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Abstract: The heterogeneity and diversity of users and external knowledge resources is a hallmark
of open innovation communities (OICs). Although user segmentation in heterogeneous OICs is
a prominent and recurring issue, it has received limited attention in open innovation research
and practice. Most existing user segmentation methods ignore the heterogeneity and embedded
relationships that link users to communities through various items, resulting in limited accuracy of
user segmentation. In this study, we propose a user segmentation method in heterogeneous OICs
based on multilayer information fusion and attention mechanisms. Our method stratifies the OIC
and creates user node embeddings based on different relationship types. Node embeddings from
different layers are then merged to form a global representation of user fusion embeddings based
on a semantic attention mechanism. The embedding learning of nodes is optimized using a multi-
objective optimized node representation based on the Deep Graph Infomax (DGI) algorithm. Finally,
the k-means algorithm is used to form clusters of users and partition them into distinct segments
based on shared features. Experiments conducted on datasets collected from four OICs of business
intelligence and analytics software show that our method outperforms multiple baseline methods
based on unsupervised and supervised graph embeddings. This study provides methodological
guidance for user segmentation based on structured community data and semantic social relations
and provides insights for its practice in heterogeneous OICs.

Keywords: user segmentation; open innovation communities (OICs); heterogeneous networks;
attention mechanisms; representation learning

1. Introduction

In today’s fast-paced and ever-changing business environment, the traditional closed
innovation paradigm is reaching its limits due to rapid technological advances, shortening
product life cycles, and divergent consumer needs and preferences [1]. To advance their
innovation-driven growth strategies, companies are gradually shifting from relying solely
on R&D capabilities and internal resources to leveraging a variety of knowledge and
external resources by creating an open innovation paradigm. Capitalizing on internal
and external intelligence and communication channels, Chesbrough [2] describes open
innovation as “the use of purposeful knowledge inflows and outflows to accelerate internal
innovation and expand the use of innovation in external markets, respectively”. This
paradigm shift in innovation praxis, coupled with the widespread adoption of Web 2.0, has
led to the development of open innovation communities (OICs), which are increasingly
becoming a key driver for many organizations to foster their open innovation capabilities
and to crowdsource new ideas and innovative solutions [3–5]. Recognizing their valuable
contribution to innovation development and performance, a growing number of companies,
such as Microsoft, Tableau, and Google, have created their own OICs focused on stimulating
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users to contribute ideas and innovative solutions to their communities [3]. The key strength
of OICs lies in their capacity to connect and incorporate heterogeneous knowledge bases
where multiple and diverse groups of external stakeholders collaborate to explore, develop,
and test new products, services, processes, or business models [6,7].

Because OICs are typically characterized by the heterogeneity of users and external
knowledge resources, the business dilemma of segmenting users in heterogeneous OICs
remains one of their inherent and most controversial issues [5,8–10]. Typically, the OIC
is a network structure that consists of a stack of various interactions between commu-
nity users, including several layers of community-structured data and rich semantic and
social relationships. Users engage with each other, with subjects, and with ideas in an
OIC, forming a close-knit network of relationships that is often defined in terms of sev-
eral degrees of community structure. A heterogeneous OIC includes two types of nodes,
users and ideas, and various relationships between them, including users providing ideas,
users commenting on ideas, and users voting on or against ideas. Extracting user node
embeddings from heterogeneous OICs and segmenting the user base are key aspects of
providing disciplinary services such as personalized recommendations and user analytics
predictions [11]. A robust and highly accurate predictive model is imperative to improve
recommendation prediction and assist community operators in making informed decisions,
especially when they are overwhelmed by large and dispersed heterogeneous user com-
munities and their interactions with the correspondingly large and diverse knowledge
base. Therefore, analyzing user communities and developing user segmentation methods
in heterogeneous OICs is becoming increasingly important in order to extract the best value
from shared content, improve innovation performance, and increase the business return on
R&D resources [7,12,13].

The extant research on open innovation and platforms has developed several methods
for user segmentation; however, most of these methods either use only one social relation-
ship or are based on explicit community relationships that are not always present [14–16].
Recently, several studies have emphasized the importance of incorporating implicit rela-
tionships to improve the accuracy of user segmentation results [17–19]. However, these
studies rely on the basic premise that community relationships are homogeneous; that
is, the nodes and relationships in these communities are of the same type. Typically, in
OICs, different relationships exist between various types of participants and stakehold-
ers [18]. For example, there are relationships of trust, interest, and friendship that exist only
in one direction. Similarly, users follow each other because they have the same interest
in an idea or topic, but they may have different expertise and knowledge about a topic.
Therefore, using an approach based on equality and similar affiliation of user nodes may
produce inaccurate segmentation results. To address these issues, several recent studies
have developed user segmentation models to capture the diversity and heterogeneity of
OICs [18,20,21]. Multiple entities and edge types in heterogeneous OICs provide a large
amount of information that can be effectively used to mitigate sparsity effects and improve
decision efficiency. In addition, information in heterogeneous OICs can be used to capture
implicit relationships among community members [22,23]. However, the identification
and incorporation of implicit relationships in the user segmentation process remain largely
unexplored in the open innovation literature.

