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Abstract: The rapid expansion of the Internet of Things (IoT) and the advancement of 5G technology
require strong cybersecurity measures within IoT frameworks. Traditional security methods are
insufficient due to the wide variety and large number of IoT devices and their limited computational
capabilities. With 5G enabling faster data transmission, security risks have increased, making effective
protective measures essential. Cross-Site Scripting (XSS) attacks present a significant threat to IoT
security. In response, we have developed a new approach using Artificial Neural Networks (ANNs)
to identify and prevent XSS breaches in IoT systems over 5G networks. We significantly improved
our model’s predictive performance by using filter and wrapper feature selection methods. We
validated our approach using two datasets, NF-ToN-IoT-v2 and Edge-IIoTset, ensuring its strength
and adaptability across different IoT environments. For the NF-ToN-IoT-v2 dataset with filter feature
selection, our Bilayered Neural Network (2 × 10) achieved the highest accuracy of 99.84%. For the
Edge-IIoTset dataset with filtered feature selection, the Trilayered Neural Network (3 × 10) achieved
the best accuracy of 99.79%. We used ANOVA tests to address the sensitivity of neural network
performance to initial conditions, confirming statistically significant improvements in detection
accuracy. The ANOVA results validated the enhancements across different feature selection methods,
demonstrating the consistency and reliability of our approach. Our method demonstrates outstanding
accuracy and robustness, highlighting its potential as a reliable solution for enhancing IoT security in
the era of 5G networks.

Keywords: Internet of Things (IoT); 5G networks; XSS attacks; Artificial Neural Networks (ANNs);
cybersecurity

1. Introduction

The rapid evolution of the Internet of Things (IoT) and the advent of 5G technology
have profoundly transformed various sectors, including e-learning, e-health, and intelligent
industrial manufacturing. While these advancements have integrated smart devices into
our daily lives, they have also introduced numerous security challenges. The interconnec-
tivity of devices in IoT ecosystems creates vulnerabilities that cyberattackers can exploit,
threatening the integrity and security of these systems [1]. This vulnerability is particularly
dangerous in IoT devices operating over 5G networks, which enhance connectivity and
capacity while expanding the spectrum of frequencies available for mobile networks [2].

As 5G networks continue to improve, advancements in wireless communication
technology are made. However, with new technology, new security issues arise. Developing

IoT 2024, 5, 478–508. https://doi.org/10.3390/iot5030022 https://www.mdpi.com/journal/iot

https://doi.org/10.3390/iot5030022
https://doi.org/10.3390/iot5030022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/iot
https://www.mdpi.com
https://orcid.org/0009-0006-2992-5404
https://orcid.org/0009-0007-5389-6778
https://orcid.org/0009-0003-9297-6704
https://orcid.org/0000-0001-9075-2828
https://orcid.org/0000-0002-3610-961X
https://orcid.org/0000-0001-9486-3533
https://orcid.org/0000-0002-1204-0910
https://doi.org/10.3390/iot5030022
https://www.mdpi.com/journal/iot
https://www.mdpi.com/article/10.3390/iot5030022?type=check_update&version=3


IoT 2024, 5 479

robust security guidelines and approaches is critical, mainly as more individuals and
systems rely on 5G networks; this entails keeping data safe, safeguarding essential services
and systems, and protecting user privacy. By addressing security problems head-on, we can
collaboratively develop a secure and robust 5G network. The increased connectivity and
bandwidth of 5G networks facilitate more connecting mobile devices simultaneously [3].

The faster speeds and shorter delays of 5G technology raise additional concerns about
user privacy and data security. The increased amount of data generated and shared creates
risks of unauthorized access to private or sensitive information [4]. Network elements such
as base stations and edge servers are potential failure points that criminals might exploit to
gain unauthorized access to user data. The interconnected nature of devices and systems in
5G networks heightens these risks [5]. Furthermore, the vast amount of data disseminated
by IoT devices using 5G poses concerns about data security, including their resale, user
profiling, and intelligence collection [6,7].

One of the security breaches that may threaten IoT devices is Cross-Site Scripting
(XSS) attacks, which can be particularly harmful to web-based networks connected to IoT
devices [8]. These attacks allow a hacker to exploit XSS vulnerabilities in web applications,
altering IoT devices’ behavior or gaining access to the system to acquire sensitive infor-
mation. Severe consequences of XSS attacks on IoT include unauthorized use of devices,
data breaches, privacy breaches, and potential physical harm or safety threats [9]. The
high-speed distribution of data over 5G networks amplifies the threat posed by XSS attacks,
making it critical to develop a comprehensive and proactive security approach [10].

XSS is a type of security vulnerability commonly found in web applications that allow
attackers to inject malicious scripts into web pages viewed by other users [11]. These
scripts can execute in the context of the user’s browser, potentially leading to unauthorized
actions, data theft, session hijacking, and more [12]. XSS attacks come in three main types:
Stored XSS, Reflected XSS, and DOM-based XSS. Stored XSS involves permanently storing
malicious scripts in a target server, such as in a database, comment field, or forum post,
served to users’ browsers upon request [13]. Reflected XSS occurs when malicious scripts
are reflected off a web server in immediate responses, such as error messages or search
results, executing as soon as the user receives them [14]. DOM-based XSS happens when
client-side scripts in the web application modify the DOM environment in unsafe ways,
enabling the execution of an attacker’s script [15].

Integrating IoT devices with 5G networks creates new vectors for XSS attacks due to
increased connectivity, faster data transmission speeds, and device interdependencies [16].
Attackers can inject malicious scripts into IoT devices that host web interfaces, such as smart
home devices with web dashboards. These malicious scripts can be injected into device
logs, configurations, or user interfaces. In a 5G network, where IoT devices frequently
communicate, a script injected into one device could propagate to other interconnected
devices [17]. The high-speed data transmission capabilities of 5G networks mean that the
execution of malicious scripts can happen more quickly and on a larger scale, leading to
widespread disruption if one device is compromised.

Web-based management interfaces for IoT devices are another common target for XSS
attacks. Attackers can inject scripts into fields that administrators or users interact with, like
login pages, settings, or logs, causing the malicious script to execute when accessed [18].
Social engineering and phishing are also tactics used by attackers to trick users into clicking
on links that contain malicious scripts, exploiting vulnerabilities in the web interfaces of
IoT devices [19]. Additionally, as 5G enhances mobile device capabilities, mobile apps that
control IoT devices can be targeted by injecting scripts into web views within these apps,
compromising the managed IoT devices [20].

Mitigating XSS attacks in IoT over 5G involves several strategies. Input validation
and sanitization ensure that all input received by IoT devices and web interfaces is free of
malicious scripts [21]. Implementing a Content Security Policy (CSP) restricts the sources from
which scripts can be executed, enhancing security through regular security updates for IoT
device firmware and software patch known vulnerabilities. Secure coding practices during
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development can prevent the introduction of XSS vulnerabilities. Additionally, educating
users about the dangers of phishing and social engineering attacks is crucial in reducing the
risk of XSS attacks. By employing these measures, the security of IoT devices operating over
5G networks can be significantly improved, mitigating the potential impact of XSS attacks [22].

Contribution

In this research, we achieved an important contribution in the IoT field over 5G
networks, so we can summarize them as the following:

1. Novel ANN Application for XSS Detection: We introduced a novel ANN approach to
detect XSS attacks in IoT systems over 5G, significantly improving detection accuracy
and efficiency compared with traditional methods.

2. Comprehensive Dataset Utilization: We employed NF-ToN-IoT-v2 and Edge-IIoTset
datasets to validate the model’s effectiveness and reliability across diverse IoT envi-
ronments, ensuring generalizability and robustness.

3. Enhanced Feature Selection: We utilized both filter (mutual information (MI)) and
wrapper (recursive feature elimination (RFE)) feature selection methods to opti-
mize predictive performance, reducing computational complexity while maintaining
high accuracy.

4. Statistical Validation via ANOVA Test: We applied an ANOVA test to confirm
significant improvements in detection accuracy, addressing performance variability
due to initial conditions and ensuring robustness and consistency.

5. High Detection Accuracy: We achieved remarkable detection accuracies with BLNN
and TLNN models, reaching up to 99.84% using BLNN on the NF-ToN-IoT-v2 dataset
and 99.79% using TLNN on the Edge-IIoTset dataset, demonstrating the potential for
real-time intrusion detection in IoT systems over 5G networks.

The rest of the paper is structured as follows: Section 2 provides related works;
Section 3 presents the proposed methodology to detect XSS attacks; Section 4 presents the
results and performance evaluation of the ANN detection approach; Section 5 presents
the results of the ANOVA test; Section 6 discusses the effectiveness and efficiency of the
proposed approach over the related works; and finally, Section 7 concludes the paper and
suggests future research directions.

2. Related Work

The widespread use of IoT systems and the deployment of 5G networks have sig-
nificantly changed how we interact with our environments. However, this new level of
connectivity has also opened up many security risks, with XSS attacks posing a significant
threat to the security of IoT systems. This section overviews literature reviews on using
Machine Learning (ML) and Deep Learning (DL) to secure 5G IoT networks, focusing on
studies that address XSS attacks on IoT systems.

Duan et al. [23] addressed the intrusion detection problem in IoT systems, particularly
relevant to smart cities. The researchers proposed a novel approach supported by dynamic
line graph neural networks and semi-supervised learning. They tested their model on six
datasets, including NF-ToN-IoT-V2, and achieved the highest detection accuracy of 95.70%
for XSS attacks.

Gaber et al. [24] suggested an injection attack detection system for IoT, proposing
an Intrusion Detection System (IDS). They investigated two feature selection approaches,
constant removal and recursive feature elimination, with three machine learning classifiers:
Support Vector Machine (SVMs), Random Forest, and Decision Tree. Using the AWID
dataset (version AWID-CLS-R, created by Constantinos Kolias et al., University of the
Aegean, Samos, Greece), the Decision Tree classifier outperformed others with a 99%
injection attack detection rate by applying only eight selected features. This research
highlights the importance of injection attack detection for the security of smart cities, where
numerous threats are anticipated due to their development. Awad et al. [25] emphasized the
rapid increase in cyberattacks on IoT networks and devices, highlighting the significance of
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ML in Network Intrusion Detection Systems (NIDSs). They noted that the prediction time
in anomaly-based NIDSs is directly proportional to the number of factors used by the ML
model. Their proposed model achieved a detection accuracy of 98% for XSS attacks using
just 13 features, demonstrating the effectiveness of the feature importance model.

Yigit et al. [26] conducted a study on a digital twin-empowered smart attack detection
system for 6G Edge of Things (EoT) networks using the ToN-IoT datasets. They employed
an online learning algorithm with AutoFS and AutoCM for dynamic and adaptive feature
selection and classification. Their system achieved a sensitivity metric of 98.04% for XSS
attack detection, proving its efficiency in detecting and preventing these attacks due to
innovative feature selection and machine learning techniques. Sarhan et al. [27] explored
XSS attack detection within IoT environments, integrating their work with the NF-ToN-IoT-
V2 dataset. They utilized a machine-learning-based model to identify XSS injection attacks
prevalent in such networks. Their model showcased robustness with an accuracy of 96.83%
in detecting XSS attacks.

