLM), results FSM.json

1 Initialization:
2 results.json← (F-measuremi = 0, MCCmi = 0, Kappami = 0, Loglossmi = 0,

Detection Timemi = 0)
3 for each Mi in (ML) do
4 for Each feature selection method in FSM do
5 logloss efficiency score value← calculate the Logloss
6 calculate detection time
7 calculate the efficiency score value by dividing each metric by detection

time of the model
8 calculate the mean of results on 5 Folds
9 F← efficiency score value

10 MCC← efficiency score value
11 kappa← efficiency score value
12 Results.json← results
13 add the model f sm to Trained List of models (TLM)
14 remove the model from List of models (LM)
15 end
16 end
17 return Trained List of models (TLM)II results.json

Algorithm 2: Ranking Algorithm.
Data: Trained List of Models (TLM), Results.json
Result: Final selection table list

1 Procedure
2 for Each feature selection methods in FSM do
3 Load result of the model with given FSM
4 Assign median detection time to Each model
5 end
6 for Each Trained List of Models (TLM) do
7 get results for all FSMs for the given model
8 calculate FRank,KappaRank,MCCRank,LogLossRank
9 calculate final rank based on 1st rank summation of

FRank,KappaRank,MCCRank,LogLossRank
10 get maximum final rank
11 if Maximum final rank is not unique in list of final rank then
12 calculate rank summation
13 pick model with least rank summation
14 Else
15 pick model with highest final rank
16 add it to final selection table List
17 end
18 end



IoT 2022, 3 297

Algorithm 3: Best Selection Algorithm.
Data: Final selection table list, Results.json
Result: Ensemble (ML1, ML2, ML3)

1 Procedure
2 Create ModelsWithPositiveFinalRankList (MWPFRList)
3 Create ModelsWithZeroFinalRankList (MWZeroFRList)
4 Add models with positive final rank to MWPFRList
5 if length(MWPFRList) > 3 then
6 if Ranks of models in MWPFRList are unique: then
7 Pick the first 3 based on highest final rank
8 Add first 3 models to best model (ML1, ML2, ML3)
9 Else

10 Calculate rank summation
11 Pick best models with least rank summation to best model (ML1, ML2, ML3)

12 end
13 if Best model length != 3 then
14 Pick models with final rank == 0
15 Add model to MWZeroFRList
16 Calculate FRank,KappRank,MCCRank,LogLossRank
17 Calculate final rank based on 1st rank summation of

FRank,KappaRank,MCCRank,LogLossRank
18 if Ranks of models in MWZeroFRList are unique then
19 Pick the first 3 based on highest final rank
20 Add first 3 models to best model (ML1, ML2, ML3)
21 Else
22 Calculate rank summation
23 Pick 3-(length of best model models) with least rank summation to best

model (ML1, ML2, ML3)
24 end
25 end
26 end

6. Methodology

This section provides an overview of the selection, processing of the datasets, the
machine learning models and the inference process. From the three original datasets
(UNSW-NB15, Aposemat IoT-23, ToN_IoT), a number of data preparation techniques have
to be carried out to make the datasets more useable. This section discusses the steps for the
preparation of data before it was fed to the machine learning algorithms.

6.1. Datasets Description

Three publicly available datasets that contain a massive number of traffics, the UNSW-
NB15 dataset, Aposemat IoT-23 dataset, and the ToN_IoT dataset, are used to evaluate the
proposed approach, as shown in Table 2.

The UNSW-NB15 dataset [47] contains a gigantic network traffics. There are more than
two million abnormal and normal connection records. This dataset is high-dimensional
with 49 features for each connection record and an average velocity of 5–10 MBs, reflecting
real-world environments. Even though the UNSW-NB15 dataset is old, it still includes
patterns of recent nine types of attacks, namely, Fuzzers, Analysis, Backdoors, DoS, Exploits,
Generic, Reconnaissance, Shellcode and Worms and it is one of the most extensively used
benchmark datasets for evaluating IDS.
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Table 2. Abstract information of each dataset.

Information UNSW-NB15 IoT23 ToN_IoT

Normal 2,218,764 30,858,735 300,000
Anomaly 321,283 294,449,255 161,043

Total 2,540,047 325,307,990 461,043
Number of features 49 23 45

Number Attack 9 14 9
Year of publication 2015 2020 2020

Number of IoT devices - 3 9

Aposemat IoT-23 [48] is the recent dataset available on the issue of IoT traffics and
network monitoring. The dataset includes 325,307,990 captures, of which 294,449,255 are
malicious. The IoT traffic recorded by Aposemat IoT-23 comes from real hardware IoT de-
vices (a Philips HUE smart LED lamp, an Amazon Echo home intelligent personal assistant,
and a Somfy Smart Door Lock). Twenty captures of malware launched in IoT devices and
three captures of benign IoT device data were acquired as part of the stratospheric project.
Various botnets, including Mirai and Torii, were used in the attacks.

