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Electrothermal Instabilities in Barium-Titanate-Based Ceramics
Rizos N. Krikkis

Institute of Thermal Research, 2 Kanigos Str., P.O. Box 106 77 Athens, Greece; rkrik@uth.gr

Abstract: An electrothermal analysis for barium-titanate-based ceramics is presented, combining
the Heywang–Jonker model for the electric resistivity with a heat dissipation mechanism based on
natural convection and radiation in a one-dimensional model on the device level with voltage as the
control parameter. Both positive-temperature-coefficient (PTC) and negative temperature coefficient
(NTC) effects are accounted for through the double Schottky barriers at the grain boundaries of the
material. The problem formulated in this way admits uniform and non-uniform multiple-steady-state
solutions that do not depend on the external circuit. The numerical bifurcation analysis reveals that
the PTC effect gives rise to several multiplicites above the Curie point, whereas the NTC effect is
responsible for the thermal runaway (temperature blowup). The thermal runaway phenomenon as a
potential thermal shock could be among the possible reasons for the observed thermomechanical
failures (delamination fracture). The theoretical results for the NTC regime and the thermal runaway
are in agreement with the experimental flash sintering results obtained for barium titanate, and 3%
and 8% yttria-stabilized zirconia.

Keywords: BaTiO3 and titanates; thermistor; Joule heating; non-local problem; bifurcation analysis;
delamination fracture

1. Introduction

Since the first invention, back in 1955 [1], of the basic materials and processing technolo-
gies of positive-temperature-coefficient (PTC) ceramics, the field of interfacially controlled
electroceramics is now of paramount technological importance, as well as high scientific
interest. Two different categories of materials may be identified: (i) PTC resistors (thermis-
tors) based on barium titanate, and (ii) ZnO varistors. A salient feature for both types is the
highly non-linear voltage–current relationship caused by the formation of double Schottky
barriers at the grain boundaries which are affected by the local composition of grain bound-
ary regions’ (doping and segregation) oxygen partial pressure and the applied voltage. We
will discuss only the former, albeit certain similarities regarding the existence of multiple
solutions and the thermal runaway phenomenon will be addressed in the appropriate sec-
tions. PTC thermistors are manufactured from silicon, barium, lead, and strontium titanates
with the addition of yttrium, manganese, tantalium, and silica. They are extensively used
for electric circuit protection, sensing excessive currents, and constant-temperature heating
elements, and as current limiting devices, that is, as nondestructible (resettable) fuses. The
technical and theoretical aspects may be found in the review papers [2,3]. Although PTCs
and, in general, electroceramics are, in principle, loaded electrically as components of
electrical and/or electronic circuits, a significant number of mechanical failures is being
recorded annually. Although the reasons for the failure are not fully understood, several
studies are based on the Joule self-heating effect which causes temperature differences,
thermal strains, and excessive thermo–mechanical stresses that may cause the failure of the
device [4–7]. Today, there is an increasing demand for a thorough analysis and understand-
ing of the underlying non-linearly coupled electrothermal phenomena in electroceramic
devices, since the current technological trends point towards designs with a reduced size
and increasingly higher power densities.
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The thermistor as a strongly non-linear coupled electrothermal problem (i.e., the
exponential increase of the electric resistivity above the Curie temperature) has attracted
significant engineering (theoretical and experimental [5–13]), and mathematical (applied
and numerical [14–19]) attention. The above literature review suggests that the thermistor
problem has been studied with various assumptions and/or restrictions. These usually
include a constant heat transfer coefficient, an idealization of the PTC effect through a
simplified electric conductivity function and, in certain cases, the influence of an external
linear electric circuit. The latter admits up to three solutions as determined from the
number of the intersection points between the current–voltage characteristic curves of the
thermistor and the external circuit [15–17].

