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Abstract: Crucial changes in urban climate can be witnessed due to rapid urbanisation of cities across
the world. It is important to find a balance between urban expansion and thermal environment
quality to guarantee sustainable urban development. Thus, it is a major research priority to study the
urban heat island (UHI) in various fields, i.e., climate change urban ecology, urban climatology, urban
planning, mitigation and management, urban geography, etc. The present study highlighted the
interrelationship between land surface temperature (LST) and the abundance of impervious cover and
green cover in the Varanasi city of Uttar Pradesh, India. For this purpose, we used various GIS and
remote-sensing techniques. Landsat 8 images, land-use–land-cover pattern including urban/rural
gradients, and grid- and metric-based multi-resolution techniques were used for the analysis. From
the study, it was noticed that LST, density of impervious cover, and density of green cover were
correlated significantly, and an urban gradient existed over the entire city, depicting a typical UHI
profile. It was also concluded that the orientation, randomness, and aggregation of impervious
cover and green cover have a strong correlation with LST. From this study, it is recommended that,
when planning urban extension, spatial variation of impervious cover and green cover are designed
properly to ensure the comfort of all living beings as per the ecological point of view.

Keywords: surface urban heat island (SUHI); Varanasi; land surface temperature (LST); Landsat 8;
remote sensing; impervious cover; green cover

1. Introduction

Urban heat islands (UHIs) can be defined as the local rise in temperature because of ur-
ban/landscape growth. It is unintentional climate modification when both atmosphere and
surfaces in urbanised areas have warmth characteristics compared to their non-urbanised
surroundings [1,2]. A major cause of a UHI is the heat generated from urban structures
and other heat sources when they consume and re-radiate solar radiations [3,4]. These are
caused by anthropogenic activities, population outbursts, elevated emissions, air pollution,
thermal power plants, greenhouse gas emissions, energy consumption, and so on [1,5,6].
UHI can cause major problems such as the worsening of living surroundings [7], increment
of energy expenditure [8], elevation of ground-level ozone [9], increase in diseases and
death rates [10], and negative impact on the ecosystem and climate change [11]. The urban
population is forecasted to be 5 billion by 2030 [12], and cities with a large population and
extensive urban fabric are more prone to UHI-related problems [13].

The concept of the UHI was first proposed in the year 1818 by Luke Howard [14]
when research conducted in urban areas concluded that the atmospheric and surface
temperature increased significantly in urban landscapes as compared to the surrounding
areas. UHIs can be classified into two types: atmospheric UHI (AUHI) and surface UHI
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(SUHI). AUHIs are assessed using air temperature, while SUHIs are assessed using land
surface temperature (LST) [5].

The literature highlights that remote-sensing- and GIS-based techniques are highly effi-
cient to study the interdependency of the urban landscape pattern, LST, and UHIs [1,15–19].
Remote-sensing and GIS techniques provide better accuracy and spatial resolution and
are less time-consuming and more economical compared to other traditional methods of
monitoring large areas (cities or states) [20]. The technique presented in this study is based
on the urban–rural gradient, multi-resolution analysis, and spatial matrix.

In order to reduce LST-related problems, proper town planning should be adopted
using heat-absorbing materials, selection of settlement colours, urban green cover, and
vegetated landscapes [21–28]. One of the best solutions for reduction of LST is to increase
the green cover which acts as thermal resistance because of the evapotranspiration effect
and emissivity of space [29–33]. Green cover helps in creating the shelter, and its coverage
also prevents direct solar radiation effects over the surface/space [34,35].

Researchers have attempted to study the relationships between the UHI, LST, and spa-
tial variation of impervious cover and green cover in different regions worldwide [15,36–39].
However, there is a lack of such studies for Indian regions because of heterogeneity in the
land-use–land-cover (LULC) pattern. Surface temperature is not only important to study
urban climatology, but it is central to the energy balance of surfaces [40]. In addition, sur-
face temperature is correlated with the land use and variability of its spatial patterns [41].
For the purposes of this study, the SUHI was considered to analyse the UHI effect on
Varanasi city.