Awad et al. [28] conducted a study focused on enhancing IIoT security using ML and
DL techniques for intrusion detection. The primary objective was to detect and mitigate
14 distinct types of cyberattacks targeting IIoT and IoT protocols. Their methodology
involved using the Edge-IIoTset dataset. They implemented various ML algorithms, in-
cluding k-nearest neighbors (K-NNs), Decision Trees (DTs), and neural networks (NNs).
The experiments were conducted using the KNIME platform, with preprocessing steps
that included data cleaning, missing value, and normalization to improve classification
performance. Their results revealed that the K-NN algorithm achieved an accuracy of
54.37%, while the DT algorithm achieved 85.48% accuracy in detecting XSS attacks. Their
study is relevant as it focuses on the effectiveness of ML and DL in securing IoT environ-
ments, aligning with our goal of using ANN for XSS attack detection over 5G networks.
However, its lower accuracy for specific attacks like XSS indicates a gap in comprehensive
threat detection.

Ahmed and Askar [29] developed EdgeGuard, a framework utilizing machine learning
for proactive intrusion detection on edge networks. The main aim was to identify and
counteract various cyber threats targeting edge and IoT environments. Their approach used
convolutional neural networks (CNNs) with residual connections to effectively identify
complex patterns in network traffic data. The experiments, conducted using the Edge-
IIoTset dataset, demonstrated that their method achieved 77% accuracy in detecting XSS
attacks. This research is significant as it showcases the effectiveness of ML techniques in
enhancing the security of IoT and edge environments, aligning with our objective of using
ANN for detecting XSS attacks over 5G networks.

Ferrag et al. [30] introduced SecurityBERT, a model designed to be both lightweight
and privacy-preserving, utilizing the BERT architecture to detect cyber threats in IoT devices.
The research focused on enhancing threat detection accuracy while keeping computational
demands low, thus making the model ideal for use in environments with limited resources.
The methodology incorporated Privacy-Preserving Fixed-Length Encoding (PPFLE) and
the Byte-Level Byte-Pair Encoder (BBPE) Tokenizer to effectively process network traffic
data. Testing on the Edge-IIoTset dataset showed that SecurityBERT achieved an overall
accuracy of 98.2% in detecting fourteen types of attacks, and it achieved 76.22% accuracy
specifically for XSS attack detection.

The literature review highlights the significance of Artificial Intelligence (AI) ap-
proaches in securing 5G IoT networks from XSS attacks. Most studies noted the increased
vulnerability caused by the adoption of IoT systems and the societal transformation fa-
cilitated by 5G networks. They emphasized the need for feature selection approaches
to enhance the detection rate of intrusion detection systems, affirming the necessity of
improving security in AI optimization. Thus, these efforts are justified to enhance the
security and preservation of IoT in smart cities despite increasing insecurity.
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3. Proposed Methodology

The rapid development of 5G technology and IoT has significantly transformed various
aspects of modern life. These advancements have provided mobile networks with wider
bandwidths, faster connections, and improved performance. However, they have also
introduced a new range of security threats. Among these, XSS attacks are particularly
impactful on data confidentiality, exploiting vulnerabilities in network components and
web applications and jeopardizing user privacy and data security. The primary objective
of this research is to develop a robust deep learning method for detecting XSS attacks on
5G-enabled IoT devices. This approach is crucial for preventing security breaches and
ensuring the overall security of IoT systems. Figure 1 illustrates the proposed methodology
for identifying XSS attacks using the NF-ToN-IoT-v2 and Edge-IIoTset datasets.

Figure 1. Proposed Approach to Detection XSS Attack.
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The methodology begins with selecting subsets from the NF-ToN-IoT-v2 and Edge-
IIoTset datasets that focus on “XSS” and “benign” categories. The preprocessing steps
include data cleaning, normalization, and label encoding. The Synthetic Minority Over-
sampling Technique (SMOTE) is applied to address the issue of imbalanced data. Next,
both filter and wrapper feature selection methods are used to identify the most valuable
features for XSS detection by ANN architectures. The dataset is divided into subsets:
70% for training and 30% for testing. Various ANN classifiers, including Narrow Neural
Network, Bilayered Neural Network, and Trilayered Neural Network, are then employed
to detect XSS attacks. The performance of these models is evaluated using metrics such
as accuracy, precision, recall, and F1-score. Additionally, the ANOVA statistical test is
applied to validate the results. This approach demonstrates its effectiveness in enhancing
IoT system security and mitigating potential risks by achieving high accuracy in identifying
XSS attacks.

3.1. Dataset

In this work, we adopted two datasets to evaluate the performance of our model
as follows:

• NF-ToN-IoT-v2 Dataset: All the NetFlow records in the ToN-IoT dataset are generated
from publicly available packet captures (pcaps), resulting in the development of
NFSIoT, a NetFlow-based IoT network dataset. The NF-ToN-IoT-v2 dataset comprises
a total of 16,940,496 data flows. Of these, 6,099,469 (36.01%) are benign samples,
and 10,841,027 (63.99%) are attack samples [27]. The sampling distribution is well
balanced, as shown in Table 1.

Table 1. Overview of the NF-ToN-IoT-v2 dataset categories, detailing the diversity and scale of
cybersecurity threats and benign instances recorded.

Type Number of
Instances Definition

Benign 6,099,469 Standard secure data packets.

Backdoor 16,809
A technique for breaking into computers that can be
accessed from a distance by using specific built-in
client apps.

DoS 712,609 An attempt to bring down a system by overloading it.
DDoS 2,026,234 Same as denial-of-service, but with several attack vectors.

Injection 684,465
Attacks that try to alter the way code runs by giving it
insecure inputs; “code injections” and “SQL injections”
are two of the most popular types.

MITM 7723
In the man in the middle attack, a malicious user is
inserted in between the victim and the host with whom
they are corresponding.

Password 1,153,323 Uses brute force attacks or a sniffer to get the passwords
of users.

Ransomware 3425 The victim’s data are encrypted by malicious people, who
only unlock them after demanding a ransom.

Scanning 3,781,419
This group, which comprises several techniques for
obtaining information about hosts and networks, is also
referred to as probing.

XSS 2,455,020 The victim’s machines are infected with malicious scripts
that change or steal data.

Table 2 provides a comprehensive overview of the features included in the NF-ToN-
IoT-v2 dataset, which is utilized for detecting XSS attacks in IoT environments over 5G
networks. Each feature is described with its corresponding data type and classification
as categorical or numerical. Key features include network-related attributes such as
source and destination IP addresses, port numbers, protocol identifiers, and traffic
metrics like byte and packet counts. Additional features capture specific behaviors
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and network traffic characteristics, such as TCP flags, flow durations, TTL values,
packet lengths, and retransmission statistics. The dataset also includes metadata about
DNS queries and FTP command responses, which are critical for identifying anomalies
indicative of security threats. Combining these diverse features enables a thorough
analysis and accurate classification of network traffic, facilitating the detection of
potential XSS vulnerabilities and enhancing the overall security of IoT systems in
high-speed 5G networks.

Table 2. NF-ToN-IoT-v2 dataset features and descriptions.

Feature Name Type Description

IPV4_SRC_ADDR Categorical Source IP address in IPv4 format
L4_SRC_PORT Numerical Source port number at the transport layer
IPV4_DST_ADDR Categorical Destination IP address in IPv4 format
L4_DST_PORT Numerical Destination port number at the transport layer
PROTOCOL Categorical Protocol used for the communication (e.g.,

TCP, UDP)
L7_PROTO Categorical Application layer protocol identifier
IN_BYTES Numerical Number of bytes received by the source
IN_PKTS Numerical Number of packets received by the source
OUT_BYTES Numerical Number of bytes sent from the source
OUT_PKTS Numerical Number of packets sent from the source
TCP_FLAGS Numerical Flags set in the TCP header
CLIENT_TCP_FLAGS Categorical TCP flags set by the client
SERVER_TCP_FLAGS Categorical TCP flags set by the server
FLOW_DURATION_MILLISECONDS Numerical Duration of the flow in milliseconds
DURATION_IN Numerical Duration of incoming traffic
DURATION_OUT Numerical Duration of outgoing traffic
MIN_TTL Numerical Minimum time-to-live value observed
MAX_TTL Numerical Maximum time-to-live value observed
LONGEST_FLOW_PKT Numerical Size of the largest packet in the flow
SHORTEST_FLOW_PKT Numerical Size of the smallest packet in the flow
MIN_IP_PKT_LEN Numerical Minimum length of IP packets
MAX_IP_PKT_LEN Numerical Maximum length of IP packets
SRC_TO_DST_SECOND_BYTES Numerical Bytes sent from the source to the destination

per second
DST_TO_SRC_SECOND_BYTES Numerical Bytes sent from the destination to the source

per second
RETRANSMITTED_IN_BYTES Numerical Number of bytes retransmitted from the source
RETRANSMITTED_IN_PKTS Numerical Number of packets retransmitted from the source
RETRANSMITTED_OUT_BYTES Numerical Number of bytes retransmitted to the source
RETRANSMITTED_OUT_PKTS Numerical Number of packets retransmitted to the source
SRC_TO_DST_AVG_THROUGHPUT Numerical Average throughput from the source to

the destination
DST_TO_SRC_AVG_THROUGHPUT Numerical Average throughput from the destination to the

source
NUM_PKTS_UP_TO_128_BYTES Numerical Number of packets up to 128 bytes
NUM_PKTS_128_TO_256_BYTES Numerical Number of packets between 128 and 256 bytes
NUM_PKTS_256_TO_512_BYTES Numerical Number of packets between 256 and 512 bytes
NUM_PKTS_512_TO_1024_BYTES Numerical Number of packets between 512 and 1024 bytes
NUM_PKTS_1024_TO_1514_BYTES Numerical Number of packets between 1024 and 1514 bytes
TCP_WIN_MAX_IN Numerical Maximum TCP window size for incoming traffic
TCP_WIN_MAX_OUT Numerical Maximum TCP window size for outgoing traffic
ICMP_TYPE Categorical ICMP message type
ICMP_IPV4_TYPE Categorical ICMP type for IPv4
DNS_QUERY_ID Categorical DNS query identifier
DNS_QUERY_TYPE Categorical Type of DNS query
DNS_TTL_ANSWER Numerical Time-to-live for DNS answers
FTP_COMMAND_RET_CODE Categorical Return code for FTP commands
Attack Categorical Classification label (e.g., Benign, Attack)
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• Edge-IIoTset Dataset: The Edge-IIoTset dataset is a comprehensive cybersecurity
dataset for IoT and Industrial Internet of Things (IIoT) environments, designed to
support developing and evaluating intrusion detection systems. This dataset contains
network traffic data collected from various IoT devices under normal and attack con-
ditions. The dataset comprises 157,800 records featuring diverse types of cyberattacks
and benign instances [31], as shown in Table 3.

Table 3. Overview of the Edge-IIoTset dataset categories, detailing the diversity and scale of cyberse-
curity threats and benign instances recorded.

Type Number of
Instances Definition

Backdoor 10,195 Unauthorized access to a system through a backdoor vul-
nerability.