In an IoT domain, ToN_IoT is the most recent dataset developed by [18], and contains
real traffic from recent attacks. It contains heterogeneous data sources such as IoT and
IIoT sensor telemetry, Windows 7 and 10 operating system datasets, Ubuntu 14 and 18 TLS
datasets, and network traffic datasets. The data came from a realistic and large-scale test-
bed system founded at UNSW Canberra Cyber’s IoT Lab, which connected multiple virtual
machines, physical systems, hacking platforms, cloud and fog platforms, and IoT sensors
to simulate the complexity and scalability of IIoT and Industry 4.0 networks.

6.2. Dataset Integration

As a development, we integrate the most recent IoT datasets (Ton_IoT and IoT23) and
the UNSW-NB15 dataset. The merged dataset will compare our technique against intrusion
detection techniques proposed in the state-of-the-art. Several reasons are behind the
merging of the datasets. For example, the problem of data imbalance, combining different
samples for each class will reduce the effect of the data imbalance problem. Furthermore,
the UNSW-NB15 dataset provides data on local traffic, while Aposemat IoT-23 and the
ToN_IoT datasets contain data about real-time IoT traffic. On separated datasets, machine
learning algorithms are usually preferably suitable. However, merging all datasets will
create a complex dataset including real-IoT traffic and local traffic to examine the suggested
approach’s performance.

6.3. Feature Selection Methods (FSMs)

Is a process used in machine learning to reduce the number of input features to improve
model performance and reduce computation cost of using memory and CPU. This process
can also be beneficial for simplifying models to make them easier to interpret and test the
quality of the selected feature. Therefore, we utilized six methods for selection features
including Kendall rank correlation coefficient, Spearman’s rank correlation coefficient,
Pearson correlation coefficient, Chi-Square Test, Mutual Information, and ANOVA F-value
(F-Class IF). The description for each one is as follows:

1. Kendal: It is a statistical method that finds the ordinal correlation coefficient measure-
ment value between two features in a non-parametric way [49];

2. Spearman: It calculates a correlation or statistical measure between two continuous
or ordinal features [50]. Instead of comparing raw data with ranked values, the
Spearman correlation coefficient considers the rank of the variable;

3. Pearson: It is a Correlation measures determine whether two continuous variables
are linearly related. When one variable changes proportionally, it is a linear relation-
ship [51];
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4. Mutual Information: It describes the statistical resemblance between two non-negative
characteristics. MI equals zero if two independent features and higher values mean
higher dependency [52];

5. Chi-squared (Chi2): A non-parametric measure that evaluates the independence
between two non-negative categorical variables features [53];

6. ANOVA F-value (F): A technique for identifying how significantly two or more groups
of quantitative features differ. By grouping a numerical feature by the target feature,
this examines if the means of each group are significantly different. Low variances
suggest that the target feature will not be affected and vice-versa [54].

To discover what works best for our specific problem, we chose to work with threshold
10%, 25%, 50%, 75%, 90% to select top features outputted from these techniques based on
that threshold and created multiple instances of the original dataset with those features. In
our paper, this process was divided into two sub-processes. First, we ranked our features
using each feature selection method and selected top percentage features. The purpose is
to make interpreting the model easier for the researcher and determine the dependability
of the proposed detection models on different features while also considering the dynamic
of IoT networks.

6.4. Dataset Preprocessing

One of the key ideas in our paper is to create a dataset that covers a wide range of
attacks in networks using multiple datasets to create a unique model that knows this range
of attacks so that we will not need multiple models specialized in every type of attack. The
decision was to use all the three original datasets to construct the final merged dataset,
which will be fed to the machine and deep learning algorithms. The merged dataset covers
different families of attacks that could occur on any IoT network. The three datasets were
chosen based on analysing the common features and covered practically all known attacks
in networks. By common features, we mean that these datasets contain the same feature in
terms of data/meaning but with different names in the dataset schema. The main problem
with merging all three datasets is that these datasets have a variety number of features that
will lead to samples values for non-shared features being nothing but NaN values. To solve
this problem, we only picked the shared features. Preprocessing was performed on two
different levels; on the first level, each dataset was preprocessed individually as follows:

1. Cleaning the dataset by removing all features with zeros or no values where these
features have no impact on classification;