Our study’s emphasis was on zonal variation in landscape composition and its impact
on LST–SUHI over Varanasi city. For this purpose, Landsat 8 OLI/TIRS data and multi-
grid-resolution-based geo-spatial techniques were used. In this study, SUHIs were based
on LST and were identified using daytime images only as LST values are highly influenced
by solar radiations [42]. The vegetation density of the urban area was also considered
as it directly influences the LST and SUHI phenomenon. LST values are low when the
vegetation area is large and vice versa [1]. This study will be helpful in designing cities
to minimize SUHI impact so that urban extension can have sustainable and healthier
environments. In addition, it will provide civil engineering insight into the interaction
between urban surfaces and the environment.

This study aimed to investigate the influencing parameters on the formation of the
SUHI and discuss the potential causes of the SUHI. It also demonstrates the applicability
of RS and GIS techniques to study the SUHI. Furthermore, surface temperature was tested
to determine whether it provides enough information for the estimation of UHI formation.
The study investigated the spatial change of the SUHI of Varanasi city using surface
temperature and the urban–rural gradient.

2. Study Area, Data, and Methods

Varanasi, or popularly known as Banaras, is well-known developing city of Uttar
Pradesh, India. The city is situated on the banks of the River Ganga (or Ganges) and lies
between latitude 25◦10′59′′ N to 25◦33′51′′ N and longitude 82◦36′23′′ E to 83◦12′47′′ E. The
city is popular for its sacredness and its religious importance to the people of India because
of holy Ganges. The geographical area of the city is about 1592 km2. The city is surrounded
by six districts, namely Jaunpur, Azamgarh, Ghazipur, Chandauli, Mirzapur, and Sant
Ravi Das Nagar. The monsoon season extends from June to September. The temperature
typically varies between 22 ◦C and 46 ◦C [43–45]. The location map of study area is shown
in Figure 1.
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Figure 1. (a) Location map of Varanasi city, India (study area). (b) White circle shows Varanasi city marked on Landsat 8. image.

For this study, Landsat 8 Operational Land Imager and Thermal Infrared Sensor (Land-
sat 8 OLI/TIRS) images were used. The images were acquired from https://earthexplorer.
usgs.gov/ (accessed on 30 April 2017) and are shown in Table 1. These images have
11 bands, containing 8 multispectral bands (band 1st–7th and 9th), one panchromatic
(band 8th), and two thermal bands (band 10th and 11th). Pre-processing of datasets was
performed based on digital number (DN) of multispectral bands using the ArcMap 10.5.

Table 1. Description of Landsat 8 image acquisition for Varanasi city.

City Landsat 8 Scene ID Acquisition Date and Time (GMT) Season

Varanasi City
LC81420422017100LGN00 10 April 2017; 04:54:25 Dry

LC81420432017100LGN00 10 April 2017; 04:54:49 Dry

2.1. Calculation of LST

LST calculations from Landsat datasets involved use of DN values of thermal bands
and absolute radiance values [46,47]. The datasets were pre-processed to correct pre-launch
calibration constants and assumption of unity emissivity of radiance values. In the present
study, LST maps were prepared based on 10th band of Landsat 8 imagery. The atmosphere
brightness temperature values were provided in Kelvin (K), which were then converted into
degrees Celsius (◦C, and emissivity-corrected LST was calculated using Equation (1) [15].

LST(◦C) =
TB

1 +
(

λ×TB
ρ

)
ln ε

(1)

where TB = Landsat 8, 10th band brightness temperature; λ = emitted radiation wavelength
(=10.8 µm); ρ = hc

σ (1.438 × 10−2 m·K); σ = Boltzmann constant (1.38 × 10−23 J·K−1);
h = Plank’s constant (6.626 × 10−34 J·s); c = velocity of light (2.998 × 108 m·s−1); and ε is
the land surface emissivity, estimated using Equation (2).

ε = mPv + n (2)

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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where m = (εv − εs) − (1− εs)Fεv and n = εs + (1 + εs)Fεv, where εv and εs are the
vegetation and soil emissivity, respectively; m (0.004) and n (0.986) value taken from [48].
Pv is the vegetation proportion and was obtained using Equation (3).