DDoS_HTTP 10,561 Distributed denial-of-service attacks over HTTP.
DDoS_ICMP 14,090 Distributed denial-of-service attacks using ICMP packets.
DDoS_TCP 10,247 Distributed denial-of-service attacks using TCP packets.
DDoS_UDP 14,498 Distributed denial-of-service attacks using UDP packets.
Fingerprinting 1001 Techniques used to gather information about systems.

MITM 1214
The man in the middle attack, where a malicious user is
inserted between the victim and the host with whom they
are corresponding.

Normal 24,301 Standard secure data packets.

Password 9989 Uses brute force attacks or a sniffer to obtain the pass-
words of users.

Port_Scanning 10,071 Techniques for obtaining information about hosts and
networks, also referred to as probing.

Ransomware 10,925 The victim’s data are encrypted by malicious people, who
only unlock them after demanding a ransom.

SQL_injection 10,311 Attacks that try to alter the way a code runs by giving it
insecure inputs, specifically targeting SQL databases.

Uploading 10,269 Unauthorized uploading of data to a server.

Vulnerability_scanner 10,076 Tools and techniques used to scan for security vulnerabili-
ties.

XSS 10,052 The victim’s machines are infected with malicious scripts
that change or steal data.

Table 4 provides a comprehensive overview of the features included in the Edge-IIoTset
dataset, which is utilized for detecting various cyberattacks in IoT and Industrial In-
ternet of Things IIoT environments. Each feature is described with its corresponding
data type, either categorical or numerical. Key features include network-related at-
tributes such as source and destination IP addresses, port numbers, protocol identifiers,
and traffic metrics like byte and packet counts. Additional features, such as TCP flags,
flow durations, and retransmission statistics, capture specific behaviors and network
traffic characteristics. The dataset also includes metadata about HTTP requests, DNS
queries, and other protocol-specific details critical for identifying anomalies indicative
of security threats. Combining these diverse features enables a thorough analysis and
accurate classification of network traffic, facilitating the detection of potential cyber
vulnerabilities and enhancing the overall security of IoT systems.



IoT 2024, 5 486

Table 4. Edge-IIoTset dataset features and descriptions.

Feature Name Type Description

frame.time Categorical Timestamp of the frame capture
ip.src_host Categorical Source IP address
ip.dst_host Categorical Destination IP address
arp.dst.proto_ipv4 Categorical Destination protocol address in ARP packets
arp.opcode Numerical ARP operation code
arp.hw.size Numerical ARP hardware size
arp.src.proto_ipv4 Categorical Source protocol address in ARP packets
icmp.checksum Numerical Checksum value for ICMP packets
icmp.seq_le Numerical Sequence number in ICMP packets
icmp.transmit_timestamp Numerical Transmit timestamp in ICMP packets
http.file_data Categorical Data field in HTTP packets
http.content_length Numerical Content length in HTTP packets
http.request.uri.query Categorical Query string in HTTP request URI
http.request.method Categorical HTTP request method
http.referer Categorical HTTP referer header
http.request.full_uri Categorical Full URI in HTTP request
http.request.version Categorical HTTP request version
http.response Numerical HTTP response status code
http.tls_port Numerical Port used for TLS connections
tcp.ack Numerical TCP acknowledgment number
tcp.ack_raw Numerical Raw TCP acknowledgment number
tcp.checksum Numerical Checksum value in TCP packets
tcp.connection.fin Numerical FIN flag in TCP connections
tcp.connection.rst Numerical RST flag in TCP connections
tcp.connection.syn Numerical SYN flag in TCP connections
tcp.connection.synack Numerical SYN-ACK flag in TCP connections
tcp.dstport Numerical Destination port number in TCP connections
tcp.flags Numerical Flags set in TCP packets
tcp.len Numerical Length of TCP segment
tcp.srcport Numerical Source port number in TCP connections
tcp.stream Numerical TCP stream index
tcp.window_size_value Numerical TCP window size value
udp.length Numerical Length of UDP segment
udp.port Numerical Port number in UDP packets
udp.stream Numerical UDP stream index
mqtt.hdrflags Numerical MQTT header flags
mqtt.len Numerical Length of MQTT segment
mqtt.msg Numerical MQTT message type
mqtt.proto_len Numerical MQTT protocol length
mqtt.protoname Categorical MQTT protocol name
mqtt.topic Categorical MQTT topic name
mqtt.topic_len Numerical Length of MQTT topic
mqtt.ver Numerical MQTT protocol version
mbtcp.len Numerical Length of Modbus TCP segment
mbtcp.trans_id Numerical Modbus TCP transaction identifier
mbtcp.unit_id Numerical Modbus TCP unit identifier
Attack_type Categorical Type of attack (Benign, MITM, DoS, DDoS, XSS, Scan-

ning, Ransomware, SQL)

3.2. Data Preprocessing

Preprocessing is essential in transforming unprocessed input into usable data, in-
volving extensive cleaning to remove errors and superfluous information. Our method
modifies the raw NF-ToN-IoT-v2 dataset, which includes 44 attributes and 53,464 entries,
by correcting anomalies with substitute values and addressing missing entries using the
maximum values of attributes. To facilitate the training of ANNs, we convert categorical
labels into numeric codes, classifying network traffic as “Benign (0)” or “Attack (1)”, and
use the SMOTE technique to balance the dataset. We also apply feature selection techniques
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to decrease the size of the dataset and simplify the computational demands, enhancing
the effectiveness and quality of the analysis. These steps in the data preparation process
are crucial for ensuring that the ANN model is trained efficiently and effectively utilizing
MATLAB software (version R2023a, MathWorks, Natick, MA, USA).

• Data Cleaning: The first step involved identifying and eliminating all cases with
missing (NaN) or infinite (Inf) values. They may be absent from the dataset due to
measurement errors or data corruption. Once such cases were cleaned, the dataset
became more uniform and accurate for further analysis and model training [32].

• Data Normalization: The data have been normalized to improve the performance
of the training and the ANN model. In addition, normalizing is critical when using
a dataset in which each feature has significant numerical disparities. Normalizing
all features to the range between 0 and 1 helps ensure the classification’s accuracy,
but it also aids in minimizing the training time and potential error since the less
exponentially prominent features would not govern the learning process [33].

• Label Encoding: Label encoding is a fundamental preprocessing step in the field
of ANN, particularly useful when working with categorical data. This technique
transforms categorical variables into a numerical format, making them compatible
with ANN algorithms that require numerical input. In this study, we employed label
encoding to convert categorical features into numeric labels, facilitating the training
and evaluation of our predictive model [34]. The adopted label encoding process can
be summarized using Algorithm 1.

Algorithm 1: Label encoding of categorical features.

Input: Dataset D with categorical features C.
Output: Dataset D′ with categorical features transformed into numeric labels.

1 Initialize an instance of LabelEncoder: label_encoder← new LabelEncoder().
// Step 1: Initialize Label Encoder

2 Define a list of categorical columns: categorical_columns← list of categorical
features in D. // Step 2: Define Categorical Columns

3 for each column c in categorical_columns
4 Fit the LabelEncoder to the column c and transform the values:
5 transformed_values← label_encoder.fit_transform(D[c]). // Step 3: Fit and

Transform
6 Replace the original column values in D with the transformed numeric labels:
7 D[c]← transformed_values. // Replace Values

3.3. Filter Feature Selection Method

We utilized mutual information (MI) to evaluate and select features. This method
operates independently of any ANN model, focusing instead on the intrinsic properties
of the data. The fundamental concept behind filter methods is to score the relevance of
features based on statistical measures, precisely the MI in this case, which quantifies the
amount of information one variable provides about another. The MI between a feature
and the target variable is a non-negative value that measures their dependency [35]. It is
calculated as the following Equation (1):

MI(X; Y) = ∑
x∈X,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where X and Y are the feature and target variable, respectively; p(x, y) is the joint prob-
ability distribution function of X and Y; and p(x) and p(y) are the marginal probability
distribution functions of X and Y. A higher MI score indicates a greater relevance of the
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feature to the target variable, suggesting that the feature shares more information with
the target.

The process began with the encoded dataset S, during which the features X and the
target variable y were isolated. Following this, for each feature f in X, we computed
the mutual information score between f and y using the mutual_info_classif function.
We then selected the top ten features with the highest mutual information (MI) scores to
ensure an optimal balance between retaining highly informative features and minimizing
model complexity. This approach was strategically chosen based on empirical evidence,
suggesting that selecting features with the highest MI scores significantly enhances the
model’s predictive accuracy while reducing the risk of overfitting. Algorithm 2 illustrates
the details of this method. Figure 2 presents the MI scores for all features in the NF-ToN-
IoT-V2 dataset, and Figure 3 presents the selected features with the highest MI values.
Figure 4 presents the MI scores for all features in the Edge-IIoTset dataset, and Figure 5
presents the selected features with the highest MI values.

Algorithm 2: Filter feature selection based on mutual information (MI).

Input: Dataset S with features X and target class labels y, and optionally a
threshold t for feature selection.

Output: Ranked list of features S∗ based on their mutual information scores.
1 S∗ ← ∅ // Initialize the ranked list of features
2 for each feature f in X
3 Compute mutual information score between feature f and y using

mutual_info_classif and store the score. // Score calculation for f

4 Rank X based on computed mutual information scores to form S∗. // Feature
ranking

5 if threshold t is specified
6 S∗ ← features from S∗ with scores ≥ t. // Threshold filtering
7 else
8 Select the top k features from S∗ for final inclusion. // Top k selection

Figure 2. MI scores for all features in the NF-ToN-IoT-V2 dataset.
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Figure 3. Selected features with the highest MI values in the NF-ToN-IoT-V2 dataset.

Figure 4. MI scores for all features in the Edge-IIoTset dataset.

Figure 5. Selected features with the highest MI values in the Edge-IIoTset dataset.

3.4. Wrapper Feature Selection Method

We employed the recursive feature elimination (RFE) method for feature selection.
Unlike filter methods, RFE operates with a predictive model, iteratively refining the feature
subset to enhance model performance [36]. The core principle of wrapper methods is to
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evaluate feature subsets based on the performance of a chosen model, optimizing for the
most predictive combination of features. RFE begins by training an estimator on the entire
set of features and computing the importance of each feature. The least important features
are then recursively pruned from the current set of features. Specifically, RFE ranks the
features based on their importance and recursively removes the least important feature,
refitting the model on the remaining features in each iteration until the desired number of
features is reached [37].

In this study, we utilized a Linear Regression model as the estimator within the RFE
algorithm, leveraging its robustness and capability to handle complex datasets. The process
started with the encoded dataset S, isolating the features X and the target variable y. We
then applied the RFE method with the Random Forest classifier to iteratively rank and
select the top ten most important features. Equation (2) clarifies how it works as follows:

RFE(X; y) = arg min
|X′ |=k

n

∑
i=1

L(yi, f (X′i)) (2)

where X′ represents the selected subset of features, k is the number of desired features, L is
the loss function, and f is the predictive model. By minimizing the loss function, RFE identi-
fies the feature subset that contributes most significantly to the model’s predictive accuracy.

This approach ensures that the selected features not only retain high predictive power
but also maintain the interpretability and relevance of the model. Algorithm 3 details the
RFE process. Figures 6 and 7 illustrate the feature importances and the selected features in
the NF-ToN-IoT-V2 dataset, respectively, while Figures 8 and 9 present the corresponding
results for the Edge-IIoTset dataset.