With the development of various graph technologies in recent years, researchers have
shown increasing interest in segmenting user communities using node embedding-based
methods. As a result, various machine learning techniques have been effectively applied
for user segmentation in OICs [24–26]. Based on different user node embedding and
graph representation learning methods, the current approaches can be broadly classified
into random walk-based methods, such as DeepWalk [27] and Node2Vec [28], and graph
convolutional network (GCNs)-based methods [26,29]. The random walk-based user seg-
mentation method can support large-scale scenarios; however, due to the stochastic nature
of the walking strategy, the results generated by user segmentation will not be optimized.
Although Node2Vec can optimize the random walk strategy, the user segmentation based
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on the Node2Vec algorithm ignores the edge type information of the heterogeneous net-
work in which the user nodes are located, resulting in poor accuracy of the community
segmentation results. On the other hand, graph convolutional network (GCN)-based
user segmentation methods can handle both user node features and community struc-
ture features; however, these methods are difficult to extend to large-scale heterogeneous
community scenarios, such as the case of OICs [18,30].

In view of the shortcomings of previous work, this study proposes a new user segmen-
tation method based on multilayer information fusion and semantic attention mechanisms,
aiming to improve the accuracy of segmentation prediction and alleviate the data sparsity
problem in OICs. The method stratifies heterogeneous OICs based on different edge types
and combines semantic information among the layers to improve the accuracy of user
segmentation results. After representing node embeddings in a single-layer network, the
semantic information between the layers is merged to obtain a fused representation of user
nodes. Finally, the k-means clustering algorithm is used for user segmentation based on
user embeddings. To test our proposed approach, we collected several datasets from four
OICs, namely, the Microsoft Power BI community, Tableau community, Qlik community,
and RapidMiner community. These datasets were collected from August 2021 to August
2022. The contributions of this study are summarized as follows:

• This study investigates the user segmentation problem in heterogeneous OICs and
develops a hierarchical processing method to transform heterogeneous communities
into multiple heterogeneous networks in an attempt to better distinguish and fuse
network structure information and semantic information and improve the accuracy of
community segmentation.

• This study extends the optimization function of the multi-objective Deep Graph
Infomax (DGI) [31] algorithm to control the similarity of the community structures
explored from different data sources; therefore, the effect of noise can be reduced. In
addition, we combine the structural features of heterogeneous OICs with the semantic
features of user nodes to accurately construct user node embeddings in a single-layer
network.

• This study compares our method with multiple baseline methods based on unsu-
pervised and supervised graph embedding techniques using a real-world dataset
collected from OICs developed for business intelligence and analytics tools and stake-
holders. Further ablation experiments were conducted to evaluate the effectiveness of
different parts of the proposed method.

The rest of the paper is organized as follows: Section 2 provides a review of related
studies. Section 3 provides a detailed description of the proposed method. Section 4
presents the results of the experimental analysis and performance evaluation. Section 5
summarizes and discusses the main findings of this study. Finally, Section 6 presents the
limitations of this study and highlights the directions for future work.

2. Related Works
2.1. Open Innovation Communities

The concept of open innovation originates from Chesbrough’s proposition on open
innovation [2], which states that firms should change the way innovation is developed
and nurtured, evolving from more traditional idea generation mechanisms to new forms
of open innovation that involve both internal and external stakeholders in idea gener-
ation. From a practical perspective, open innovation is described as an Internet-based
collaborative innovation platform that leverages the innovative contributions of external
actors. External actors are further described as heterogeneous groups of non-commercial
actor constellations whose members are informally and voluntarily involved in the col-
laborative generation, development, and application of new knowledge and innovative
products [23,32]. In this sense, the heterogeneity of users and the diversity of external
knowledge resources make the open innovation process a gradual and cumulative engage-
ment process, where accumulation drives the division of user groups and at the same time
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defines their boundaries. According to Chesbrough et al. [33], community-based open
innovation is usually based on the conceptualization of utilitarian interrelationships of
interest, i.e., in the social rather than the communicative domain. Therefore, the processing
of information and knowledge are stylistic determinants of the coordinated innovation
process, as they are the core resources for the development of new ideas and innovative
products. Due to its informal nature, the open community-based model of coordination
differs significantly from the dominant hierarchical or market-like approach to exchange
relations in the economic context, where conventions are usually used to define who must
do what and how to deal with the knowledge generated [32]. In this context, openness
and heterogeneity constitute necessary prerequisites for the reproduction of community
relations and are recognized by all actors as shared values and guiding directions for their
contribution to community activities [1,34,35].