2. Reducing the number of features to the minimum number of features shared among all
datasets. The features picked from IoT23 dataset features are [“id.orig_p”, “id.resp_p”,
“proto”, “service”, “duration”, “orig_bytes”, “re sp_bytes”, “orig_pkts”, “resp_pkts”,
“detailed-label”]. The features picke from ToN_IoT dataset are: [“src_port”, “dst_port”,
“proto”, “service”, “duration”, “src_bytes”, “dst_ bytes”, “src_pkts”, “dst_pkts”, “type”].
The features picked from UNSW-NB15 dataset are [“sport”, “dsport”, “proto”, “ser-
vice”, “dur”, “sbytes”, “dbytes”, “Spkts”, “ Dpkts”, “attack_cat”].
These are all shared features between the three datasets which contain same infor-
mation along them but had only different names. For that reason, after creating the
merged dataset, the features were renamed to [“id.orig_p”, “id.resp_p”, “proto”,
“service”, “duration”, “orig_bytes”, “re sp_bytes”, “orig_pkts”, “resp_pkts”, “detailed-
label”] to be usable in the training and testing phase;

3. Removing redundant rows from the dataset reduces overfitting appearance and test
model generalizability. Moreover, it enabled the reduction of the computational power
required to train all the different machine learning algorithms.

After preprocessing each dataset individually, their outputs were used for concate-
nation in order to obtain the final dataset used in this research. On the second level,
pre-processing was performed on the final dataset by:
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1. After merging all the datasets, the detailed-label (target feature) disposed of high
imbalanced classes across the dataset with 32 types of attacks. In order to keep track
of those different types of attacks and reduce the effect of data imbalance, we tried to
merge similar types of attacks into one single class of attack. A detailed search about
all these types of attacks was made to get them in their right classes; for instance,
both C&C and C&C-FileDownload attacks can be merged into one type of attack
called C&C. A device is infected with one of these types of attacks it can be ordered to
perform various attacks in the future by sending a file to the device by the server. C&C-
HeartBeat monitors the status of the infected device with small periodic messages
sent by the server. C&C-HeartBeat-Attack is similar to previous attacks, but it is
unclear how it is being carried out, only that this attack comes periodically from a
suspicious source. A small file is sent instead of a data packet for the C&C-HeartBeat-
FileDownload, to check the status of the device. For that reason, all previous types of
attacks were merged into one class called C&C HeartBeat. Okiru and Okiru Attack
types had been merged to one class named Okiru. Okiru is a more sophisticated
version of the Mirai network. However, the Okiru Attack is the same as the previous
one, but it is much more challenging to determine how and why the attack occurred.
Part Of A Horizontal Port Scan, Part Of A Horizontal Port Scan-Attack, and C&C
Part Of A Horizontal Port Scan are designed to gather information for future attacks
by sending packages of data over the network. These types of attacks are combined
in one class named Port Scan [55]. After this process, we have obtained 19 different
classes of attack, as shown in Table 3. Random undersampling was applied to the
majority type as a second technique used to reduce the effect of highly imbalanced
samples in each class.

2. In the merging dataset there are three categorical features, namely, “Service”, “Proto”,
and “Detailledlabel”. These feature need to be encoding to be used in the training and
testing phase as follow:
The “Service” feature has 17 different categories, which through visualization were
divided into two parts, highly used services, a lowly proportion for other categories
and NaN values. This feature was encoded using nominal encoding since no notion
of order exists here between categories. Table 4 presents how the categories of this
feature were encoded.
The feature “proto” contains 131 different categories. Through visualization, cate-
gories were divided into three groups TCP, UDP, and other protocols. The TCP and
UDP were highly used in the dataset, where other protocols were lowly used. Table 5
presents how the categories of this feature were encoded.
After these steps, a final deleting of duplicate rows was performed as this step was ini-
tially conducted on each dataset individually, so we need to assert that after merging
datasets, no duplicate rows are presented in the final dataset.

3. Numerical data in the dataset differs in ranges, making compensating for these
differences challenging to the classifier during training. In order to provide more
homogeneous values to the classifier, it is essential to normalize the values in each
attribute so that the minimum value is zero and the maximum is one.

The pre-processing, data preparation and data integration are highlighted in Figure 2.
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Table 3. Attack classes and type.

Attack Class Type No. Records Class Encoding

Normal Benign 22,000 0
Normal

C&C C&C 11,268 1
C&C-FileDownload

C&C HeartBeat C&C-HeartBeat 21,206 2
C&C-HeartBeat-Attack

C&C-HeartBeat-FileDownload
Mirai Mirai 2 3
Torii Torii 16 4
DoS DDoS 22,000 5

Dos
Mitm

Fuzzers
FileDownload FileDownload 18 6

Okiru Okiru 15,324 7
Okiru-Attack

Port Scan Part of A Horizontal Port Scan-Attack 22,000 8
Part of A Horizontal Port Scan Analysis

Scanning
Analysis

Reconnaissance
Attack Attack 9398 9

Ransomware ransomware 3016 10
Backdoor backdoor 21,030 11
Exploits Exploits 22,000 12
Generic Generic 22,000 13
Worms Worms 174 14

injection injection 19,898 15
xss xss 14,151 16

password password 19,839 17
Shellcode Shellcode 1511 18

Table 4. Service Feature.