Yet, a complete analysis of the inherent electrothermal instabilities on the device level,
induced by the combined positive and negative temperature coefficient (NTC) behavior,
called thereafter the P–NTC effect, is still missing. The aim of the present study is to provide
insight and, hopefully, a reasonable explanation to the most common reason of thermistor
failure, namely, the delamination fracture due to excessive thermal loading (shock). To
this end, the Heywang–Jonker model for the electric resistivity of the device is adopted,
which describes both the positive and the negative temperature coefficient regimes. This
non-linear and non-monotonic electric resistivity function of the temperature is combined
with a non-linear temperature-dependent natural convection and radiation heat dissipation
mechanism to form a one-dimensional distributed device model based on voltage control.
The problem formulated in this way admits multiple-steady-state solutions that can be
either uniform or non-uniform and do not depend on the external circuit. The numerical
bifurcation analysis reveals that the PTC effect gives rise to several multiplicites above the
Curie point, whereas the NTC effect is responsible for the temperature blowup (thermal
runaway) which, unless detected and prevented, will lead to the destruction of the device.
This result is further supported from a similar behavior that is encountered in other bistable
systems such as superconductors [20] and boiling wires [21].

2. Analysis
2.1. Energy Balance

Following the energy analysis in [13] for the device shown in Figure 1a, the temper-
ature variation T along the longitudinal direction Z is describe by the following partial
differential equation:

C
∂T
∂t

=
∂T
∂Z

(
k

∂T
∂Z

)
− P

A

[
hc(T − T∞) + εσSB

(
T4 − T4

∞

)]
+ EJ (1)
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Figure 1. (a) Conductor geometry; (b) energy balance on an elementary volume element; and
(c) simplified electric circuit.
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This is the balance between the heat generated by the Joule effect and the heat dis-
sipated by conduction, radiation, and natural convection. In the equation above, A is
the cross-sectional area, T∞ is the ambient temperature, C is the volumetric specific heat
capacity, hc is the convective heat transfer coefficient, P is the perimeter, ε is the surface
emissivity, σSB is the Stefan–Boltzmann constant, J is the current density through the device,
and E is the electric field intensity. For a constant DC current, the electric field intensity will
be proportionally related to the current density through Ohm’s law, E = ρ̂(T)J although
the electric resistivity ρ̂ will be a function of the local temperature [22]. Since, in many
practical applications, the controlling parameter is the applied voltage, it is instructive to
introduce the electric potential Φ as [23]:

E = −dΦ
dZ

= ρ̂J. (2)

Integrating the above relationship and considering that the current remains constant,
albeit still unknown, yields:

J
∫ L

0
ρ̂(T)dZ = −[Φ(L)−Φ(0)] = V, (3)

where V is the voltage drop across the device, as shown schematically in Figure 1c. Sub-
stituting the current density J from Equation (3) into Equation (1), the energy balance for
voltage control takes the form:

C
∂T
∂t

=
∂T
∂Z

(
k

∂T
∂Z

)
− P

A

[
hc(T − T∞) + εσSB

(
T4 − T4

∞

)]
+

ρ̂V2[∫ L
0 ρ̂(T)dZ

]2 . (4)

In contrast to the corresponding current control problem, this is a non-local problem
since the solution depends on the resistivity integral over the device. Neumann-type
boundary conditions are imposed on the device ends:

∂T
∂Z

∣∣∣∣
Z=0

=
∂T
∂Z

∣∣∣∣
Z=L

= 0, (5)

implying that heat is dissipated only through the lateral surface of the conductor.

2.2. Heat Transfer Model

For the heat dissipation by natural convection, the correlation of Churchill and Chu [24]
for the circumferentially average Nusselt number Nu is adopted:

Nu = 0.36 + 0.518
Ra1/4

f (Pr)
, f (Pr) =

[
1 +

(
0.559

Pr

)9/16
]4/9

, (6)

where f (Pr) is a weak function of the Prandtl number Pr. Equation (6) is valid for a very
wide range of Rayleigh numbers, from 10−6 to 109, while it maintains a simple and compact
mathematical form, which facilitates the calculation of the partial derivatives during the
continuation on the stable and unstable branches of the solution. Equation (6) is applied
locally in the evaluation of the convective heat flux along the device axis, in a similar manner
as it was applied by Faghri and Sparrow for the calculation of the non-linear external heat
flux in a horizontal pipe [25]. Hence, the local Rayleigh number Ra is evaluated from the
local temperature difference as:

Ra = gβD3[T(Z)− T∞]/αν, (7)

where g is the acceleration due to gravity, β is the thermal expansivity, D is the device
diameter, α is the thermal diffusivity, and ν is the kinematic viscosity.
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2.3. Electric Resistivity: The Heywang–Jonker Model

A salient feature of a ceramic PTC device is the strongly non-linear dependence
of its resistivity with respect to temperature. Driven by a transition of the ferroelectric
PTC material, the resistance increases several orders of magnitude in a relatively narrow
temperature interval (PTC effect). After Heywang’s [26] fundamental research, several
authors [26–29] have explained the PTC effect in terms of a double-Schottky-barrier model.
The acceptor states in the grain boundary core region acts as a trap for the majority charge
carriers (electrons in the case of donor-doped BaTiO3) which gives rise to a negative net
charge of the grain boundary core and adjacent space charge layers in the grains where the
majority charge carriers are depleted. Above the ferroelectric–paraelectric phase transition
point (Curie temperature), the potential, ϕ, in the space charge layer can be obtained from
Poisson’s equation:

d2 ϕ

dx2 =
e(nD − nA)

εε0
, (8)

where ε0 is the permittivity of vacuum, ε is the relative permittivity, and e is the elementary
charge, whereas nD and nA are the densities of the donor and acceptor states in the bulk
region, respectively. The solution of Equation (8) with boundary conditions ϕ(0) = ϕ0 and
ϕ(w0) = 0 yields the depletion zone width w0

w0 =
Ns

2(nD − nA)
, (9)

and the potential barrier height ϕ0 of the space charge layers

ϕ0 =
eN2

s
8εε0(nD − nA)

, (10)

with Ns being the density of the occupied acceptor states in the boundary layer. The
temperature dependence of the relative permittivity is given by the Curie–Weiss law

ε =
c

T − TC
, (11)

where c = 1.5× 105 K is the Curie–Weiss constant and TC corresponds to the Curie–Weiss
temperature. The density of the occupied acceptor states can be expressed as a function of
temperature in terms of Fermi–Dirac statistics:

Ns =
Ns0

1 + exp[(εϕ0 + εF − εA)/kBT]
, (12)

with Ns0 being the acceptor state density in the boundary layer and εA the energy level of
the acceptor states relative to the conduction band edge. The energy level εF corresponds
to the Fermi level defined as

εF = kBT ln[Nc/(nD − nA)], (13)

with Nc being the density of states of the conduction band, which corresponds to the density
of titanium ions in the lattice (Nc = 1.56× 1022 cm−3) [27,29], owing to a small band width
of the order of 0.1 eV. In the linear response regime, Jonker showed that the total resistivity
is given by [27,30]:

ρ̂ = ρ̂g

[
1 +

ζw0

ψ
exp(ψ)

]
, ψ =

eϕ0

kBT
, (14)

where ρ̂g and ζ denote the grain resistivity and the grain boundary density, respectively.
Equation (14) describes the characteristic increase in the resistivity by several orders of
magnitude above the ferroelectric–paraelectric transition temperature TC = 110–120 ◦C.
However, after exceeding Tmax = 250–270 ◦C where the maximum resistivity is encoun-
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tered, the resistivity is entering the negative temperature coefficient (NTC) regime where
its magnitude is rapidly decreasing with increasing temperature. It is exactly this combined
non-linear and non-monotonic P–NTC effect that gives rise to multiple steady states and
eventually to thermal runaway as it will be shown in the following paragraphs. The validity
of Equation (14) well within the NTC regime and up to 900 ◦C has been experimentally
verified [31].