In essence, OICs encompass multi-heterogeneous networks whose growing impor-
tance stems from the general digitization of social interactions and communication pro-
cesses. By browsing, commenting, or voting on other users’ ideas, users form relationships
with other users and recognize other users who share their interests or appeal to them as
objects of interest, thus devoting more attention to their contributions and participation [33].
Moreover, users’ ideas are expressed in the community mainly through text and images.
The content of each idea consists of one or more keywords, and different contents attract
users with the same interests and preferences. Different users’ ideas are connected through
the same content, thus forming a knowledge network based on the core content. The social
network of users and the content knowledge network are closely connected through the
innovative activities of the community. Users form ideas, and ideas attract users; thus, the
innovation activities of the open innovation community ecosystem are constantly iterated
and developed [34,36].

In heterogeneous OICs, user-multiple social networks and idea-multiple networks are
connected by different types of bidirectional interaction edges, such as user-idea viewing,
user-idea contribution, and user-idea evaluation. Multiple heterogeneous networks are
a combination of heterogeneous networks [30] and multiple networks, where multiple
networks are represented as shown in Figure 1a, which consists of multiple network
layers, each of which is a mere network with the same set of nodes. The node set contains
multiple nodes of the same type, but each layer of the simple network includes only one
type of edge, and the types of edges differ between the layers. As shown in Figure 1b,
the heterogeneous network itself is a multilayer network, where each layer is a simple
network with specific types of nodes and interacting edges, and two simple networks
are connected by bidirectional interacting edges, i.e., different types of nodes belonging
to two simple networks are connected by interacting edges. Figure 1c depicts a multi-
heterogeneous network consisting of two multiple networks [33], where the multiple
networks are connected by different types of bidirectional interaction edges, specifically
described as a layer of one of the multiple networks associated with a layer of the other
multiple network.

2.2. User Segmentation in OICs

With the rapid development of open innovation models and the increasing complexity
of heterogeneous networks, the study of user segmentation in open innovation has received
a great deal of attention from academia and industry. Broadly classified, user segmentation
methods are mainly divided into module optimization algorithms [18], tensor factorization
algorithms [37], label propagation algorithms [38], and node embedding algorithms [39].
Module optimization-based algorithms extend modularity maximization from single-layer
networks to multi-layer networks; however, these algorithms inherently ignore the fact that
different relations have different importance. The tensor decomposition-based algorithms
use a search heuristic framework to obtain the optimal number of clusters; however,
the performance of these algorithms degrades in the presence of a large number of user
groups. Label propagation-based algorithms use label information for user segmentation;
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however, these algorithms may produce community labels that do not match the real node
attributes [40]. Compared with previous types of user segmentation algorithms, user node
embedding-based algorithms can better preserve the complex information contained in the
network and provide better accuracy of user segmentation results [18,41].
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Most existing research on user segmentation methods relies on explicit social rela-
tionships, which are not always present in OICs, and even when explicit relationships
exist, the data are typically sparse and noisy [30,42]. In response, researchers have recently
emphasized the inclusion of implicit social relationships in user segmentation methods.
For example, Su et al. [43] proposed a link prediction model based on Dempster–Shafer
theory to compute implicit relationships of users in social recommender systems. Danesh-
var and Ravanmehr [44] developed an idea recommendation algorithm model based on
implicit trust relationship inference while incorporating temporal features into the system.
Liu and He [45] used trust propagation and aggregation strategies to identify indirect
trust of users in OICs. Ahmadian et al. [46] used link prediction techniques to extract
implicit relationships in OICs and proposed an explicit- and implicit-based friendship
links approach. The aforementioned scholars inferred implicit social relationships from
explicit social relationships, while others identified implicit social relationships through
user-item rating metrics [7,12]. Huang et al. [47] proposed that the top k similar users
of each user can be identified by calculating the Pearson correlation coefficient between
each user. Awati and Shirgave [48] suggested using the Hellinger distance to extract the
user-implied relationships in the idea bipartite graph.

Despite the valuable contributions of existing user segmentation methods in OICs,
their performance is still considered inadequate when dealing with complex networks
containing heterogeneous community structures. In heterogeneous OICs, users are usually
connected to each other through different types of nodes and link relationships; in this
case, multiple types of entities and edges can be utilized to improve the accuracy of user
segmentation. Schutera et al. [49] developed a fuzzy overlapping community segmentation
algorithm based on node vector representation using graph convolution to achieve efficient
community segmentation in complex networks. Jia et al. [50] modeled different types of
interactions between nodes and links and transformed the idea recommendation problem
into a node proximity computation problem on a heterogeneous graph. Xu et al. [51] mod-
eled the entire user community as a heterogeneous information network and computed
user similarity by learning from meta-path-based embedding representations to identify
hidden friends. Han et al. [52] proposed a social network link community segmentation
algorithm based on k-means and user node embedding and multi-layer information fu-
sion analysis to accurately identify overlapping communities in a recommender system.
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Wang et al. [53] suggested using the random walk method to establish node adjacencies on
a heterogeneous graph and then model the structural and semantic relationships of the het-
erogeneous network. Weng et al. [30] constructed a collaborative filtering recommendation
algorithm based on multilayer information fusion and relational clustering and applied it
to collaborative filtering of user segmentation to solve the problem of high sparsity and
high dimensionality of data in OICs.