Algorithm 3: Wrapper feature selection based on recursive feature elimination (RFE).

Input: Dataset S with features X and target class labels y, the number of features
to select k, and optionally the step size s for feature elimination.

Output: Ranked list of features S∗ based on their importance.
1 S∗ ← X // Initialize the set of features
2 while |S∗| > k do
3 Train the model f using features in S∗. // Model training
4 Compute feature importances β = [β1, β2, . . . , βm] using the trained model.

// Importance computation
5 Rank features based on the importance scores β. // Feature ranking
6 Identify the least important feature f j with the lowest β j. // Identify least

important feature
7 if s is specified
8 Remove the s least important features from S∗. // Remove s features
9 else

10 Remove the single least important feature f j from S∗. // Remove one
feature

11 Evaluate model performance L(yi, f (X′i)) with the remaining features.
// Performance evaluation

12 Update feature importances β based on model performance. // Importance
update

13 Rank S∗ based on the final computed importances β. // Final feature ranking
14 Select the top k features from S∗ for final inclusion. // Top k selection
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Figure 6. Feature importance scores for all features in the NF-ToN-IoT-V2 dataset.

Figure 7. Selected features with the highest feature importance values in the NF-ToN-IoT-V2 dataset.

Figure 8. Feature importance scores for all features in the Edge-IIoTset dataset.
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Figure 9. Selected features with the highest feature importance values in the Edge-IIoTset dataset.

3.5. Classification Methods

In addressing the challenge of XSS attack detection, neural network architectures
were adopted, ranging from the simplicity of Narrow Neural Networks to the complexity
encapsulated within Trilayered Neural Networks. This endeavor is propelled by MATLAB’s
software, allowing for an in-depth comparative analysis of architectures varying in layers
and neuron counts to capture and model our dataset’s intricate dynamics accurately.

3.5.1. Narrow Neural Network

The Narrow Neural Network, with its single hidden layer, exemplifies model efficiency
and swift training capabilities at the foundational level, making it particularly suitable for
less complex predictive tasks. This algorithm initializes with random weights and biases,
progressing through cycles of forward propagation, where data transformations through
linear and non-linear operations culminate in output predictions. Backpropagation follows,
adjusting weights and biases to minimize error, a process mathematically expressed as
Equation (3); Algorithm 4 illustrates the procedures of this model as follows [38]:

f (x) = σ(W2 · σ(W1 · x + b1) + b2) (3)

where σ denotes the activation function; W1, W2 the weight matrices; and b1, b2 the bias
vectors, illuminating the path from inputs x to the network’s output.

Algorithm 4: Training procedure for Narrow Neural Network (NNN).

Input: Input features X, Target labels Y, Learning rate η, Number of epochs
Output: Trained NNN model with optimized weights and biases

1 S∗ ← ∅ // Initialize the ranked list of features
2 Initialize weights W1, W2 and biases b1, b2 randomly
3 for each epoch
4 foreach sample (x, y) in X, Y do

// Forward propagation
5 Compute hidden layer: H = σ(W1 · x + b1)
6 Compute output: ŷ = σ(W2 · H + b2)

// Compute loss and gradient
7 Calculate loss and its gradient ∇L

// Backpropagation
8 Update W2, b2 using gradients
9 Compute gradients for W1, b1

10 Update W1, b1 using gradients

11 return Optimized weights W1, W2 and biases b1, b2
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3.5.2. Bilayered Neural Network

Evolving complexity, the Bilayered Neural Network integrates an additional hidden
layer, enabling the model to capture more nuanced patterns. This architecture’s abil-
ity to abstract complex relationships makes it apt for tasks with evolving data patterns,
such as image and speech recognition. The BLNN extends the operational framework
of the NNN, incorporating an extra layer into both the forward and backward propaga-
tion phases [39], thereby enhancing the model’s depth and capability, as is apparent in
Equation (4); Algorithm 5 presents the details of this model as follows:

f (x) = σ(W3 · σ(W2 · σ(W1 · x + b1) + b2) + b3) (4)

Here, W3 and b3 extend the model to accommodate another layer of computation,
enriching the network’s capacity to process and learn from the input data.

Algorithm 5: Training procedure for Bilayered Neural Network (BLNN).

Input: Input features X, Target labels Y, Learning rate η, Number of epochs
Output: Trained BLNN model with optimized weights and biases

1 Initialize weights W1, W2, W3 and biases b1, b2, b3 randomly
2 for each epoch
3 foreach sample (x, y) in X, Y do

// Forward propagation
4 Compute first hidden layer: H1 = σ(W1 · x + b1)
5 Compute second hidden layer: H2 = σ(W2 · H1 + b2)
6 Compute output: ŷ = σ(W3 · H2 + b3)

// Compute loss and gradient
7 Calculate loss and its gradient ∇L

// Backpropagation
8 Update W3, b3 using gradients
9 Compute and update gradients for W2, b2

10 Compute and update gradients for W1, b1

11 return Optimized weights and biases

3.5.3. Trilayered Neural Network

The Trilayered Neural Network, with its three hidden layers, represents the zenith of
complexity in our exploration. This architecture’s deep structure is adept at modeling high-
level abstractions, making it ideal for tackling the most intricate tasks in ANN, including
natural language processing and advanced time series forecasting. The TLNN algorithm
meticulously orchestrates forward and backward propagations across three layers, refining
the network’s parameters for optimal performance [40]. The mathematical representa-
tion captures this complexity in Equation (5); Algorithm 6 illustrates the procedures of
this model as follows:

f (x) = σ(W4 · σ(W3 · σ(W2 · σ(W1 · x + b1) + b2) + b3) + b4) (5)

where W4 and b4 are added to accommodate the third layer, highlighting the intricate
computations that enable the TLNN to perform its sophisticated analyses.
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Algorithm 6: Training procedure for Trilayered Neural Network (TLNN).

Input: Input features X, Target labels Y, Learning rate η, Number of epochs
Output: Trained TLNN model with optimized weights and biases

1 Initialize weights W1, W2, W3, W4 and biases b1, b2, b3, b4 randomly
2 for each epoch
3 foreach sample (x, y) in X, Y do

// Forward propagation
4 Compute first hidden layer: H1 = σ(W1 · x + b1)
5 Compute second hidden layer: H2 = σ(W2 · H1 + b2)
6 Compute third hidden layer: H3 = σ(W3 · H2 + b3)
7 Compute output: ŷ = σ(W4 · H3 + b4)

// Compute loss and gradient
8 Calculate loss and its gradient ∇L

// Backpropagation
9 Sequentially update W4, b4; W3, b3; W2, b2; W1, b1 using calculated gradients

10 return Optimized weights W1, W2, W3, W4 and biases b1, b2, b3, b4

3.6. Evaluation Metrics

The original set was divided into two 80% for training and the remaining for test-
ing. Performance evaluation measures were selected based on the concepts introduced
above in the confusion matrix: true positive (TP), false positive (FP), false negative (FN),
and true negative (TN). FP corresponds to false alarms, and FN corresponds to misses.
The evaluation process uses accuracy, precision, recall, and F1-score measures.

• Accuracy: Accuracy measures the overall correctness of model predictions by com-
paring correct predictions with the total predictions. While useful, it may not be the
best indicator for imbalanced datasets, where it can misleadingly appear high if the
model predominantly predicts the majority class accurately but fails with the minority
class [41].

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

• Precision: Precision is a metric that evaluates the accuracy of a model’s positive
predictions. It is calculated by dividing the number of true positives by the total
predicted positives, which include both true and false positives. This measure is
crucial in contexts where avoiding false positives is important. It helps assess how
well a model identifies only relevant instances as positive [42].

Precision =
TP

TP + FP
(7)

• Recall: Sensitivity or True Positive Rate: Recall is calculated as the ratio of actual
positive instances that are predicted as positives. In other words, it shows how
many positive instances the model correctly identified without missing anyone. It
is calculated as the ratio of true positive and the sum of true positive and false
negative [43].

Recall =
TP

TP + FN
(8)

• F1-score: The harmonic mean of precision and recall, F1-score is the balanced measure
considering precision and recall together and mainly used to find an optimal balance
between precision and recall. It is calculated by the following [44]:

F1− score =
2 · Recall · precision
Recall + precision

(9)
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These metrics are crucial for evaluating the performance of a classification model
comprehensively. Accuracy provides a general indication of the model’s effectiveness.
Meanwhile, precision, recall, and the F1-score offer detailed insights into the model’s ability
to manage false positives and false negatives and the balance between precision and recall.
The choice of which metric(s) to use depends on the specific problem being addressed and
the desired outcomes of the model evaluation.

3.7. ANOVA Test for Performance Variability Analysis

To analyze the variability in neural network performance due to different initial
conditions, we employed the Analysis of Variance (ANOVA) test. ANOVA is a statistical
method used to determine whether there are any statistically significant differences between
the means of two or more independent groups [45]. In this study, ANOVA was applied
to compare neural network performance metrics (accuracy) across multiple trials with
varying initial conditions.

The ANOVA test partitions the total variability in the data into components attributable
to different sources of variation. In a one-way ANOVA, the primary components are
the variability between groups and the variability within groups. The between-groups
variability measures the variation due to differences between the groups, whereas the
within-groups variability measures the variation within each group.

The total sum of squares (SStotal) is the sum of the between-groups sum of squares
(SSbetween) and the within-groups sum of squares (SSwithin). The sum of squares for between
groups (SSbetween) is calculated as follows:

SSbetween =
k

∑
i=1

ni(X̄i − X̄)2 (10)

where k is the number of groups, ni is the number of observations in group i, X̄i is the mean
of group i, and X̄ is the overall mean of all observations.

The sum of squares for within groups (SSwithin) is calculated as follows:

SSwithin =
k

∑
i=1

ni

∑
j=1

(Xij − X̄i)
2 (11)

where Xij is the j-th observation in group i.
The mean squares for between groups (MSbetween) and within groups (MSwithin) are

obtained by dividing the corresponding sum of squares by their degrees of freedom (df).
The mean square for between groups (MSbetween) is calculated as follows:

MSbetween =
SSbetween

k− 1
(12)

and the mean square for within groups (MSwithin) is calculated as follows:

MSwithin =
SSwithin
N − k

(13)

where N is the total number of observations across all groups, and k is the number
of groups.

The F-statistic is then calculated as the ratio of the between-groups mean square to the
within-groups mean square, as follows:

F =
MSbetween
MSwithin

(14)

This F-statistic follows an F-distribution with k − 1 and N − k degrees of freedom.
The p-value associated with the F-statistic is used to determine whether the observed
differences between group means are statistically significant.
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We applied this ANOVA test to analyze the variability in neural network performance,
ensuring that the evaluation accounts for differences due to initial conditions. Algorithm 7
used the ANOVA test to analyze the variability in neural network performance; this
approach provides a statistically robust comparison of performance metrics. The results of
the ANOVA test are discussed in Section 4.

Algorithm 7: ANOVA test for neural network performance.