2.4. The Electrothermal Model in Dimensionless Form

The electrothermal model developed in the previous paragraph may be recast in
dimensionless form through the below variables’ transformation:

z = Z/L, τ = αt/L2, Θ = T/Tre f , ρ = ρ̂/ρ̂ref , v = V/Vref , V2
ref = k(Tρ̂)ref (15)

To simplify the convective and radiative terms a convenient choice for the reference
temperature is Tref = T∞, whereas the magnitude of the maximum resistivity is taken
as the reference value, ρ̂ref = ρ̂max. Introducing the new variables into Equation (4), the
temperature distribution along the device takes the form:

∂Θ
∂τ

=
∂2Θ
∂τ2 − u2

Nu(Θ− 1) + Ch

(
Θ4 − 1

)
−
(

v

u
∫ 1

0 ρdz

)2

ρ

. (16)

In the above equation, the conduction–convection parameter (CCP) is defined as:

u2 =
hrefL2

k(A/P)
, (17)

where k is the thermal conductivity and L is the device length. The reference heat transfer
coefficient href is defined through the Nusselt number:

Nu =
hc

k∞/D
=

hc

href
,

In terms of the dimensionless variables defined above, the local Rayleigh number
becomes:

Ra(z) = Ra∞[Θ(z)− 1], Ra∞ =
gβD3T∞

αν
,

The current density parameter is related to the current density as below

j2 =
J2(A/P)

T∞

(
ρ̂

h

)
ref

, (18)

and Ch is the ratio of the radiative heat transfer coefficient to the reference heat transfer
coefficient

Ch =
εσSBT4

∞
href

=
hr

href
, (19)

Under steady-state conditions, the partial differential equation, Equation (16), reduces
to a two-point boundary value problem for the device temperature Θ(z)

Θzz − u2

[
Nu(Θ− 1) + Ch

(
Θ4 − 1

)
−
(

v
uρ

)2
ρ

]
= 0, (20)

where Θz = dΘ/dz, Θzz = d2Θ/dz2 , and

〈ρ〉 =
∫ 1

0
ρ(Θ)dz.



J 2024, 7 158

The dimensionless voltage–current relationship (the global constraint) becomes

v− uj〈ρ〉 = 0, (21)

with boundary conditions
Θz(0) = Θz(1) = 0. (22)

2.5. Stability

The linear stability of a certain steady state js, Θs(z) to small perturbations is deter-
mined by substituting the below expansions into Equations (16) and (21)

Θ(z, τ) = Θs(z) + δΘ(z, τ) , (23)

j(τ) = js + δj(τ). (24)

Retaining only linear terms, the current density perturbation reads:

δj = −uj2s
v

∫ 1

0
ρΘδΘdz . (25)

Assuming the below form of the temperature perturbation in terms of the eigenvalue
λ and the eigenfunction ϑ(z)

δΘ(z, τ) = eλτϑ(z), (26)

we obtain an integro–differential problem for the eigenvalue λ

λϑ = ϑzz −
[

u2∆QΘϑ− 2u

(
j3ρ
)

s
v

∫ 1

0
ρΘδΘdz

]
, (27)

where
∆QΘ =

∂

∂Θ

[
Nu(Θ− 1) + Ch

(
Θ4 − 1

)
− j2ρ(Θ)

]
Θ=Θs

, (28)

and

ρΘ =
∂ρ

∂Θ

∣∣∣∣
Θ=Θs

, ρs = ρ(Θs(z)). (29)

The corresponding boundary conditions are ϑz(0) = ϑz(1) = 0. Stable solutions are
characterized by negative eigenvalues, whereas positive ones correspond to unstable tem-
perature distributions. It is worth pointing out that similar non-local eigenvalue problems
appear, for instance, in the theory of the microwave heating of ceramic materials [32].

3. Numerical Methods

An efficient way to solve the second-order integro–differential two-point boundary
value problem in Equation (20) is, first, to transform it into a standard form that can be
handled by ordinary differential equation (ODE) solvers. Employing the new variables
Θ1 = Θ, Θ2 = Θz, and Θ3z = ρ(Θ1), Equation (20) is transformed into a system of
first-order equations

Θ1z = Θ2

Θ2z = u2
[
Nu(Θ− 1) + Ch

(
Θ4 − 1

)
− j2ρ(Θ)

]
Θ3z = ρ(Θ1)