The previous work discussed above shows that multilayer information fusion, node
embedding analysis, and attention mechanisms have great potential for user segmentation
in OICs. Therefore, in this study, user node embedding analysis was used to compute
similarities among users in heterogeneous OICs and thus recommend ideas that are closely
related to the interests and priorities of the target users. Moreover, both the proposed
method and the baseline methods used in the comparative evaluation performance experi-
ments belong to user segmentation algorithms based on user node embedding.

3. Proposed Method

The user segmentation method proposed in this study uses a hierarchical processing
approach to transform the heterogeneous OIC into a multi-heterogeneous network, aiming
to better distinguish and fuse network structure and semantic information to improve the
accuracy of community segmentation. The multi-heterogeneous network of OIC includes
two types of nodes, users and ideas, and various relationships between them, such as users’
browsing ideas, users’ contributing ideas, and users’ commenting and liking ideas. The
proposed method stratifies the heterogeneous network based on different relationship types
and obtains the representation of user nodes from a single layer of the network. Then, the
user embeddings of the same user node in different layers are fused based on the semantic
attention mechanism to obtain the user fusion embedding representation. In addition, the
global optimization of the user fusion representation is achieved using a multi-objective
DGI (Deep Graph Infomax) algorithm [45] by maximizing a mutual information objective
function consisting of the combination of the global summary vector s, the feature attributes
fi of the user nodes, and the user fusion embedding representation. Finally, the k-means
algorithm is used to form user clusters based on the influence of user nodes. The basic
framework of the proposed user segmentation method is shown in Figure 2.
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3.1. User Node Embedding

The heterogeneity of OIC encompasses multiple types of users–ideas interactions. In
this study, the heterogeneous OIC is layered according to different interaction types. First,
the features of user nodes are embedded in a single layer of the heterogeneous network un-
der a certain interaction type. This is achieved by combining the structural features of OIC
heterogeneity and the semantic features of user nodes to accurately construct the embed-
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ding of user nodes in the single-layer network. In this study, the GATNE-T algorithm [54]
was used to define the overall embedding of user nodes based on edge types and lay the
foundation for subsequent feature analysis and fusion of multiple heterogeneous networks.
Specifically, the overall embedding of user node vi on each edge type r is divided into
two parts: the basic embedding, and the edge embedding. The basic embedding of node
vi is shared among different edge types. The algorithm aggregates the edge embeddings
of node vi based on edge type r after aggregating neighboring node embeddings with k
iterations u(k)

i,r ∈ RS(1 ≤ k ≤ K), as shown in Equation (1).

u(k)
i,r = aggregator

(
u(k−1)

j,r , ∀vjεNi,r

)
(1)

The edge embedding u(k)
i,r after the kth iteration is used as the final representation of

the edge embedding ui,r, and the different edge embeddings in the network corresponding
to a particular node vi are combined into a matrix Ui, as shown in Equation (2).

Ui = (ui,1, ui,2, . . . , ui,m) (2)

The overall embedding model representation of the user node vi on edge type r
obtained by this algorithm is shown in Equation (3).

vi,r = hz( fi) + αr MT
r Uiai,r (3)

where hz( fi) denotes the basic embedding of user node vi.

Definition 1. User node embedding is defined as the transformation function of the feature attribute
fi of user node vi, and ai,r ∈ Rm are the significance coefficients of different types of edge embeddings.
In our method, network structural features and attribute features are projected into the heterogeneous
information network, and then the generated network vertices are embedded using the GATNE-T
algorithm [54], which is an inductive embedding algorithm consisting of two components: edge
embedding, and node attributes.

The above processing is used as an initial representation of user node embedding on a
single-layer heterogeneous network in the OIC.

3.2. Representation Fusion

In the multi-heterogeneous OIC, the network based on a bidirectional interaction
edge type r ∈ R is referred to as the rth layer of the network. In the rth layer network, the
embedding of user node vi can be further represented as hr

i . This study used the overall
embedding model of user nodes proposed in the previous section as the network encoder ε.
The specific description is given as a network of the rth layer, where the embedding of the
user node vi is represented as shown in Equation (4).

hr
i = vi,r = hz( fi) + αr MT

r Uiai,r (4)

Considering the relevance of different network layers in multiple heterogeneous
networks, this study used a semantic attention mechanism [50,55] to fuse the embedding
of user nodes at different layers, as shown in Figure 3.