Input: Number of trials per group (T), Number of groups (G)
Output: F-statistic, p-value

1 Initialize arrays to store performance metrics for each group
2 for each group g from 1 to G
3 for each trial t from 1 to T
4 Set random seed
5 Train neural network
6 Record performance metric (accuracy) for group g

7 Compute overall mean of all observations (X̄)
8 Compute SSbetween = 0, SSwithin = 0
9 for each group i from 1 to G

10 Compute group mean (X̄i)
11 SSbetween+ = ni(X̄i − X̄)2

12 for each observation j in group i
13 SSwithin+ = (Xij − X̄i)

2

14 Compute MSbetween = SSbetween
G−1

15 Compute MSwithin = SSwithin
N−G

16 Compute F = MSbetween
MSwithin

17 Determine p-value from F-distribution
18 return F-statistic and p-value

4. Results

The performance metrics presented in Table 5 provide a comprehensive evaluation
of various neural network architectures during the training and testing stages across four
datasets: NF-ToN-IoT-V2 Filtered Dataset, NF-ToN-IoT-V2 Wrapper Dataset, Edge-IIoTset
Filtered Dataset, and Edge-IIoTset Wrapper Dataset.

For the NF-ToN-IoT-V2 Filtered Dataset, the Bilayered Neural Network architectures
(2 × 10 and 2 × 25) exhibit superior performance, achieving remarkably high metrics across
both training and testing stages. Specifically, the Bilayered Neural Network 2 × 10 achieves
a training accuracy of 99.93% and a testing accuracy of 99.84%, with precision values of
99.90% (train) and 99.78% (test), recall values of 99.92% (train) and 99.82% (test), and F1-
scores of 99.91% (train) and 99.80% (test). The Bilayered Neural Network 2 × 25 closely
follows with a training accuracy of 99.91% and a testing accuracy of 99.88%, precision
values of 99.88% (train) and 99.84% (test), recall values of 99.89% (train) and 99.86% (test),
and F1-scores of 99.89% (train) and 99.85% (test). These results highlight their robust
capability in generalizing from training data to accurately detect XSS attacks with minimal
false positives and false negatives.

In comparison, the Medium Neural Network 1 × 25 demonstrates strong performance,
particularly in the testing stage, with an accuracy of 98.99%, a precision value of 98.68%, a
recall value of 98.88%, and an F1-score of 98.78%. This surpasses the Wide Neural Network
1 × 100, which records a slightly lower testing accuracy of 98.79%, a precision value of
98.43%, a recall value of 98.66%, and an F1-score of 98.54%. This indicates the effectiveness
of the Medium Neural Network in balancing model complexity and generalization ability,
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making it a preferable choice over the Wide Neural Network for this dataset. Conversely,
the Narrow Neural Network 1 × 10 shows a lower performance, with a training accuracy
of 98.77%, a testing accuracy of 98.74%, precision values of 98.40% (train) and 98.36%
(test), recall values of 98.64% (train) and 98.60% (test), and F1-scores of 98.52% (train) and
98.48% (test). These results highlight the challenges simpler architectures face in accurately
detecting XSS attacks, underlining the importance of a little increasing model complexity
for better performance.

Table 5. Performance metrics of different neural network architectures during training and
testing stages.

Algorithm Layers Accuracy Precision Recall F1-Score

Train Stage Test Stage Train Stage Test Stage Train Stage Test Stage Train Stage Test Stage

NF-ToN-IoT-V2 Filtered Dataset

Narrow Neural Network 1 × 10 0.9877 0.9874 0.984 0.9836 0.9864 0.986 0.9852 0.9848
Medium Neural Network 1 × 25 0.9894 0.9899 0.9862 0.9868 0.9882 0.9888 0.9872 0.9878
Wide Neural Network 1 × 100 0.9881 0.9879 0.9845 0.9843 0.9868 0.9866 0.9857 0.9854
Bilayered Neural Network 2 × 10 0.9993 0.9984 0.999 0.9978 0.9992 0.9982 0.9991 0.998
Bilayered Neural Network 2 × 25 0.9991 0.9988 0.9988 0.9984 0.9989 0.9986 0.9989 0.9985
Trilayered Neural Network 3 × 10 0.9913 0.991 0.9886 0.9883 0.9903 0.99 0.9895 0.9891
Trilayered Neural Network 3 × 25 0.991 0.9899 0.9883 0.9868 0.99 0.9888 0.9891 0.9878

NF-ToN-IoT-V2 Wrapper Dataset

Narrow Neural Network 1 × 10 0.9747 0.981 0.9674 0.9754 0.972 0.979 0.9697 0.9772
Medium Neural Network 1 × 25 0.987 0.9853 0.9831 0.9809 0.9856 0.9837 0.9843 0.9823
Wide Neural Network 1 × 100 0.9877 0.9877 0.984 0.984 0.9864 0.9864 0.9852 0.9852
Bilayered Neural Network 2 × 10 0.9946 0.9939 0.9929 0.992 0.994 0.9932 0.9934 0.9926
Bilayered Neural Network 2 × 25 0.9988 0.9983 0.9984 0.9978 0.9986 0.9981 0.9985 0.9979
Trilayered Neural Network 3 × 10 0.9976 0.9976 0.9968 0.9968 0.9973 0.9973 0.9971 0.9971
Trilayered Neural Network 3 × 25 0.9972 0.9971 0.9963 0.9961 0.9968 0.9967 0.9966 0.9964

Edge-IIoTset Filtered Dataset

Narrow Neural Network 1 × 10 0.9664 0.9659 0.957 0.9564 0.9629 0.9625 0.9599 0.9594
Medium Neural Network 1 × 25 0.9744 0.9745 0.967 0.9672 0.9717 0.9718 0.9693 0.9694
Wide Neural Network 1 × 100 0.9796 0.9779 0.9736 0.9661 0.9774 0.9708 0.9755 0.9684
Bilayered Neural Network 2 × 10 0.9815 0.9813 0.9761 0.9692 0.9795 0.9737 0.9778 0.9714
Bilayered Neural Network 2 × 25 0.9932 0.99 0.9911 0.9884 0.9924 0.9901 0.9917 0.9892
Trilayered Neural Network 3 × 10 0.9985 0.9979 0.998 0.9972 0.9983 0.9976 0.9981 0.9974
Trilayered Neural Network 3 × 25 0.997 0.9964 0.9961 0.9953 0.9966 0.996 0.9963 0.9956

Edge-IIoTset Wrapper Dataset

Narrow Neural Network 1 × 10 0.9867 0.9859 0.9827 0.9817 0.9852 0.9844 0.984 0.9831
Medium Neural Network 1 × 25 0.99 0.9911 0.987 0.9884 0.9889 0.9901 0.9879 0.9892
Wide Neural Network 1 × 100 0.99 0.9893 0.987 0.9861 0.9889 0.9882 0.9879 0.9871
Bilayered Neural Network 2 × 10 0.9968 0.9971 0.9958 0.9962 0.9964 0.9967 0.9961 0.9964
Bilayered Neural Network 2 × 25 0.9949 0.9953 0.9933 0.9939 0.9943 0.9948 0.9938 0.9943
Trilayered Neural Network 3 × 10 0.9953 0.995 0.9938 0.9934 0.9948 0.9944 0.9943 0.9939
Trilayered Neural Network 3 × 25 0.9934 0.993 0.9914 0.9909 0.9926 0.9922 0.992 0.9915

For the NF-ToN-IoT-V2 Wrapper Dataset, the Trilayered Neural Network configura-
tions (3 × 10 and 3 × 25) show consistently robust performance. The 3 × 10 network achieves
a training accuracy of 99.76% and a testing accuracy of 99.76%, precision values of 99.68%
(train) and 99.68% (test), recall values of 99.73% (train) and 99.73% (test), and F1-scores
of 99.71% (train) and 99.71% (test). The 3 × 25 network follows closely with a training
accuracy of 99.72% and a testing accuracy of 99.71%, precision values of 99.63% (train)
and 99.61% (test), recall values of 99.68% (train) and 99.67% (test), and F1-scores of 99.66%
(train) and 99.64% (test). These configurations outperform the Bilayered Neural Network
2 × 25, which, although also performing exceptionally well, records slightly lower metrics,
particularly in precision (99.84% train, 99.78% test) and recall (99.86% train, 99.81% test).

In the case of the Edge-IIoTset dataset, the Trilayered Neural Network 3 × 10 emerges
as the top performer with a test stage accuracy of 99.79%, showcasing its outstanding
generalization capabilities. Specifically, it records a training accuracy of 99.85%, precision
values of 99.80% (train) and 99.72% (test), recall values of 99.83% (train) and 99.76% (test),
and F1-scores of 99.81% (train) and 99.74% (test). The Bilayered Neural Network 2 × 25
also achieves high performance, particularly in the filtered dataset variant, recording a
training accuracy of 99.32% and a test stage accuracy of 99.00%, precision values of 99.11%
(train) and 98.84% (test), recall values of 99.24% (train) and 99.01% (test), and F1-scores
of 99.17% (train) and 98.92% (test). These results indicate that while both configurations
are highly effective, the Trilayered Neural Network 3 × 10 holds a slight edge in terms of
overall performance.
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Across all datasets, the Bilayered Neural Network architectures consistently achieve
the highest accuracy and robustness with relatively lower complexity compared with the
trilayered networks. This is particularly evident in the NF-ToN-IoT-V2 Filtered Dataset,
NF-ToN-IoT-V2 Wrapper Dataset, and Edge-IIoTset Dataset Wrapper Dataset, where the
Bilayered Neural Network 2 × 10 and 2 × 25 configurations demonstrate superior per-
formance metrics with high accuracy, precision, recall, and F1-scores, underscoring their
effectiveness and efficiency. These findings suggest that the bilayered architectures provide
a balanced and highly effective solution for accurately detecting XSS attacks in IoT systems
over 5G networks, achieving high performance with less complexity.

The confusion matrices presented in Figure 10 provide a comprehensive view of the
performance of various neural network configurations during both the training and testing
stages. Starting with the Narrow Neural Network 1 × 10 (a, b), the model performs well
on the majority class (Benign), with 26,152 true positives and 10,813 true negatives during
training, but there are 276 false positives and 184 false negatives. In the test stage, it shows
11,204 true positives and 4633 true negatives, with 121 false positives and 81 false negatives.
Moving on to the Medium Neural Network 1 × 25 (c, d), there is a decrease in false negatives
compared with the narrow network, with 26,197 true positives and 10,831 true negatives
during training and 238 false positives and 159 false negatives. In the test stage, it achieves
11,233 true positives and 4644 true negatives, with 97 false positives and 65 false negatives.
This indicates that a larger number of neurons in the single hidden layer has improved the
model’s ability to identify XSS attacks. However, false positives have increased slightly,
which may be acceptable if reducing false negatives is a priority. The Wide Neural Network
1 × 100 (e, f) sees a further reduction in both false positives and false negatives, with
26,163 true positives and 10,817 true negatives during training, and 267 false positives and
178 false negatives. In the test stage, it shows 11,210 true positives and 4635 true negatives,
with 116 false positives and 78 false negatives. The performance of the Medium Neural
Network 1 × 25 is better between all single-layer models, highlighting its high ability
to generalize from training to testing data and effectively balance the trade-off between
sensitivity and specificity.