Category No. Records Feature Encoding

NaN values and lowly presented categories 166,250 0
DNS 25,973 1

HTTP 42,185 2
FTP 3605 3

SMTP 2324 4
SSH 6514 5

Table 5. Proto Feature.

Category No. Records Feature Encoding

TCP 207,214 0
UDP 29,086 1

NaN values and lowly presented categories 10,551 2
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Figure 2. Data Pre-Processing and integration.

6.5. Applying Machine Learning Models and Ensemble Techniques for Classification

In this paper, we have trained ten different machine and deep learning models. Hyper-
parameters for all the models are the same for binary and multi-class approaches to avoid
biased results toward one approach when tuning these hyperparameters. Table 6 shows
the hyperparameters for each model. There is a mix of models based on time series (LSTM),
segmentation (CNN), non-linear (ANN), distances (KNN), Probabilities (Naive Bayes),
Bagging (RandomForestClassifier), Boosting algorithms (LightGBM, CatBoostClassifier,
AdaBoostClassifier), and basic decision tree model as shown in Figure 3. The training step
is performed using 5 StratifiedKFold on our merged dataset, as shown in Algorithm 1.
The mean results of each model on these 5 Folds from each feature selection method are
stored in JSON files during inference. We will load these results and apply our procedure
to achieve the best models. When starting to create our models we noticed that models
with low-feature space have a low detection time in order to encounter this space-time
trade-off, and in order to achieve non-biased results, we assigned each model detection
time as the median of all its detection times with any set of features or all FSM used during
training and inference.

Figure 3. The components of the proposed ensemble detection model.
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Table 6. Model Hyperparameters sitting.

Model Hyperparameters

RF n_estimators = 100, criterion = ‘gini’

AdaBoost n_estimators = 100, criterion = ‘gini’

DT criterion = ‘gini’, splitter = ‘best’

KNN n_neighbors = 5, leaf_size = 30, p = 2,
metric = ‘minkowski’

Naive Bayes var_smoothing = 1 × 10−9

LightGBM boosting_type = ‘gbdt’, num_leaves = 31,
max_depth = −1, learning_rate = 0.1, n_estimators = 100

CatBoost
n_estimators = 100, Learning_rate = 0.28,

depth = 6, loss_ f unction:
MultiClass, max_leaves: 64

ANN

num_classes = 2 if binary else num_classes = 19 for multiclass
activation = “sigmoid” if binary else “softmax” clf = Sequential()
clf.add (Dense (units = 128, input_dim = 9, activation = ‘relu’))

clf.add (Dropout (0.2)) clf.add (Dense (units = 256, activation = ‘relu’))
clf.add (Dropout (0.2)) clf.add (Dense (units = 256,

activation = ‘relu’)) clf.add (Dropout (0.2))
clf.add (Dense (units = 128, activation = ‘relu’)) clf.add (Dropout (0.2))

clf.add (Dense (units = num_classes, activation = activation))

CNN

activation = “sigmoid” if binary else “softmax”
clf.add (Conv2D (filters = 32, kernel_size = (1,3),

input_shape = (1,9,1), padding = ‘same’, activation = ‘relu’))
clf.add (Conv2D (filters = 32, kernel_size = (1,3), padding = ‘same’,

activation = ‘relu’)) clf.add (MaxPool2D (pool_size = (1,2))) clf.add (Flatten())
clf.add (Dense (units = 256, activation = ‘relu’)) clf.add (Dropout (0.2))
clf.add (Dense (units = 512, activation = ‘relu’)) clf.add (Dropout (0.2))

clf.add (Dense(units = num_classes, activation = activation))

LSTM

num_classes = 2 if binary
else num_classes = 19 for multiclass activation = “sigmoid”

if binary else “softmax” clf.add (LSTM (units = 60,
return_sequences = True, input_shape = (1,9))) clf.add (Dropout (0.2))

clf.add (LSTM (units = 120, return_sequences = True)) clf.add (Dropout (0.2))
clf.add (LSTM (units = 120)) clf.add (Dropout (0.2))

clf.add (Dense (units = num_classes, activation = activation))

As shown in Figure 4, three different models will be used to construct our proposed
approach model. The three models’ decisions will be combined with weighted average
ensembling in this research. Weighted average ensembling combines models’ outputs
giving a weight to each of them. Those weights need to sum up to 1 as Equation (6).