For the rth layer of the network, the layer weight αr
i of user node vi is obtained using a

layer-based semantic attention mechanism, as shown in Equation (5).

αr
i = tanh ((yr)TVrhr

i ) (5)

where Vr ∈ Rd′×d is the parameter matrix, yr denotes the hidden representation vector of
the rth layer of the network, and tanh denotes the tangent activation function.
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The node embedding weights of different layers are normalized, and the results are
obtained as shown in Equation (6).

αr
i =

exp
(
αr

i
)

∑R
r′=1exp

(
αr′

i

) (6)

where R denotes the number of layers of the OIC multi-heterogeneous network.
The resulting fused embedding representation of user nodes vi in the multiple hetero-

geneous networks of OIC is shown in Equation (7).

hi = ∑R
r=1αr

i hr
i (7)

3.3. Parameter Optimization

The fused embedding representations of user nodes obtained in the previous section
are used as initial inputs to the optimization part of the DGI [31] algorithm, considering only
the external supervision signals, i.e., the mutual information between the fused embedding
representation hi of user node vi and the global summary vector s in the network. The
optimization part of the algorithm contains only information about the association of
a particular user node with other user nodes. The internal supervision signal, i.e., the
fusion embedding of user node vi representing the mutual information between hi and the
feature attribute fi of that node, is not fully exploited and has the disadvantage of ignoring
the feature attribute of the node itself. Therefore, in our method, the fused embedding
representation of a user node is globally optimized by introducing higher-order mutual
information [31] to capture the external and internal supervision signals and the synergy
between them.
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For the three parameters of the user node vi in the OIC multi-heterogeneous network,
i.e., the fused embedding representation of the user node hi, the global summary vector s,
and the node feature attribute fi, the fused embedding representation of the user node is
globally optimized by maximizing a mutual information objective function consisting of
a combination of the three. This preserves the association between the fused embedding
of a particular user node and the fused embeddings of other user nodes, as well as the
feature attributes of the user nodes themselves. According to the definition of higher-order
mutual information [56], when the number of random variables is 3, the mutual information
between the distribution of X1 and the joint distribution of X2 and X3 can be obtained as
shown in Equation (8).

I(X1; X2; X3) = H(X1) + H (X2)− H (X1, X2) + H(X1) + H(X3)− H(X1, X3)− H(X1)− H (X2, X3)
+H(X1, X2, X3) = I(X1; X2) + I(X1; X3)− I(X1; X2, X3)

(8)

Following the DGI process, in our method, the three random variables X1, X2, and
X3 in Equation (8) were replaced with the three parameters hi, s, and fi of the user node vi,
resulting in Equation (9).

I(hi; s; fi) = I(hi; s) + I(hi; fi)− I(hi; s; fi) (9)

where I(hi; s) captures the internal supervision signal, i.e., the external mutual information
between the fused embedding representation hi of user node vi and the global summary
vector s. I(hi; fi ) captures the internal supervision signal, i.e., the intrinsic mutual infor-
mation between the fused embedding representation hi of the user node vi and the feature
attribute fi of that node. I(hi; s; fi ) captures the interactions between the extrinsic and
intrinsic supervision signals. In this study, we extended the optimization approach of the
DGI algorithm and proposed to maximize I(hi; s; fi ) for parameter optimization, i.e., we
proposed to use the joint maximization of I(hi; s), I(hi; fi), and I(hi; s; fi ) to obtain the
optimization results, and the final fused embedding representation hi of user node vi was
obtained through the joint optimization.

3.4. User Clustering

Based on the fused representation of user nodes in multiple heterogeneous networks
in the OIC, this study proposed a computational method for user clustering. Given that the
k-means algorithm [57] allows for relatively efficient and intuitive processing of large-scale
data with high scalability, this study used the k-means algorithm for user clustering by
incorporating node influence into centroid identification and adjusting the selection of
initial clustering centroids as follows:

• The influence of user nodes is determined using the user node fusion representation.
• The obtained influence of user nodes is ranked in descending order, and the k user

nodes with the highest influence are selected as the initial clustering centroids of the
k-means algorithm.

• The k-means algorithm is iteratively applied until a stable user segmentation emerges.

Before deriving the influence of user nodes, the distance calculation of user nodes
needs to be considered. Combining the standardized Euclidean distance can better balance
the characteristics of independence and correlation between multiple dimensions. There-
fore, in our method, the standardized Euclidean distance [18] was used to calculate the
distance between user nodes vi and vj using the optimized fusion representation of user
nodes as input. The influence of user nodes was calculated as shown in Equation (10).

Pvi =
1

∑vjεV

√
∑n

k=1

( hik−hjk
Sk

)2
(10)

where Pvi denotes the influence of user node vi in the multi-heterogeneous networks of OIC.