(30)

which can be integrated by standard solvers, say, from z = 0 to z = 1, since the voltage–
current constraint is now an implicit boundary condition in j at z = 1, i.e.,

v− ujΘ3(j; z = 1) = 0. (31)
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4. Results and Discussion

Before we analyze the complete numerical solution, it is instructive to discuss, first,
the uniform solutions of Equation (20), which reduces to an algebraic one for a constant
temperature profile:

Nu(Θ− 1) + Ch

(
Θ4 − 1

)
− (v/u)2

ρ(Θ)
, (32)

A geometrical (graphical) solution is depicted in Figure 2 where the heat generation
Qg and the heat dissipation Qd curves are being plotted. Depending on the magnitude
of the applied voltage v, up to two solutions of Equation (32) may be obtained from
the number of the intersection points shown in Figure 2. The solutions are projected
in the (v, Θ) plane in Figure 3 with u as a parameter. From the two solutions, the one
corresponding to a lower temperature, i.e., Θ < Θmax is stable (solid line), whereas the
other one is unstable (dashed line). The two branches, the stable and the unstable one,
are connected through a singular point with a characteristic voltage magnitude. Any
applied voltage that exceeds this threshold will lead to an instability, namely, a thermal
runaway (temperature blowup). Hence, the curve connecting the singular points forms
the instability threshold which depends only on the conduction–convection parameter u
since the ambient temperature and the donor and acceptor densities remain fixed. The
associated instabilities may also be understood from the voltage–current relationship
shown in Figure 4 which resembles an unusual lobe-like curve. Such non-linear and non-
monotonic v–j characteristic curves are encountered, for instance, in semiconductors (S-,
N-, or Z-shaped) [33], superconductors [34], and organic LEDs [35], leading to interesting
and complex bifurcations.
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Figure 2. Energy balance and uniform solutions of Equation (32). Heat generation (Qg) and dis-
sipation curves (Qd) are plotted against temperature. For a certain range of the applied voltage v,
two intersection points exist, one below and one above Θmax, corresponding to one stable and one
unstable solution, respectively. Above a certain threshold (singular point at v = 2.672), i.e., for v = 3,
no intersection point exists and a thermal runaway is triggered.
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Interestingly, when the conduction term Θzz is taken into consideration, a far more
complicated solution structure and multiplicity pattern emerges, as shown in Figure 5.
There, the base temperature Θb = Θ(0) has been selected as the bifurcation parameter and
it is plotted against the dimensionless applied voltage v. Compared with Figure 3, both
uniform solutions are recovered, and, in addition, several non-uniform solutions appear
mostly within the zone ΘC < Θ < Θmax. The temperature profiles that correspond to
the multiplicity pattern of Figure 5 are shown in Figure 6 for v = 0.1. Our linear stability
analysis presented in paragraph II.5 reveals that the spatially periodic profiles (specifically
2 and 4 in Figure 6) are unstable, while profiles 1 and 5, which are antisymmetric with
respect to the center of the device, are stable. This is in agreement with the stability analysis
results of Elmer [36] for an idealized resistivity–temperature curve consisting of a step
function below the transition point and a linearly decreasing segment above the transition
point. This means that, in contrast to the uniform case where a single path for the instability
existed, now, the path to instability may come from the stable non-uniform solution as
indicated by the red arrows in Figure 6. An important conclusion that can drawn from
Figure 6 is that the abrupt change in the resistivity (PTC effect) is responsible for the
multiplicity below approximately the temperature of maximum resistivity while the NTC
effect leads to a thermal runaway since the heat generation rate exceeds the heat that can be
dissipated by natural convection and radiation. A similar thermal runaway phenomenon
is observed in metallic conductors and high-temperature superconductors as a result of the
non-linear relationship between the temperature and the electric resistivity [21,37].
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Figure 6. Numerically computed temperature profiles for the distributed model of Equation (20).
Solutions designated as 1, 2, 4, and 5 correspond to non-uniform profiles, whereas 3 and 6 correspond
to uniform profiles.