FinalPrediction = P(M1)× α + P(M2)× γ + P(M3)× β where α + γ + β = 1. (6)
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Figure 4. 5-Folds process.

7. Evaluation’s Approach

This section provides the details of experimental environment setup, evaluation met-
rics, and the performance analysis for our proposed ensemble approach.

7.1. Experimental Details

Experiments were conducted on the Google Colab Pro + Platform [56]. This research
used the scikit-learn, catboost and lightgbm packages for feature selection methods and
models implementation and pandas for the data preprocessing [57]. The merged dataset
was divided into 80% for training and 20% for testing using the 5-folds cross-validation
process. The random seed is used for the Stratified K Fold function to produce distinct and
various datasets for training and testing in each iteration of cross-validation, maintaining
the same percentage of target labels in the training and testing set to have accurate results
for all classes when evaluating our models. The next step is testing the models on the Spark
processing platform in order to validate the model processing time on all records in the
merged dataset. For this step, the experiment was performed on a local desktop computer
(64-bit, 16 GB RAM, Core I7). The software stack contained Java (JDK) 11, Hadoop 2.7,
Spark v3.0, and Pyspark 3.0.

7.2. The Evaluation Metrics

The metrics used to evaluate the performance of our models were logloss Equation (4),
weighted F1-Score for multi-classification, F1-Score for binary classification, Accuracy,
Kappa, Matthews_corrcoef, Recall, and Precision. We have also included processing time
as a part of our metrics because time in IoT systems is crucial and we need models to have
shorter processing time with a high level performance. The following are the techniques
used to evaluate the model:
1-Recall: It is another metric that knows also as sensitivity or true positive rate. It measures
the proportion of real positive instances that have been predicted positive [58]. Recall can
be calculated using the Equation (7).

Recall(Re) =
TP

TP + FN
. (7)

2-Precision: Precision is also called predictive values; it refers to the proportion of predicted
positive and negative results that are true positive and true negative results, respectively.
Precision is applied to a variety of areas to describe the performance model such as ma-
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chine learning, data mining, and information retrieval [58]. Precision can be calculated
using Equation (8).

Precision(Pr) =
TP

TP + FP
. (8)

3-Accuracy: Accuracy can be explained as the overall performance of the classification
model [59]. Accuracy can be calculated using Equation (9).

Accuracy =
(TP + TN)

TP + FP + TN + FN
. (9)

4-Matthew’s Correlation Coefficient (MCC): Is a technique used for evaluate binary classi-
fications and multi-class classification. The MCC value is always between−1 and +1, where
+1 denotes indicating perfect positive correlation and −1, representing perfect negative
correlation [45]. The MCC can be calculated using Equation (10).

MCC =
(TP× TN − FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (10)

5-Cohen’s Kappa: It is a technique used to measure the extent to which two rates or judges
agree on the classification of samples. Kappa can be calculated using Equation (11).

k =
(po − pe)

(1− pe)
, (11)

where: po: The level of agreement observable among raters and pe: Probabilities of chance
agreement hypothesized.
6-Weighted F1-Score: Known also as F-measure considers both precision and recall. Weighted
F1-score can be calculated using the Equation (12) [43]. This equation will be used for
multi-classification scenario.

F1-score =
C

∑
i=1

Classi
Ni
× Fclassi

. (12)

7-F1-Score: For binary classification scenario, we will use Equation (13)

F1 = 2× (precision× recall)
precision + recall

. (13)

8-Processing time: It refers to the number of results produced per unit of time.

7.3. Experimental Results

As shown, Table 7 contains four evaluation metrics named F-Score, MCC, Kappa,
and logloss, respectively. Each metrics concatenates with a specific column called (Rank).
The rank column is stored in descending order after dividing the value of each metric by
Detection time (DT), as this factor plays an essential role in evaluating attack detection
performance. On the other hand, the logloss metric is stored in upwards order only and
gives a high rank to model with a high logloss value. The 1st Rank of each metric means
the model is suitable. Table 7 presents the rank of the all models in the binary classification
scenario. To compute the efficiency value of each metric for each model, we conduct and
run our ranking Algorithms to find the Final Rank (FR) column, which will be used to
select the best three models. As a result, three efficiency metrics, F-score, MCC, and Kappa,
select the Decision Tree (DT) model and only one efficiency metric, logloss, determines the
LightGBM model. Based on the Final Rank (FR) result, there are no more models to be
selected. However, the ensemble classifier must contain three models; consequently, the
algorithm computed the Summation Rank (SR), where all efficiency values are cumulative
and stored. The next step is choosing the model with a low summation rank to be a part of



IoT 2022, 3 306

the ensemble classifier, and the result shows that the CatBoost model received (11) in the
summation rank.