J. Open Innov. Technol. Mark. Complex. 2022, 8, 186 10 of 19

3.5. Algorithm Description

The algorithm proposed in this study extracts user node embeddings from each
layer of the OIC multi-heterogeneous network. Then the user node embeddings from
each layer of the network are merged to obtain the fused embeddings of the user nodes.
Finally, the fused node embeddings are optimized by an objective function, which are
then used as inputs to improve the k-means clustering algorithm. The general framework
of the proposed user segmentation algorithm in heterogeneous OIC based on multilayer
information and attention mechanisms is shown in Algorithm 1.

Algorithm 1. User segmentation algorithm in heterogeneous OIC based on multilayer information and attention mechanisms.

Input: OIC multi-heterogeneous network GMH = (V, E, F), number of network layers |R|>1, number of user communities k
Output: User segmentation result C = (C1, C2, . . . , CK)

(1) For each multi-heterogeneous network in layer r ∈ R network
(2) For each user node
(3) Obtain the user node embedding representation of at layer r using Equation (4)
(4) Obtain the layer weights of the user nodes using the layer-based semantic attention mechanism in Equation (5)
(5) Normalize the layer weights of user nodes using Equation (6)
(6) End for
(7) End for
(8) For each user node
(9) Obtain the fused embedding representation of the user node using Equation (7)

(10) Optimize the fused embedding representation of the user node using the objective function using Equation (9)
(11) End for

(12)
Calculate the influence of user nodes and select the top k user nodes as the initial user community centers using
Equation (10)

(13) Use k-means algorithm for user segmentation

4. Experimental Analyses
4.1. Datasets

The datasets for this study were collected from four OICs of business intelligence and
analytics software. The four OICs used in the experimental analysis were the Microsoft
Power BI community (https://community.powerbi.com, accessed on 1 September 2022), the
Tableau community (https://community.tableau.com/s/, accessed on 1 September 2022),
the Qlik community (https://community.qlik.com/, accessed on 1 September 2022), and the
RapidMiner community (https://community.rapidminer.com/, accessed on 1 September
2022). These OICs were selected based on their popularity and publicly available data
related to the activities of the OICs’ members and host companies. These OICs were created
as online crowdsourcing platforms specifically to connect companies and users and solicit
suggestions for solving problems or generating ideas and inspiration for new projects to
test business intelligence and analytics tools and practices. These business intelligence and
analytics tools provide business users with interactive visualization and analysis through
an intuitive interface to create their own dashboards and analytics applications [3,58].
The OICs consist of users and customers from different countries, cultures, backgrounds,
and expertise with a variety of business intelligence and analytics solutions. In order to
participate, users can create a profile and join the community for free by using the email
address provided by the community. When they post an idea, they must provide a title for
the idea and a description of its topic and select the category to which the idea belongs. In
addition, by posting ideas, members can interact with other users by voting, scoring, and
reviewing other people’s ideas.

The dataset was collected, stored using a web crawler, and processed using the Python
language and statistical analysis between August 2021 and August 2022. The four datasets
used in this experimental analysis contained different types of relationships between users
and ideas, such as user idea views, user idea contributions, user idea comments, and
ratings [1,35]. This experiment also used information about users and the ideas they
contributed, including user attributes, idea attributes, and ratings of idea implementation.

https://community.powerbi.com
https://community.tableau.com/s/
https://community.qlik.com/
https://community.rapidminer.com/
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In our experiments, we chose the set of meta-paths as P = (UVI; UCI) to label the
two types of relationships (users viewing ideas, and users contributing ideas). Since the
purpose of this study was to understand and analyze the user segmentation in OICs, the
classification of ideas and the demographic characteristics of idea contributors were not
considered. The datasets used in this experiment included the number of nodes, edges,
node types, and edge types, but each dataset contained different node attributes, as shown
in Table 1.

Table 1. Dataset comparison.

Datasets Node Type No. of Nodes Edge Type Network Layer
Corresponding to Edge Type No. of Edges

Power BI
User 2460 User viewing ideas UVI 84,853
Ideas 33,660 User contributing ideas UCI 64,843

Tableau
User 8556 User viewing ideas UVI 49,439
Ideas 81,633 User contributing ideas UCI 22,751

Qlik
User 1129 User contributing ideas UVI 69,108
Ideas 29,034 User contributing ideas UCI 33,853

RapidMiner User 3908 User viewing ideas UVI 59,482
Ideas 30,502 User contributing ideas UCI 32,761

4.2. Evaluation Indicators

To evaluate our method and different baseline methods, two classical performance
evaluation metrics were used in user node clustering and user node similarity search
experiments, namely, the normalized mutual information (NMI) between two clusters and
the Sim@5 value [18,59]. For the node clustering experiments, a self-supervised signal
training model followed by a modified k-means algorithm was used in order to obtain the
NMI values. NMI is a metric used to measure the accuracy of community segmentation
when real labels are available on the network. Its definition is given by Equation (11).