In the case of multi-layer networks, the Bilayered Neural Network achieved the highest
performance between all models, starting with the 2 × 10 configuration (g, h) demonstrating
exceptional accuracy during both the training and test stages, with 26,459 true positives
and 10,940 true negatives during training and 16 false positives and 10 false negatives.
In the test stage, it achieves 11,329 true positives and 4684 true negatives, with 16 false
positives and 10 false negatives, effectively balancing in detection XSS attacks over IoT
environments. Moving to a more complex 2 × 25 configuration (i, j), the Bilayered Neural
Networks have a little reduction in performance with 26,454 true positives and 10,937 true
negatives and very low errors of 20 false positives and 14 false negatives during training.
In the test stage, it maintains this strong performance with 11,334 true positives and
4686 true negatives and minimal errors of 11 false positives and 8 false negatives, indicating
excellent generalization and robust detection capability. The Trilayered Neural Networks,
while still highly effective, show slightly higher error rates compared with their bilayered
counterparts. The 3 × 25 configuration (m, n) records 26,239 true positives and 10,849 true
negatives during training, with 202 false positives and 135 false negatives, and in the test
stage, it achieves 11,233 true positives and 4644 true negatives, with 97 false positives
and 65 false negatives. The 3 × 10 configuration (k, l) shows 26,247 true positives and
10,852 true negatives during training, with 196 false positives and 130 false negatives,
and in the test stage, it records 11,246 true positives and 4649 true negatives, with 86 false
positives and 58 false negatives. Across all stages and configurations, it is evident that
as the network width and depth increase, they do not necessarily increase the model’s
performance in the detection process, as we observed in the experimental results of the
NF-ToN-IoT-V2 Filtered Dataset, where bilayered models with a simple configuration of
2 × 10 obtained better results than their more complex counterparts. Therefore, the issue of
complexity must be taken into consideration when adopting attack detection models.
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Figure 10. Confusion matrices for NF-ToN-IoT-V2 Filtered Dataset. (a) Narrow Neural Network
1 × 10-Train, (b) Narrow Neural Network 1 × 10-Test, (c) Medium Neural Network 1 × 25-Train,
(d) Medium Neural Network 1 × 25-Test, (e) Wide Neural Network 1 × 100-Train, (f) Wide Neural
Network 1 × 100-Test, (g) Bilayered Neural Network 2 × 10-Train, (h) Bilayered Neural Network
2 × 10-Test, (i) Bilayered Neural Network 2 × 25-Train, (j) Bilayered Neural Network 2 × 25-Test,
(k) Trilayered Neural Network 3 × 10-Train, (l) Trilayered Neural Network 3 × 10-Test, (m) Trilayered
Neural Network 3 × 25-Train, and (n) Trilayered Neural Network 3 × 25-Test.

The confusion matrices in Figure 11 show that the Narrow Neural Network 1 × 10
(a, b) achieves 25,808 true positives and 10,670 true negatives during training, but has
568 false positives and 379 false negatives; in testing, it has 11,132 true positives,
4602 true negatives, 183 false positives, and 122 false negatives. The Medium Neural
Network 1 × 25 (c, d) improves with 26,133 true positives and 10,805 true negatives during
training and 11,180 true positives and 4623 true negatives in testing, with fewer false
positives and negatives than the narrow network. The Wide Neural Network 1 × 100
(e, f) shows 26,152 true positives and 10,813 true negatives during training and 11,208 true
positives and 4634 true negatives in testing, making the Medium Neural Network 1 × 25
the most balanced single-layer model. For multi-layer networks, the Bilayered Neural
Network 2 × 10 (g, h) achieves 26,335 true positives and 10,888 true negatives in training
and 11,278 true positives and 4663 true negatives in testing, with low error rates. The
2 × 25 configuration (i, j) presents the best performance with 26,446 true positives and
10,934 true negatives in training and 11,328 true positives and 4684 true negatives in testing.
The Trilayered Neural Networks show slightly higher error rates: the 3 × 25 configuration
(k, l) has 26,403 true positives and 10,917 true negatives in training and 11,314 true pos-
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itives and 4678 true negatives in testing, while the 3 × 10 configuration (m, n) achieves
26,414 true positives and 10,921 true negatives in training and 11,321 true positives and
4680 true negatives in testing. The Bilayered Neural Network 2 × 10 offers the best balance
of simplicity and performance, achieving superior results in detecting XSS attacks.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 11. Confusion matrices for NF-ToN-IoT-V2 Wrapper Dataset. (a) Narrow Neural Network
1 × 10-Train, (b) Narrow Neural Network 1 × 10-Test, (c) Medium Neural Network 1 × 25-Train,
(d) Medium Neural Network 1 × 25-Test, (e) Wide Neural Network 1 × 100-Train, (f) Wide Neural
Network 1 × 100-Test, (g) Bilayered Neural Network 2 × 10-Train, (h) Bilayered Neural Network
2 × 10-Test, (i) Bilayered Neural Network 2 × 25-Train, (j) Bilayered Neural Network 2 × 25-Test,
(k) Trilayered Neural Network 3 × 10-Train, (l) Trilayered Neural Network 3 × 10-Test, (m) Trilayered
Neural Network 3 × 25-Train, and (n) Trilayered Neural Network 3 × 25-Test.

The confusion matrices presented in Figure 12 provide insights into the performance
of various neural network configurations on the Edge-IIoTset Filtered Dataset. The Narrow
Neural Network 1 × 10 (a, b) shows relatively higher error rates, with 16,442 true positives
and 6798 true negatives during training and 7043 true positives and 2912 true negatives
during testing. The Medium Neural Network 1 × 25 (c, d) improves upon this, recording
16,578 true positives and 6854 true negatives during training and 7105 true positives and
2938 true negatives during testing. The Wide Neural Network 1 × 100 (e, f) further enhances
accuracy, with 16,666 true positives and 6891 true negatives during training and 7099 true
positives and 2935 true negatives during testing. The Bilayered Neural Network 2 × 10
(g, h) demonstrates exceptional performance, achieving 16,699 true positives and 6904
true negatives during training and 7117 true positives and 2943 true negatives during
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testing. The 2 × 25 configuration (i, j) shows even better results, with 16,898 true positives
and 6,986 true negatives during training and 7226 true positives and 2988 true negatives
during testing. The Trilayered Neural Networks 3 × 10 (k, l) and 3 × 25 (m, n) perform
well but show slightly higher error rates compared with their bilayered counterparts.
Overall, the Bilayered Neural Networks, particularly the 2 × 25 configuration, achieve the
highest accuracy with lower complexity, emphasizing the importance of considering model
complexity in neural network design for security applications.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 12. Confusion matrices for Edge-IIoTset Filtered Dataset. (a) Narrow Neural Network 1 × 10-
Train, (b) Narrow Neural Network 1 × 10-Test, (c) Medium Neural Network 1 × 25-Train, (d) Medium
Neural Network 1 × 25-Test, (e) Wide Neural Network 1 × 100-Train, (f) Wide Neural Network
1 × 100-Test, (g) Bilayered Neural Network 2 × 10-Train, (h) Bilayered Neural Network 2 × 10-Test,
(i) Bilayered Neural Network 2 × 25-Train, (j) Bilayered Neural Network 2 × 25-Test, (k) Trilayered
Neural Network 3 × 10-Train, (l) Trilayered Neural Network 3 × 10-Test, (m) Trilayered Neural
Network 3 × 25-Train, and (n) Trilayered Neural Network 3 × 25-Test.

Finally, for the Edge-IIoTset Wrapper Dataset, Figure 13 shows the confusion matrices
during the training stage. The Narrow Neural Network (1 × 10) (a) achieved 16,787 true
positives and 6941 true negatives, while the Wide Neural Network (1 × 100) (b) slightly
outperformed with 16,844 true positives and 6964 true negatives. The Medium Neural Net-
work (1 × 25) (c) had similar results to the wide network. In the test stage, the Wide
Neural Network (d) again showed strong performance with 7214 true positives and
2982 true negatives. The Bilayered Neural Network with a 2 × 10 configuration (e) during
training achieved 16,959 true positives and 7012 true negatives and 7270 true positives
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and 3006 true negatives in the test stage (f), indicating excellent detection capabilities. The
2 × 25 configuration (g) also performed well with 16,927 true positives and 6998 true neg-
atives during training and 7257 true positives and 3001 true negatives during testing (h).
The Trilayered Neural Network configurations, both 3 × 10 (i) and 3 × 25 (j), demonstrated
robust performance, with the 3 × 10 configuration achieving 16,934 true positives and
7001 true negatives in training and 7255 true positives and 2999 true negatives in testing (k).
The 3 × 25 configuration achieved 16,901 true positives and 6988 true negatives in training
and 7240 true positives and 2994 true negatives in testing (l). The results indicate that
while the complexity of the networks increases, the performance remains high, with the
bilayered and trilayered networks showing particularly strong results in both the training
and testing phases.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 13. Confusion matrices for Edge-IIoTset Wrapper Dataset. (a) Narrow Neural Network
1 × 10-Train, (b) Narrow Neural Network 1 × 10-Test, (c) Medium Neural Network 1 × 25-Train,
(d) Medium Neural Network 1 × 25-Test, (e) Wide Neural Network 1 × 100-Train, (f) Wide Neural
Network 1 × 100-Test, (g) Bilayered Neural Network 2 × 10-Train, (h) Bilayered Neural Network
2 × 10-Test, (i) Bilayered Neural Network 2 × 25-Train, (j) Bilayered Neural Network 2 × 25-Test,
(k) Trilayered Neural Network 3 × 10-Train, (l) Trilayered Neural Network 3 × 10-Test, (m) Trilayered
Neural Network 3 × 25-Train, and (n) Trilayered Neural Network 3 × 25-Test.

5. Results of the ANOVA Test for Wrapper and Filtered NF-ToN-IoT-V2 and
Edge-IIoTset Datasets

To investigate the performance of the DL models over filtered and wrapper NF-
ToN-IoT-V2 and Edge-IIoTset datasets, we applied ANOVA tests to determine whether



IoT 2024, 5 503

statistically noteworthy accuracy differences exist in those seven models. Those are ex-
plained using the neural network example with the weight of the initial condition (also to
point out that deep networks have many hyperparameters). Each model was trained ten
times with random initial weights to make it robust and put this kind of variability into
perspective. The results of these ANOVA tests are presented in Table 6.

Table 6. ANOVA test results for filtered and wrapper datasets for NF-ToN-IoT-V2 and Edge-IIoTset
datasets.