Pv =

(
NDVI − NDVImin

NDVImax − NDVImin

)2
(3)

where NDVI is the normalized difference vegetation index [49] given by Equation (4),
derived using the surface reflectance of Landsat 8 Bands 4 (Red) and 5 (NIR).

NDVI =
(ρNIR − ρRed)

(ρNIR + ρRed)
(4)

2.2. Mapping Topography

For land-cover mapping, Landsat OLI/TIR images were used. We classified the
satellite images of the study area into four distinct categories, i.e., water, impervious cover,
green cover, and others. A brief description of areas included in each category is shown in
Table 2.

Table 2. Description of land-use–land-cover (LULC) categories considered for the classification of
study area.

Category Description

Water All water-covered areas (e.g., sea, lake, river, and ponds).

Impervious cover All impervious cover (e.g., buildings, roads, airports, parking
area, and tennis courts)

Green cover All vegetation covers (e.g., forest and grass)
Others All land cover except water, impervious cover, and green cover

2.3. Zonal Spatial Statistical Analysis

For gradient analysis, spatial variation of LST with spatially distributed impervious
cover and green cover were analysed. We used statistical buffer-zone technique for gradient
calculations; multiple buffer rings were created around the centre of the study area with
300 m offset. For each zone, average LST, impervious-cover density, and green-cover
density were determined. Influence of different land-cover categories on LST was examined
based on multi-resolution grid polygons with different pixel sizes, viz. 3 × 3, 4 × 4,
. . . , 10 × 10. Average LST, impervious-cover density, and green-cover density were also
calculated for each polygon in the study area. We also focused on identifying the prevalent
land-cover character, which has influenced the spatial variation of LST in Varanasi district.
For this, 60 randomly selected polygon grids from grids sized 10 × 10 pixels were used.
Using these randomly selected grid polygons, land-cover map of the study area was
clipped and used as an input for this analysis. We used scatter plots and correlation
method to establish the relationship between average LST and green-cover density and
impervious-cover density for each buffer zone and multi-resolution grids.

3. Results and Discussion
3.1. LST Variation with Changing Land Cover

The LULC classification of Landsat 8 (OLI/TIRS) image was carried out using a
supervised classification technique as shown in Figure 2. Classification results show a
mixture of impervious cover and green cover. Overall, most land is covered by green
cover (63.5%), followed by impervious cover (20.6%), others (12.1%), and water (3.8%).
However, a higher concentration of impervious cover exists near the centre of the city, with
an observed increase in green-cover coverage moving away from the centre.
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The land surface temperature (LST) map for Varanasi city is shown in Figure 3. The 
LST values for the region range from about 28 °C for water surfaces to 44 °C for impervious 
cover with a mean and standard deviation of 38.2 °C and 11.4 °C, respectively. The differ-
ence between average LST over impervious cover (39 °C) and green cover (37.8 °C) was 
observed to be 1.2 °C. This implies that land-cover change influences land surface tempera-
ture. These findings highlight the potential of classified urban cover based on training clas-
ses (LULC categories) and indices using RS data (LST) and are consistent with the results in 
connection to the SUHI effect in Bangkok, Jakarta, and Manila cities of Southeast Asia [15]. 

Figure 3. Land surface temperature (LST) map of Varanasi city developed using Landsat 8 imagery. 

Figure 2. (a) Land-use–land-cover (LULC)-classified map of Varanasi city. (b) Percentage-area-based division of the four
LULC categories.

The land surface temperature (LST) map for Varanasi city is shown in Figure 3. The
LST values for the region range from about 28 ◦C for water surfaces to 44 ◦C for impervious
cover with a mean and standard deviation of 38.2 ◦C and 11.4 ◦C, respectively. The difference
between average LST over impervious cover (39 ◦C) and green cover (37.8 ◦C) was observed
to be 1.2 ◦C. This implies that land-cover change influences land surface temperature. These
findings highlight the potential of classified urban cover based on training classes (LULC
categories) and indices using RS data (LST) and are consistent with the results in connection
to the SUHI effect in Bangkok, Jakarta, and Manila cities of Southeast Asia [15].
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3.2. LST Variation with Changing Land Use