Table 7. Ranking of detection model using the Merged dataset for binary classification.

Model F-Measure Rank MCC Rank Kappa Rank Logloss Rank RT FR SR

1 RF 0.99518 5 0.99036 5 0.99036 5 0.018427 2 1.19 × 10−5 0 17
2 AdaBoost 0.99509 6 0.99018 6 0.99018 6 0.019059 3 6.57 × 10−5 0 21
3 DT 0.99304 1 0.98609 1 0.98609 1 0.21675 7 3.61 × 10−7 3 10
4 KNN 0.99122 7 0.98245 7 0.98245 7 0.12366 5 18.29 × 10−5 0 26
5 Naive Bayes 0.70103 2 0.27372 3 0.15750 3 1.52670 9 3.01 × 10−7 0 17
6 LightGBM 0.99445 4 0.98891 4 0.98890 4 0.015542 1 3.81 × 10−6 1 13
7 CatBoost 0.99039 3 0.98077 2 0.98077 2 0.03110 4 4.58 × 10−7 0 11
8 ANN 0.92130 9 0.85025 9 0.84795 9 2.6257 10 0.00034 0 37
9 CNN 0.94371 10 0.89012 10 0.88931 10 0.18933 6 0.00061 0 36
10 LSTM 0.91824 8 0.84692 8 0.84363 8 0.28430 8 0.00023 0 32

The ranking algorithm computed the merged dataset’s efficiency values of each metric
for each model to select the best three models for the multi-classification scenario. Table 8
presents the efficiency value of the models; as a result, three efficiency metrics, F-score,
MCC, and Kappa, select the Decision Tree (DT) model and only one efficiency metric,
logloss, choose the CatBoost model. Likewise, the Final Rank (FR) result shows that
there are no more models to be selected. Therefore, no additional investigation is needed.
However, the ensemble classifier must contain three models; thus, the algorithm used the
Summation Rank (SR). The next step is choosing the model with a low summation rank
to be a part of the ensemble classifier, and the result shows that the Random forest model
received (14) in the summation rank. Table 9 is the summary of the final models selected
for each binary and multi-classification scenario using a merged dataset. Interestingly, the
Rank and Best Selection Model (RBSM) picked CatBoost and DT models for both scenarios.
However, the Naive Bayes model in this research gained a high rank, as shown in Tables 7
and 8, respectively, where in reality, the model’s performance is poor. The reason behind
this is that the model has a very low response time compared to others, and when we
divide, for example, the F score by the response time, the model will receive a high rank.
However, it proves that our Integrated Evaluation Metrics (IEM) works perfectly, and such
models will be eliminated to be chosen by the Best Models Selection (BSM).

Table 8. Ranking of detection model using the Merged dataset for Multi-classification.

Model F-Measure Rank MCC Rank Kappa Rank Logloss Rank RT FR SR

1 RF 0.97814 4 0.97625 4 0.97615 4 0.12043 2 1.44 × 10−5 0 14
2 AdaBoost 0.97754 6 0.97565 6 0.97554 6 0.13101 3 8.87 × 10−5 0 21
3 DT 0.97224 1 0.96980 1 0.96974 1 0.68280 8 1.93 × 10−7 3 11
4 KNN 0.89903 7 0.89568 7 0.89459 7 2.3847 9 9.16 × 10−5 0 30
5 Naive Bayes 0.31040 3 0.30337 3 0.28553 3 3.1111 10 7.05 × 10−7 0 19
6 LightGBM 0.97125 5 0.96821 5 0.96810 5 0.27611 4 1.64 × 10−5 0 19
7 CatBoost 0.97038 2 0.96801 2 0.96788 2 0.097418 1 1.08 × 10−6 1 7
8 ANN 0.78103 10 0.77662 10 0.77302 10 0.58418 7 0.00031 0 37
9 CNN 0.85985 9 0.86103 9 0.85816 9 0.32072 5 0.00022 0 32
10 LSTM 0.79692 8 0.79483 8 0.79198 8 0.51764 6 0.00018 0 30
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Table 9. Final selected models for binary and multi-classification.