NMI(A, B) =
−2∑n1

i=1∑
n2
j=1Mij log

( Mij N
Mi Mj

)
∑n1

i=1Mi log
(

Mi
N

)
+∑n2

j=1Mj log
(Mj

N

) (11)

For the node similarity search experiment, the cosine similarity between each pair of
user nodes is calculated according to [59,60]. Then, for each user node, the top 5 most similar
user nodes are selected, and the proportion of these user nodes belonging to the same user
community (class) is calculated; the accuracy of user node embedding is determined based
on a value called Sim@5.

4.3. Baseline Methods

The proposed USOIC was compared with two types of baseline algorithms, namely,
unsupervised and supervised user segmentation algorithms:

(A) Unsupervised algorithms

• DeepWalk [61]: This method uses the Random-Walk strategy to obtain the node
sequence; then, the Skip-Gram algorithm is used to obtain the node represen-
tations; finally, the objective function is optimized according to the hierarchical
Softmax.

• Node2Vec [62]. This method is a more general abstract representation of the
DeepWalk algorithm, which mainly improves the former Random-Walk strategy
to obtain neighborhood information and more complex node dependencies.

• MetaPath2Vec [28]: This meta path-based method for embedding heterogeneous
networks aims to deal with the heterogeneity of nodes. The MetaPath2Vec
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algorithm degenerates to the DeepWalk algorithm when there is only one node
type in the network.

• CommDGI [63]: This method is an unsupervised learning algorithm based on
mutual information for dealing with homogeneous networks.

(B) Supervised algorithms

• GCN [30]: This method is a semi-supervised algorithm applied to node classifi-
cation in homogeneous networks, which uses a convolution operation to merge
the feature representation of neighbors into the node feature representation.

• GAT [64]: In this method, the attention mechanism is applied to homogeneous
networks that require a supervised setup, and the algorithm learns node embed-
dings based on the local structure of the nodes.

• HAN [18]: This method uses node-level attention and semantic-level attention to
capture information about all meta-paths.

5. Performance Analysis and Evaluation

Based on the four datasets of OICs, this study compared the results of different
algorithms in node clustering and node similarity search experiments, as shown in Table 2.

Table 2. Baseline comparison of similarity search and node clustering tasks.

Dataset Power BI Tableau Qlik RapidMiner

Indicators NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5

DeepWalk 0.082 0.725 0.116 0.491 0.347 0.627 0.312 0.702

Node2Vec 0.073 0.737 0.122 0.486 0.381 0.626 0.308 0.711

MetaPath2Vec 0.085 0.746 0.128 0.491 0.386 0.633 0.316 0.713

CommDGI 0.006 0.556 0.182 0.577 0.552 0.784 0.642 0.887

GCN 0.286 0.623 0.175 0.564 0.464 0.722 0.672 0.865

GAT 0.302 0.631 0.182 0.551 0.467 0.724 0.665 0.871

HAN 0.028 0.493 0.162 0.562 0.471 0.776 0.655 0.871

Our Method-Average Pooling 0.342 0.743 0.187 0.602 0.556 0.774 0.683 0.874

Our Method 0.345 0.754 0.195 0.606 0.564 0.788 0.692 0.899

In both node clustering and node similarity search experiments, our method showed
improvements in NMI and Sim@5 metrics compared to other benchmark node-embedding
user segmentation methods. Our method combines structural information, semantic infor-
mation, and user node independence information of multiple heterogeneous networks in
OIC to learn effective user node embeddings and to obtain better user segmentation results.
As a result, it typically learns better and produces more accurate user node embeddings
compared to unsupervised and supervised algorithms. In addition, it produces higher user
community density with significantly fewer edge user nodes between communities, with
better stability and scalability.

Among the unsupervised algorithms used for comparison, the DeepWalk-based user
segmentation algorithm performed poorly in both types of experiments because the al-
gorithm could not properly handle the heterogeneity of OICs. The MetaPath2Vec-based
user segmentation algorithm cannot handle multiple semantic information at the same
time, which makes the validity of the user node embeddings obtained by this algorithm
insufficient. Among the supervised algorithms used for comparison, the GCN-based user
segmentation algorithm and the GAT-based user segmentation algorithm are close to the
corresponding metrics of our algorithm in terms of NMI metrics, but there are large differ-
ences in terms of Sim@5 metrics, which proves that our algorithm can handle edge type
information and semantic information more reasonably and obtain a higher density of user
communities.
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The method proposed in this study used ablation experiments to further evaluate the
performance of user node fusion representation and the effectiveness of user segmentation.
To evaluate the performance of the proposed representation fusion, the proposed approach
using representation fusion was compared with the proposed algorithm using average
pooling instead of representation fusion. As shown in the last two rows of Table 2, the
former showed marginal improvements in both metrics.