Both the impervious cover and average LST values were observed to gradually de-
crease along the urban–rural gradient (i.e., gradual decrease from urban towards rural area),
whereas green-cover density showed a contrasting pattern. However, the relationship
between the density of green cover and average LST was comparatively weaker compared
to the impervious-cover densities and average LST (Figure 4). For a range of 10% to 20%
of impervious-cover density, average LST ranged from 32 ◦C to 37 ◦C, while for areas
having an impervious-cover-density range of 20% to 40%, the variation in average LST
was low ranging from 36 ◦C to 38 ◦C. With the increase in green-cover density, a decline in
average LST was observed. Figure 4 shows that for impervious cover, small changes in
cover density have a comparatively greater impact on average LST than for green cover.
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The results highlight that the average LST increases gradually, reaching its maxima at
approximately 19 km from the centre of the city (Figure 5). This may be due to the fact that
up to 19 km from the centre, green-cover density decreases gradually and impervious-cover
density remains almost constant with few spikes and troughs. Considering a comparatively
stronger relationship between impervious-cover density and average LST, a consistent
model exists among the average LST values and impervious-cover density along the urban–
rural gradient. This reflects a distinctive SUHI profile, where LST reduces along the urban–
rural gradient. The results also show a sudden drop in impervious-cover density along
the urban–rural gradient with a subsequent drop in LST from a zone of 25.5 km to 29 km,
which further highlights the effect of impervious cover on LST. Hence, we recommend city
planners and policy makers take necessary measures to increase green-cover density in
zones with high LST such as the construction of green rooftops, tree planting, growing
urban gardens, and similar other measures [50].
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Figure 5. Variation of actual average land surface temperature (LST) and impervious and green cover
density along urban rural gradient.

3.3. Multi-Resolution LST Variation with Changing LULC

Figure 6a,b shows the results of correlation coefficients between impervious-cover
density, green-cover density, and average LST for various grid sizes. An increasing trend
was observed in the correlation between impervious-cover density and average LST with
an increasing size of grids. This increasing trend shows that large areas strongly influence
the impervious cover on the average LST values. The results are coherent with a few other
works available using a similar approach [15,51–54].
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Figure 6. Scatter plots between average land surface temperature (LST) and (a) green cover density and (b) impervious cover
density. (c) Variation in correlation of average LST and impervious and green cover density against variation in resolution.
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On the contrary, the correlation between green-cover density and average LST de-
creases as the size of the grid increases and thus represents a weaker influence of green-
cover density in larger areas. Generally, areas nearby to green cover witness its cooling
effect, which explains the above-observed trend in correlation values of green-cover den-
sity and LST values. However, the magnitude of the correlation between green cover and
average LST gets constant at and beyond the grid size of 8 × 8 (Figure 6b). This dimension
size is important as it can be considered as an optimal threshold area for establishing rela-
tionships between surface/air temperatures and LULC characteristics in order to simulate
or predict meteorological or environmental parameters within the region [15].

4. Conclusions

The interrelation between LST, SUHI abundance, and spatial distribution of impervious
cover and green cover of Varanasi city was highlighted in this study. Landsat 8 OLI/TIRS
data were used, and the analysis was conducted on the basis of the urban/settlement
gradient, multi-resolution grid, and spatial metrics approach. A relationship was observed
between average LST and impervious-cover density along urban/settlement gradients
of the Varanasi city. In addition, a relationship was studied between average LST and
green-cover density along urban/settlement gradients of the Varanasi city. A typical SUHI
profile was observed where the correlation between average LST and density of impervious
cover increased in larger grids as compared to the correlation between average LST and
density of green cover. Thus, LST variation is influenced by impervious and green cover in
bigger and smaller areas, respectively. It was also noticed that the orientation, complexity,
and aggregation of impervious cover and green cover highly influence average LST. The
study can be helpful for sustainable LULC planning and mitigation under consideration
of climate change. It demonstrates the use of available free remotely sensed GIS data to
enhance the spatial resolution of SUHI visual and statistical models. It also highlights the
surrounding climatic variability, meteorology, and ecological aspects of the study area. We
recommend city designers and policy-making bodies must consider the area within 0.3 km
to 6 km from the centre of the city seriously as green cover is low and average LST is high
in this zone.
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