NF-ToN-IoT-V2 Datasets

Feature
Selection Source SS df MS F Prob > F

Filtered
Groups 0.0750 6 0.0125 0.1381 0.9907
Error 5.7026 63 0.0905 - -
Total 5.7776 69 - - -

Wrapper
Groups 0.0930 6 0.0155 0.1835 0.9804
Error 5.3221 63 0.0845 - -
Total 5.4151 69 - - -

Edge-IIoTset Dataset

Feature
Selection Source SS df MS F Prob > F

Filtered
Groups 0.1077 6 0.0179 0.2020 0.9750
Error 5.5953 63 0.0888 - -
Total 5.7030 69 - - -

Wrapper
Groups 0.1457 6 0.0243 0.2432 0.9603
Error 6.2878 63 0.0998 - -
Total 6.4334 69 - - -

The ANOVA test results indicate that, for the NF-ToN-IoT-V2 and Edge-IIoTset
datasets, the differences in accuracy between the seven neural network models are not
statistically significant. For the filtered NF-ToN-IoT-V2 dataset, the between-groups sum
of squares (samples) is 0.0750, while the within-groups sum of squares (error) is 5.7026.
The sum of squares is 5.7776, with between-groups and within-groups degrees of freedom
of 6 and 63, respectively. The mean square between the two groups is 0.0125, and the mean
square within the groups is 0.0905, resulting in an F-statistic of 0.1381 and a p-value of
0.9907. Likewise, the NF-ToN-IoT-V2 pool dataset has a p-value of 0.9804, with the sum of
squares between groups at 0.0930 and within groups at 5.3221. For the Edge-IIoTset dataset,
the filtered dataset displays a p-value of 0.9750 with a between-groups sum of squares
of 0.1077 and a within-groups sum of squares of 5.5953, while the pooled dataset has a
p-value of 0.9603, with a between-groups sum of squares of 0.1457 and a within-groups
sum of squares of 0.1457 and a within-groups sum of squares of 0.9603. At 6.2878, these
high p-values indicate that any observed differences in model accuracy are likely the result
of random chance rather than actual differences in model performance.

The box plots in Figure 14 visually support the ANOVA results, showing similar distri-
butions of accuracy values across the models with overlapping interquartile ranges (IQRs)
and medians. In the filtered NF-ToN-IoT-V2 dataset (Figure 14a), the models exhibit vary-
ing ranges of accuracy values, with some models like Model 1 and Model 3 showing higher
variability and wider ranges, while Model 6 demonstrates more consistent performance
with narrower ranges. This pattern is similarly observed in the wrapper NF-ToN-IoT-V2
dataset (Figure 14b). For the Edge-IIoTset dataset, both the filtered (Figure 14c) and wrapper
(Figure 14d) plots indicate that while some models exhibit wider ranges of accuracy values,
the overall distributions are quite similar across the models. However, these differences in
variance do not translate into significant differences in overall performance, as the variance
analysis (ANOVA) results indicate. The consistency across models and datasets suggests
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that the training process is stable, providing a reasonable guarantee of accuracy no matter
which model is chosen.

Figure 14. Performance comparison of neural networks’ notched box plot: (a) filter NF-ToN-IoT-V2,
(b) wrapper NF-ToN-IoT-V2, (c) filter Edge-IIoTset, and (d) wrapper Edge-IIoTset.

The results suggest that all seven models may be used interchangeably without fear of
significant change in performance; this demonstrates the consistency of the neural network
training process and details the robustness of the model across the datasets and feature
selection techniques.

6. Comparison with Related Works

In this section, we compare our proposed XSS attack detection method with existing
studies in the field, focusing on the datasets, feature selection methods, and performance
outcomes. This comparison highlights the advancements and improvements offered by
our approach, as shown in Table 7.

Our work advances the current state of the art by achieving a commendable high
performance in detection accuracy. For the NF-ToN-IoT-V2 dataset, our Bilayered Neu-
ral Network achieved an impressive 99.84% accuracy, outperforming that of Duan et al.
(2022) [23], who attained 95.70% using DLGNN, and that of Awad et al. (2022) [25], who
reported 98% with a Random Forest model. Similarly, Yigit et al. (2023) [26] achieved
98.04% using an LSTM-AE model, and Sarhan et al. (2022) [27] reported 96.83% using Extra
Trees. Our approach’s use of advanced neural network architectures and a combination of
filter and wrapper feature selection techniques clearly contributes to this superior perfor-
mance. These results highlight the effectiveness of our method in utilizing comprehensive
feature selection and sophisticated neural network structures to achieve higher accuracy in
detecting XSS attacks.
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Table 7. Evaluating our XSS injection cyberattack detection approach with related works.

Reference Utilized Dataset Method for Selecting and
Extracting Features Best Performance Achieved

[23] NF-ToN-IoT-V2 - 95.70% using DLGNN.

[24] AWID
Recursive feature
elimination, constant
removal

99% using Decision Trees, Random Forest, SVM

[25] NF-ToN-IoT-V2 feature importance model 98% using RF
[26] NF-ToN-IoT-V2 AutoFS and AutoCM 98.04% using LSTM-AE
[27] NF-ToN-IoT-V2 - 96.83% using Extra Tree
[28] Edge-IIoTset - 85.48% using Decision Trees
[29] Edge-IIoTset - 77% using CNN
[30] Edge-IIoTset - 76.22% using SecurityBERT classifier

Proposed Method NF-ToN-IoT-V2,
Edge-IIoTset

Filter and wrapper feature
selection

99.84% for NF-ToN-IoT-V2 using Bilayered
Neural Network and 99.79% for Edge-IIoTset
using Trilayered Neural Network

For the Edge-IIoTset dataset, our Trilayered Neural Network achieved a remarkable
99.79% accuracy, a substantial improvement over previous works. Awad et al. (2024) [28]
achieved 85.48% using Decision Trees, Ahmed et al. (2024) [29] reported 77% with a CNN,
and Ferrag et al. (2024) [30] achieved 76.22% using SecurityBERT. These comparisons
underscore the robustness and efficacy of our method, particularly in handling complex
datasets. The significant increase in detection accuracy, as shown in Figure 15, demonstrates
the advantage of our approach in leveraging deep learning techniques to handle the intricate
nature of IoT data. Integrating sophisticated neural network models and comprehensive
feature selection methodologies sets a new benchmark for XSS attack detection in IoT
systems, highlighting the potential for enhanced security in 5G networks. Our results
confirm our approach’s effectiveness and indicate its potential applicability in broader IoT
security contexts, paving the way for future research and development in this critical area.

Figure 15. Comparing the detection accuracies of XSS injection attacks with previous studies. Refer-
ences: Duan et al. (2022) [23], Gaber et al. (2022) [24], Awad et al. (2022) [25], Yigit et al. (2023) [26],
Sarhan et al. (2022) [27], Awad et al. (2024) [28], Ahmed et al. (2024) [29], Ferrag et al. (2024) [30].

7. Conclusions

Our research presents a cutting-edge solution for detecting and mitigating Cross-Site
Scripting (XSS) attacks in IoT systems over 5G networks using Artificial Neural Networks
(ANNs). We developed an innovative ANN-based approach that significantly outperforms
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traditional methods, achieving high detection accuracies validated by extensive testing
on the NF-ToN-IoT-v2 and Edge-IIoTset datasets. We optimized our models’ performance
by employing mutual information (MI) and recursive feature elimination (RFE) for fea-
ture selection, reducing computational demands while maintaining exceptional accuracy.
Our Bilayered Neural Network (BLNN) and Trilayered Neural Network (TLNN) mod-
els reached accuracies of 99.84% and 99.79%, respectively, highlighting their superiority
over existing methods. The robustness and reliability of our approach were further con-
firmed through ANOVA tests, which demonstrated statistically significant improvements
in detection accuracy. This research sets a new standard for XSS attack detection in IoT
environments, showcasing the effectiveness of sophisticated neural network architectures
and comprehensive feature selection techniques. Our findings emphasize the critical role of
advanced artificial intelligence models in enhancing IoT security, paving the way for future
innovations in safeguarding IoT systems in the 5G era.

Author Contributions: Conceptualization, R.A. (Rabee Alqura’n), M.A. (Mahmoud AlJamal) and
I.A.-A.; formal analysis, A.A., B.K. and M.A. (Mohammad Aljaidi); funding acquisition, R.A. (Rakan
Alanaz); investigation, R.A. (Rabee Alqura’n) and A.A.; methodology, M.A. (Mahmoud AlJamal) and
M.A. (Mohammad Aljaidi); project administration, A.A.; resources, I.A.-A. and B.K.; software, R.A.
(Rabee Alqura’n) and M.A. (Mahmoud AlJamal); supervision, M.A.(Mohammad Aljaidi); writing—
original draft, R.A. (Rabee Alqura’n), M.A. (Mahmoud AlJamal) and I.A.-A.; writing—review and
editing, A.A., B.K., M.A. (Mohammad Aljaidi) and R.A. (Rakan Alanaz). All authors have read and
agreed to the published version of the manuscript.

Funding: This research is funded by Northern Border University, Arar, Saudi Arabia, through the
project number “NBU-FFR-2024-1661-04“.

Data Availability Statement: Research data will be available on individual requests to the corre-
sponding author.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at
Northern Border University, Arar, Saudi Arabia.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gaba, P.; Raw, R.S.; Kaiwartya, O.; Aljaidi, M. B-SAFE: Blockchain-Enabled Security Architecture for Connected Vehicle Fog

Environment. Sensors 2024, 24, 1515. [CrossRef] [PubMed]
2. Yadav, N.; Pande, S.; Khamparia, A.; Gupta, D. Intrusion detection system on IoT with 5G network using deep learning. Wirel.

Commun. Mob. Comput. 2022, 2022, 9304689 . [CrossRef]
3. Almiani, M.; AbuGhazleh, A.; Jararweh, Y.; Razaque, A. DDoS detection in 5G-enabled IoT networks using deep Kalman

backpropagation neural network. Int. J. Mach. Learn. Cybern. 2021, 12, 3337–3349. [CrossRef]
4. Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun.

2014, 32, 1065–1082. [CrossRef]
5. De Donno, M.; Giaretta, A.; Dragoni, N.; Bucchiarone, A.; Mazzara, M. Cyber-storms come from clouds: Security of cloud

computing in the IoT era. Future Internet 2019, 11, 127. [CrossRef]
6. Mohammed, M.H.; Rasheed, A.F. A secured Architecture of Internet of Things (IoT) in the 5G age. In New Trends in Network

Cyber Security (Part 1); Ali, Q., Alhafid, A., Hussein, S., Al-Tayyar, H., Alabasy, M.E., Eds.; LAP LAMBERT Academic Publishing:
Saarbrücken, Germany, 2021; ISBN: 9783639861488.

7. Aljaidi, M.; Alsarhan, A.; Samara, G.; AL-Khassawneh, Y.A.; Al-Gumaei, Y.A.; Aljawawdeh, H.; Alqammaz, A. A Critical
Evaluation of A Recent Cybersecurity Attack on iTunes Software Updater. In Proceedings of the 2022 International Engineering
Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI), Zarqa, Jordan, 6–8 December 2022; IEEE: Piscataway, NJ,
USA, 2022; pp. 1–6.

8. Kim, J.; Park, J. Enhancing Security of Web-Based IoT Services via XSS Vulnerability Detection. Sensors 2023, 23, 9407. [CrossRef]
[PubMed]

9. Chaudhary, P.; Gupta, B.B.; Chui, K.T.; Yamaguchi, S. Shielding smart home iot devices against adverse effects of xss using ai
model. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–12
January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5.