4.1. The Relationship between Temperature and Mechanical Failure

In general, the mechanical failures of electroceramic components are attributed to
thermal stresses induced by the temperature gradients developed. Dewitte et al. [5] carried
out a thermo–elastic analysis which verified that a temperature difference between the core
and surface exists during transient switching processes and the amplitudes of the resulting
thermal stresses are sensitive to the applied boundary conditions on the edges of the device.
However, the calculated mechanical stresses in a homogeneous PTC component are too
low to explain the delamination fracture. As a possible explanation, it has been postulated
that excessive stress amplitudes may be a consequence of inhomogeneities in the resistance
field within the ceramic material. Supancic [6] extended the resistivity model to include
the varistor effect, that is, the resistivity dependence on the electric field intensity, also
known as the varistor effect (voltage-dependent resistor). The analysis and the subsequent
experimental verification showed that the varistor effect significantly changes the thermo–
electrical response of the device since higher temperature gradients are prevailing, which
give rise to substantial thermo–mechanical stresses. In any case, with or without the
varistor effect, the calculated temperature remains bounded [5,6]. This phenomenon may
be explained from a different perspective, as soon as it is recognized that, because of the
PTC effect, the problem is a bistable one; that is, it admits multiple solutions (states), one
“cold” and one “hot” [13,15]. The latter state is inevitably associated with temperatures of
sufficient magnitude either under voltage or under current control. However, the present
study shows that, when the whole P–NTC effect is taken into consideration, on one hand,
the stable non-uniform steady state may exceed the temperature of maximum resistivity at
high voltages as shown in Figure 5. This temperature profile is not symmetric with respect
to the center and a significant temperature gradient may develop across the device. On
the other hand, an electrothermal instability, which is a consequence of the NTC effect
at higher temperatures, may trigger a temperature blowup when the runaway voltage is
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exceeded, which could be another reason for the thermo–mechanical failures observed in
the electroceramic devices.

The preceding multiplicity analysis and the instability leading to thermal runaway
is also applicable to metal oxide (i.e., ZnO) varistors. The ZnO-based varistor is a highly
non-linear two-terminal polycrystalline device, commonly known as multi-component
metal oxide varistors (MOVs) [38–40]. Because of their highly symmetric non-linear current–
voltage characteristic curve with respect to the polarity of the applied voltage, these MOVs
demonstrate an excellent surge-withstanding capability. Similarly to the barium-based
ceramics, these electric characteristics can be explained with the formation of potential
barriers (Schottky barriers) involving thin insulating layers around the successive ZnO
grains [41–43]. Because of their special characteristics, varistiors are widely used in the
power systems’ protection, for suppressing internally generated spikes in electronic circuits,
as surge absorbers, and as surge protectors of electric and electronic circuitry, among
others. For the surge arrester application in particular, the energy absorption capability
while maintaining thermal stability is of paramount importance. Three failure modes have
been identified thus far: (i) electrical puncture, (ii) physical cracking, and (iii) thermal
runaway [39,44]. Similar energy balances between heat generation and heat dissipation
leading to thermal runaway have been recently reported [38,45–47].

4.2. Comparison with Experiments

Above Θmax in the NTC regime where the potential barrier assumes an Arrhenius-
type temperature dependence, as in Equation (33), the thermistor problem, and, especially,
the thermal runaway phenomenon described above, is closely associated with the flash
sintering of ceramics as in, for instance, barium and strontium titanates, and 3% and
8% yttria-stabilized zirconia, just to name a few. The key feature of the process is to
exercise control when an operating parameter, usually the furnace temperature, exceeds
the corresponding limit point, established by the voltage applied to the specimen. Under
these conditions, the heat dissipation mechanism can no longer balance the Joule heating
and the temperature blows up. To maintain the temperature below a certain threshold, the
process controller will switch from voltage to current control [48,49]. Detailed reviews may
be found in the papers [50–52]. In this case, the electric resistivity is given by a simpler and
monotonic Arrhenius relationship:

ρ̂ = ρ̂0 exp(εa/RT), (33)

where εa is the activation energy, R is the universal gas constant, and ρ̂0 the pre-exponential
factor. Now, T∞(Θ∞) stands for the furnace temperature, which is no longer a constant
but rather a parameter. Thus, a different reference temperature has been selected, namely,
Tref = 1000 K. A convenient choice for the reference electric resistivity is:

ρ̂ref = ρ̂0 exp(εa/RTref) = ρ̂0 exp(γ). (34)

With the above reference values, the dimensionless electric resistivity yields:

ρ = exp
[

1
γ

(
1
Θ
− 1
)]

. (35)

Utilizing the Frank–Kamenetskii approximation for the exponential term of the electric
resistivity, Hewitt et al. [53] obtained closed-form solutions of Equation (20) for plane and
radial geometries under certain assumptions. In the present study, the bifurcation and
stability analysis are carried out numerically; therefore, no simplified assumptions for
the form of the electric resistivity have been introduced, so the same model described by
Equation (30) and Neumann boundary conditions (insulated edges) has been used for the
numerical solution of the flash sintering phenomenon. The solution structure and the sin-
gular points are presented in Figure 7, which looks very similar to Figure 3, which describes
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the corresponding uniform solutions in the whole P–NTC regime. Hence, it is worth point-
ing out that the boundary value problem in Equation (20), together with the monotonically
decreasing function of the electric resistivity in Equation (35) and Neumann boundary
conditions, Θz(0) = Θz(1) = 0, admits only uniform solutions, i.e., Θz = Θzz = 0. In
fact, under these circumstances the solution can be obtained by solving the much simpler
zero-dimensional model described by the algebraic relationship in Equation (32). This
kind of boundary conditions, i.e., insulated edges, may be justified by the presence of the
connecting electrodes (see Figure 1c) which diminish cooling through the edges acting
like insulators. As long as only uniform solutions exist, there is a single singular point
that connects the stable and the unstable branches. As soon as the voltage or the furnace
temperature limits specified by the singular point, a limit point in this case, are exceeded,
a thermal runaway is under way and the process controller must switch from voltage to
current control in order to maintain the temperature within limits. This is because, for the
current control mode, a unique solution exists for an NTC device. Similar instability criteria
have been proposed for the uniform temperature model [54]. The singular points calculated
from Equation (32) are in good agreement with the experimental data for 3YSZ [49] shown
in Figure 8, for 8YSZ [48,55] shown in Figure 9, and for barium titanate [56] shown in
Figure 10. The absence of non-uniform solutions when the edges of the specimen are insu-
lated or, in general, when the heat transfer is poor could be a reason why a single energy
balance between Joule heating and cooling through radiation and natural convection in
Equation (32) is quite successful and, consequently, has been widely used for correlating
experimental flash sintering data.
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Figure 7. Instability threshold formed by the singular points (•) for flash sintering. Θ∞ now stands for
the furnace temperature which is no longer constant. The electric resistivity is given by the Arrhenius
form in Equation (35). When the NTC effect is combined with Neumann boundary conditions,
Equations (20) and (32) have the same uniform solutions.
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5. Conclusions

An electrothermal model for barium-titanate-based ceramics has been developed,
combining the Heywang–Jonker model for the electric resistivity with a heat dissipation
mechanism based on natural convection and radiation in a one-dimensional model on
the device level with voltage as the control parameter. Both PTC and NTC effects are
accounted for through the double Schottky barriers at the grain boundaries of the material.
The problem formulated in this way admits uniform and non-uniform multiple-steady-
state solutions that do not depend on the external circuit. The instability thresholds
calculated for the NTC regime and the associated thermal runaway are in agreement
with the experimental flash sintering results obtained for barium titanate, and 3% and 8%
yttria-stabilized zirconia. The important findings are as follows:

• The PTC effect gives rise to multiple solutions mainly in the temperature range be-
tween the Curie and the maximum resistivity points.

• Thermal runaway is due to the NTC effect. The runaway voltage depends on the
conduction–convection parameter u.

• Thermal runaway as a thermal shock is a potential reason for the thermo–mechanical
failures observed (delamination fracture).

• For the NTC regime (flash sintering) when Neumann boundary conditions are imposed
on the distributed model, only uniform solutions are admitted, one stable and one
unstable.
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