Dataset Selected Models for Binary FR SR Selected Models for Multi FR SR

Merged
dataset

LightGBM 1 13 DT 3 11
DT 3 10 RF 0 14

CatBoost 0 11 CatBoost 1 7

Figures 5–9 present the Accuracy, F-score, MCC score, Kappa score, and logloss score
for proposed model using FSMs in both binary and multi-classification scenarios. Figure 5
shows the weighted-average F1 Score of our ensembling model on the merged dataset. Our
ensembling model did not show close results for each FSM as the weighted-average F1
Score ranges from 0.2 to 0.9782 for multi-classification. The model showed low scores when
using a low-space features such as spearman_0.1, kendall_0.1, pearson_0.1 and f_classif_0.1
except for chi2_0.1 and mutual_info_classif_0.1 where the model showed average results.
However, in binary classification F1 Score ranges from 0.689 to 0.994, where the model
showed better performance even with the low-space feature. The model beat results with
all features in the merged dataset using FSM. The best results were obtained with Pearson
FSM with 90% of features from the full feature set in the merged dataset. These features
were selected based on the Pearson correlation coefficient, so in this case, we have taken
the first 90% of features with the highest Pearson correlation coefficient.

Figure 5. F1-scores using merged dataset.

Figure 6 shows the accuracy score of the ensembling model on the merged dataset. In
binary classification, accuracy ranges from 0.587 to 0.994, where the model showed better
performance even with the low-space feature except for f1classif_0.1 in multi-classification,
we can obtain that the model used the pearson_0.9 feature selection method on top of all
other models with accuracy = 0.9781 as maximum accuracy score. Additionally, models
trained with low-feature spaces presented poor results with accuracy near 0.28 except for
chi2_0.1 and mutual_info_classif_0.1, which confirm that these feature selection methods
selected the best possible set of features. For models with medium-feature spaces, they
showed average results.



IoT 2022, 3 308

Figure 6. Accuracy using merged dataset.

In terms of MCC Score, results correlate with the two previous figures and models
with an important number of features that presented the highest scores. In Figure 7, the
MCC Score for all feature selection methods ranged from 0.29 to 0.9763 multi-classification
and 0.2 to 0.9945 for binary classification.

Figure 7. MCC scores using merged dataset.

Figure 8 shows the Kappa score, ranging from 0.21 to 0.9762 multi-classification and
0.2 to 99.45 for binary classification. The model with the best Kappa score was an ensemble
of three models with the same feature selection method applied, again the pearson_0.9.
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Figure 8. Kappa scores using merged dataset.

In Figure 9, we can notice the exact opposite results of all previous figures as logloss is
indicative of how close our prediction probabilities are to the actual value. logloss ranged
from 1.95 to 0.072 for multi-classification. In binary classification, the range is 0.54 to 0.16,
which is better than in multi-classification. The model with the most negligible logloss
value was using the pearson_0.9 feature selection method.

Figure 9. Logloss scores using merged dataset.

In order to identify the best model performance, the models were examined utilizing
Spark to process all datasets as we mentioned in Equation (5). The model performance
contained the sum of all metrics and the model processing time of all datasets. From
Figure 10, we can observe that the best processing time is obtained by the catboost model
for multi-classification, whereas in binary classification, the Naive Bayes model is the best.
However, based on Equation (5), Naive Bayes will be eliminated from the top three models.
Tables 10 and 11 show the performance results for all models. Notably, classifiers based on
deep learning suffer from a significant drawback as such models consume large amounts of
processing time. It becomes more problematic in real-time IDS, where attacker behaviour
changes rapidly. In Section 3, several studies use deep learning without much consideration
of processing time.
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Figure 10. Processing time for all models using Spark.

Table 10. Model performance for binary classification.

Models F (r) MCC (r) Kappa (r) Logloss (r) Processing (r) Sum Model Score

1 RF 5 5 5 4 6 25 3
2 AdaBoost 6 6 6 6 7 31 5
3 DT 1 1 1 14 2 19 2
4 KNN 7 7 7 10 8 39 6
5 Naive Bayes 2 3 3 18 1 27 4
6 LightGBM 4 4 4 2 5 19 2
7 CatBoost 3 2 2 8 3 18 1
8 ANN 9 9 9 20 10 57 9
9 CNN 10 10 10 12 11 53 8

10 LSTM 8 8 8 16 9 49 7

Table 11. Model performance for multi-classification.