10. Chaudhary, P.; Gupta, B.; Singh, A. XSS Armor: Constructing XSS defensive framework for preserving big data privacy in
internet-of-things (IoT) networks. J. Circuits Syst. Comput. 2022, 31, 2250222. [CrossRef]

http://doi.org/10.3390/s24051515
http://www.ncbi.nlm.nih.gov/pubmed/38475051
http://dx.doi.org/10.1155/2022/9304689
http://dx.doi.org/10.1007/s13042-021-01323-7
http://dx.doi.org/10.1109/JSAC.2014.2328098
http://dx.doi.org/10.3390/fi11060127
http://dx.doi.org/10.3390/s23239407
http://www.ncbi.nlm.nih.gov/pubmed/38067778
http://dx.doi.org/10.1142/S021812662250222X


IoT 2024, 5 507

11. Kaur, J.; Garg, U.; Bathla, G. Detection of cross-site scripting (XSS) attacks using machine learning techniques: A review. Artif.
Intell. Rev. 2023, 56, 12725–12769. [CrossRef]

12. Nair, S.S. Securing Against Advanced Cyber Threats: A Comprehensive Guide to Phishing, XSS, and SQL Injection Defense. J.
Comput. Sci. Technol. Stud. 2024, 6, 76–93. [CrossRef]

13. Hannousse, A.; Yahiouche, S.; Nait-Hamoud, M.C. Twenty-two years since revealing cross-site scripting attacks: A systematic
mapping and a comprehensive survey. Comput. Sci. Rev. 2024, 52, 100634. [CrossRef]

14. Tan, X.; Xu, Y.; Wu, T.; Li, B. Detection of reflected XSS vulnerabilities based on paths-attention method. Appl. Sci. 2023, 13, 7895.
[CrossRef]

15. Santithanmanan, K.; Kirimasthong, K.; Boongoen, T. Machine Learning Based XSS Attacks Detection Method. In Proceedings of
the UK Workshop on Computational Intelligence, Birmingham, UK, 6–8 September 2023; Springer: Berlin/Heidelberg, Germany,
2023; pp. 418–429.

16. Kholidy, H.A. Multi-layer attack graph analysis in the 5g edge network using a dynamic hexagonal fuzzy method. Sensors 2021,
22, 9. [CrossRef]

17. Anand, A.; Rani, S.; Anand, D.; Aljahdali, H.M.; Kerr, D. An efficient CNN-based deep learning model to detect malware attacks
(CNN-DMA) in 5G-IoT healthcare applications. Sensors 2021, 21, 6346. [CrossRef] [PubMed]

18. Noman, H.A.; Abu-Sharkh, O.M. Code injection attacks in wireless-based Internet of Things (IoT): A comprehensive review and
practical implementations. Sensors 2023, 23, 6067. [CrossRef]

19. Saini, H.K.; Poriye, M.; Goyal, N. A survey on security threats and network vulnerabilities in Internet of Things. In Big Data
Analytics in Intelligent IoT and Cyber-Physical Systems; Springer: Berlin/Heidelberg, Germany, 2023; pp. 297–314.

20. Kalhoro, S.; Shaikh, F.B.; Kalhoro, A.; Abbasi, J.U.R.; Ayyasamy, R.K. An Overview of Security Attacks in 5G Enabled Technologies:
Applications and Use Case Scenarios. ISeCure 2024, 16, 17–35.

21. Kaushik, K.; Ouaissa, M.; Chaudhary, A. Advanced Techniques and Applications of Cybersecurity and Forensics; CRC Press: Boca
Raton, FL, USA, 2024.

22. Bhardwaj, A.; Bharany, S.; Abulfaraj, A.W.; Ibrahim, A.O.; Nagmeldin, W. Fortifying home IoT security: A framework for
comprehensive examination of vulnerabilities and intrusion detection strategies for smart cities. Egypt. Inform. J. 2024, 25, 100443.
[CrossRef]

23. Duan, G.; Lv, H.; Wang, H.; Feng, G. Application of a dynamic line graph neural network for intrusion detection with
semisupervised learning. IEEE Trans. Inf. Forensics Secur. 2022, 18, 699–714. [CrossRef]

24. Gaber, T.; El-Ghamry, A.; Hassanien, A.E. Injection attack detection using machine learning for smart IoT applications. Phys.
Commun. 2022, 52, 101685. [CrossRef]

25. Awad, M.; Fraihat, S.; Salameh, K.; Al Redhaei, A. Examining the suitability of NetFlow features in detecting IoT network
intrusions. Sensors 2022, 22, 6164. [CrossRef] [PubMed]

26. Yigit, Y.; Chrysoulas, C.; Yurdakul, G.; Maglaras, L.; Canberk, B. Digital twin-empowered smart attack detection system for 6g
edge of things networks. arXiv 2023, arXiv:2310.03554.

27. Sarhan, M.; Layeghy, S.; Portmann, M. Towards a standard feature set for network intrusion detection system datasets. In Mobile
Networks and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–14.

28. Awad, O.F.; Hazim, L.R.; Jasim, A.A.; Ata, O. Enhancing Iiot Security with Machine Learning and Deep Learning for Intrusion
Detection. Malays. J. Comput. Sci. 2024, 37, 140–154.

29. Ahmed, Z.; Askar, S.S. EdgeGuard: Machine Learning for Proactive Intrusion Detection on Edge Networks. Artif. Intell.
Cybersecur. 2024, 1, 37–43.

30. Ferrag, M.A.; Ndhlovu, M.; Tihanyi, N.; Cordeiro, L.C.; Debbah, M.; Lestable, T.; Thandi, N.S. Revolutionizing cyber threat
detection with large language models: A privacy-preserving bert-based lightweight model for iot/iiot devices. IEEE Access 2024,
12, 23733–23750. [CrossRef]

31. Ferrag, M.A.; Friha, O.; Hamouda, D.; Maglaras, L.; Janicke, H. Edge-IIoTset: A new comprehensive realistic cyber security
dataset of IoT and IIoT applications for centralized and federated learning. IEEE Access 2022, 10, 40281–40306. [CrossRef]

32. Li, P.; Rao, X.; Blase, J.; Zhang, Y.; Chu, X.; Zhang, C. Cleanml: A benchmark for joint data cleaning and machine learning
[experiments and analysis]. arXiv 2019, arXiv:1904.09483.

33. Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020,
97, 105524. [CrossRef]

34. Dahouda, M.K.; Joe, I. A deep-learned embedding technique for categorical features encoding. IEEE Access 2021, 9, 114381–114391.
[CrossRef]

35. AlJamal, M.; Mughaid, A.; Bani-Salameh, H.; Alzubi, S.; Abualigah, L. Optimizing risk mitigation: A simulation-based model for
detecting fake IoT clients in smart city environments. Sustain. Comput. Inform. Syst. 2024, 101019. [CrossRef]

36. Roy, K.; Farid, D.M. An Adaptive Feature Selection Algorithm for Student Performance Prediction. IEEE Access 2024, 12,
75577–75598. [CrossRef]

37. Awad, M.; Fraihat, S. Recursive feature elimination with cross-validation with decision tree: Feature selection method for machine
learning-based intrusion detection systems. J. Sens. Actuator Netw. 2023, 12, 67. [CrossRef]

38. Bianchini, M.; Scarselli, F. On the complexity of neural network classifiers: A comparison between shallow and deep architectures.
IEEE Trans. Neural Networks Learn. Syst. 2014, 25, 1553–1565. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10462-023-10433-3
http://dx.doi.org/10.32996/jcsts.2024.6.1.9
http://dx.doi.org/10.1016/j.cosrev.2024.100634
http://dx.doi.org/10.3390/app13137895
http://dx.doi.org/10.3390/s22010009
http://dx.doi.org/10.3390/s21196346
http://www.ncbi.nlm.nih.gov/pubmed/34640666
http://dx.doi.org/10.3390/s23136067
http://dx.doi.org/10.1016/j.eij.2024.100443
http://dx.doi.org/10.1109/TIFS.2022.3228493
http://dx.doi.org/10.1016/j.phycom.2022.101685
http://dx.doi.org/10.3390/s22166164
http://www.ncbi.nlm.nih.gov/pubmed/36015924
http://dx.doi.org/10.1109/ACCESS.2024.3363469
http://dx.doi.org/10.1109/ACCESS.2022.3165809
http://dx.doi.org/10.1016/j.asoc.2019.105524
http://dx.doi.org/10.1109/ACCESS.2021.3104357
http://dx.doi.org/10.1016/j.suscom.2024.101019
http://dx.doi.org/10.1109/ACCESS.2024.3406252
http://dx.doi.org/10.3390/jsan12050067
http://dx.doi.org/10.1109/TNNLS.2013.2293637
http://www.ncbi.nlm.nih.gov/pubmed/25050951


IoT 2024, 5 508

39. Zhang, G.; Band, S.S.; Ardabili, S.; Chau, K.W.; Mosavi, A. Integration of neural network and fuzzy logic decision making
compared with bilayered neural network in the simulation of daily dew point temperature. Eng. Appl. Comput. Fluid Mech. 2022,
16, 713–723. [CrossRef]

40. Khan, M.U.; Samer, S.; Alshehri, M.D.; Baloch, N.K.; Khan, H.; Hussain, F.; Kim, S.W.; Zikria, Y.B. Artificial neural network-based
cardiovascular disease prediction using spectral features. Comput. Electr. Eng. 2022, 101, 108094. [CrossRef]

41. Mughaid, A.; AlJamal, M.; Issa, A.A.; AlJamal, M.; Alquran, R.; AlZu’bi, S.; Abutabanjeh, A.A. Enhancing cybersecurity in
scada iot systems: A novel machine learning-based approach for man-in-the-middle attack detection. In Proceedings of the 2023
3rd Intelligent Cybersecurity Conference (ICSC), San Antonio, TX, USA, 23–25 October 2023; IEEE: Piscataway, NJ, USA, 2023;
pp. 74–79.

42. Mughaid, A.; Alqahtani, A.; AlZu’bi, S.; Obaidat, I.; Alqura’n, R.; AlJamal, M.; AL-Marayah, R. Utilizing Machine Learning
Algorithms for Effectively Detection IoT DDoS Attacks. In Proceedings of the International Conference on Advances in
Computing Research, Orlando, FL, USA, 8–10 May 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 617–629.

43. Bradley, A.; Duin, R.; Paclik, P.; Landgrebe, T. Precision-recall operating characteristic (P-ROC) curves in imprecise environments.
In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006;
IEEE: Piscataway, NJ, USA, 2006; Volume 4, pp. 123–127.

44. Elmrabit, N.; Zhou, F.; Li, F.; Zhou, H. Evaluation of machine learning algorithms for anomaly detection. In Proceedings of the
2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin, Ireland, 15–19 June
2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8.

45. Ross, A.; Willson, V.L. One-way ANOVA. In Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and
Figures; Sense Publishers: Rotterdam, The Netherlands, 2017; pp. 21–24.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/19942060.2022.2043187
http://dx.doi.org/10.1016/j.compeleceng.2022.108094

	Introduction
	Related Work
	Proposed Methodology
	Dataset
	Data Preprocessing
	Filter Feature Selection Method
	Wrapper Feature Selection Method
	Classification Methods
	Narrow Neural Network
	Bilayered Neural Network
	Trilayered Neural Network

	Evaluation Metrics
	ANOVA Test for Performance Variability Analysis

	Results
	Results of the ANOVA Test for Wrapper and Filtered NF-ToN-IoT-V2 and Edge-IIoTset Datasets
	Comparison with Related Works
	Conclusions
	References