Models F (r) MCC (r) Kappa (r) Logloss (r) Processing (r) Sum Model Score

1 RF 4 4 4 4 6 22 2
2 AdaBoost 6 6 6 6 7 31 4
3 DT 1 1 1 16 3 22 2
4 KNN 7 7 7 18 7 46 6
5 Naive Bayes 3 3 3 20 2 31 4
6 LightGBM 5 5 5 8 5 28 3
7 CatBoost 2 2 2 2 1 9 1
8 ANN 10 10 10 14 10 54 7
9 CNN 9 9 9 10 9 46 6
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7.4. Comparison with State-of-the-Art Approaches

The proposed model’s performance is compared to various state-of-the-art methods
that utilize the same datasets. The proposed ensemble classier performs sufficiently with
the highest accuracy on merged datasets compared to previous studies. Moreover, all
approaches presented used one or two datasets separately, and most of the studies’ experi-
ments on the multi-classification dataset were not performed, none of them considering
the processing time of models using a big data processing platform. With this considera-
tion, the experiments conducted in this paper prove advantageous in realizing machine
learning model performance on binary and multi-classification datasets using Spark. Fur-
thermore, it demonstrates the proposed model’s improved performance in terms of binary
and multi-class performances in heterogeneous IoT networks.
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The proposed model’s performance is accurate for both scenarios, i.e., binary and
multi-classification. Table 12 compares our proposed model and relevant publications in
terms of accuracy, utilizing the all used datasets. As shown in the UNSW-NB15 dataset,
our model overcomes all other studies. However, even the study of [13] slightly overcame
our model; the study has been carried out on individual datasets and does not concern the
performance of the models in terms of the detection time using Spark. Significantly, the
proposed model overcomes the studies of [9,10,18], using Aposemat IoT-23 and Ton_IoT
datasets, respectively. Table 12 indicates that the study of [15] slightly overcomes the
proposed model. Similarly, this study has not covered the multi-classification issue nor the
performance of the models in terms of detection time. Moreover, the experience has been
conducted on an individual dataset.

Table 12. State- of-the-Art Comparison.

Dataset Reference ACC F-Score MCC Logloss Kappa Re Pr DT PT

UNSW-
NB15

Moustafa [13] 98.97 - - - - 97.02 - - -
Rashid [12] 94 - - - - - - - -

Zhou [8] 91.22 - - - - 92.84 92.38 - -
Ahmad [11] 97.37 - - - - - - - -
Aleesa [7] 97.80 - - - - - - - -

Smitha [14] 94 95 - - - 93 96 - -

IoT23

PuTianet [9] 89.5 90.15 - - - 84.45 96.82 - -
Amiya [16] 96 95.23 - - - - - - -
Dutta [15] 99.7 98 99 - - 95 100 - -

Nukavarapu [10] 92 - - - - - - - -

ToN_IoT Alsaedi [18] 87 87 - - - 87 88 - -
Booij [17] 98.07 97.26 - - - - - - -

Merge Proposed model (Binary) 99.45 99.45 98.90 0.016 98.90 99.50 99.38 1.54 × 10−6 0.37
Proposed model (Multi) 97.81 97.82 97.63 0.073 97.62 97.80 97.92 5.22 × 10−6 1.25

8. Conclusions and Discussion

IoT refers to the network of devices that can collect and share data with other devices
on the network. The IoT network allows the control of devices remotely through the existing
network infrastructure, which creates many opportunities for the seamless integration of
computer-based systems. However, this will create many challenges as well, including a
massive volume of data traffic that needs to be processed to make a decision in real-time to
secure and detect attacks in such a complex network. Therefore, it is essential to design
scalable, flexible, and reliable IDS to meet the IoT requirements. IDS models need to be
evaluated in detection time and accuracy under a big data environment. However, even
existing IDS can detect anomalies with higher accuracy; such models cannot detect attack
types from different domains of data, leading to more investigation time for the system
administrator to identify the attack type. The aim of this research to address limitations
of current IDSs by analyzed and evaluated ten machine and deep learning models using
FSMs. For this objective, experimentation is performed on a merged complex dataset of
two IoT datasets and one local traffic dataset.

One significant role of ensemble learning is increasing the confidence in the model
decision. For that purpose, Integrated Evaluation Metrics (IEM) was proposed utilizing
five efficiency metrics: F-score, Kappa, MCC, logloss, and the model processing time of all
datasets. Furthermore, a ranking and best selection method (RBSM) is presented to rank
the efficiency value of all metrics for each model to build a scalable, flexible and reliable
ensemble classifier that can automatically be adaptable in adding machine/deep learning
models or any IoT network changes. Experimental results indicate that the model’s training
time is less as they are deployed in the cloud. Moreover, the processing time is fast when
deploying the model at the edge using Spark without compromising detection efficiency.
On the other hand, the performance of the proposed ensemble classifier is outstanding
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compared to other models in several state-of-the-art methods. The model reaches an accu-
racy of 99.45% for binary classification and 97.81% for multi-class classification. This paper
conducts experiments by merging three datasets. However, all experiments are conducted
using an IoT dataset. Applying our approach to other types of data may substantially affect
the results. Our future works plan to perform further experiments by merging the data
from different fields and investigating the effectiveness of the proposed technique.
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