Combined with the parameter optimization in the proposed method (Section 3.3), the
optimization part was divided into the external supervision signal I(hi; s) combining global
summary vectors (referred to as E), the internal supervision signal I(hi; fi ) combining node
feature attributes (referred to as I), and the joint supervision signal I(hi; s; fi ) combining
global summary vectors and node feature attributes (referred to as J). For the optimization
part, we conducted ablation experiments, i.e., comparison experiments, by combining the
external supervision signal (E), the internal supervision signal (I), the joint supervision
signal (J), and the reconstruction error of the single-layer network (referred to as R) to
demonstrate the optimization effect of the parameters proposed in this study, as shown in
Table 3.

Table 3. Ablation experiments of our method in two types of experiments.

Dataset Power BI

Network Layer UVI UCI

Indicators NMI Sim@5 NMI Sim@5

E 0.002 0.395 0.003 0.414

E + R 0.002 0.399 0.003 0.426

E + I 0.152 0.512 0.143 0.512

E + I + J 0.163 0.566 0.153 0.593

Dataset Tableau

Network Layer UVI UCI

Indicators NMI Sim@5 NMI Sim@5

E 0.547 0.801 0.087 0.493

E + R 0.551 0.804 0.077 0.491

E + I 0.512 0.802 0.144 0.524

E + I + J 0.592 0.806 0.142 0.528

Dataset Qlik

Network Layer UVI UCI

Indicators NMI Sim@5 NMI Sim@5

E 0.526 0.626 0.651 0.812

E + R 0.525 0.659 0.659 0.833

E + I 0.527 0.728 0.655 0.872

E + I + J 0.527 0.708 0.656 0.874

Dataset RapidMiner

Network Layer UVI UCI

Indicators NMI Sim@5 NMI Sim@5

E 0.403 0.730 0.053 0.543

E + R 0.422 0.711 0.052 0.558

E + I 0.403 0.711 0.052 0.559

E + I + J 0.407 0.732 0.056 0.571
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By comparing E with E + R and E + I, respectively, it could be inferred that com-
bining the mutual information between user node embedding and feature attributes can
improve the performance of the algorithms for both types of experiments in this study.
For a given user node embedding, maximizing the mutual information between the user
node embedding and feature attributes (E + I) worked better than minimizing the feature
attribute reconstruction error (E + R). As shown in Table 3, in individual cases, maximizing
the mutual information between user node embedding and feature attributes (E + I) was
better than optimizing the joint supervised signal (E + I + J), but the advantage was not
significant enough to prove that the joint supervised signal (E + I + J) can further optimize
the results of user segmentation. Finally, combined with the experimental data shown in Ta-
ble 2, the representation fusion proposed in this study reasonably combined different levels
of information in multiple heterogeneous networks of OIC, showing that our framework
has good robustness and generalization ability with small variance.

The NMI values and attention weights of the layers in the OIC multi-heterogeneous
network are shown in Figure 4. The network layers with higher NMI values also had higher
attention weights for their corresponding layers, which proves that the method proposed
in this study is relatively stable and effective in using representational fusion.
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6. Limitations and Directions for Future Research

Although the method proposed in this study exhibits better user segmentation per-
formance in OICs than several state-of-the-art baseline methods, the results are limited
because the effects of temporal information contained in the heterogeneous OIC and noise
points in the network are not considered throughout the study. In future work, relevant
denoising techniques can be used to filter out noisy points and to retain the attributes of
valid nodes in the real community by transforming the network node attributes and other
relevant techniques to filter out nodes that do not meet the basic requirements. This study
also has limitations in using data and methods to identify dynamic implicit social relation-
ships in heterogeneous OICs, thus leaving several unexplored areas that provide important
directions for future research. First, OICs are dynamic in nature, and future work could
focus on recommendation algorithms in dynamic OICs, i.e., introducing temporal factors to
describe dynamic user interests and social relationships based on existing recommendation
algorithms. Second, in addition to positive relationships between users, there are also
negative relationships in OICs, such as distrust or dislike, which is valuable information
that has been less studied in current research or other studies. In addition, many real
community structures have overlapping components. Therefore, in some cases, it makes
more sense to segment overlapping communities. This approach can be considered by
preprocessing the network and then combining it with existing overlapping community
segmentation algorithms.

Our method, which is limited to matrix operations, is not efficient on large-scale graphs.
Therefore, our method is suitable for small-scale graphs with fuzzy community structures.
In practice, a more efficient method, such as the Louvain algorithm [59], can be used for
initial partitioning, which can subsequently be utilized for finer-grained partitioning. This
approach is currently only applicable to undirected networks; however, most networks
include directional features. In the future, this method will be investigated to be extended
to directed networks. For example, converting directed networks into undirected networks
for computation or processing asymmetric connection matrices to meet the requirement
of generating symmetric doubly random matrices can be explored. In addition, many
real-world community systems contain overlapping components. Therefore, in some
cases, the division of overlapping groups is more important. This approach may be used
to preprocess the network before combining it with existing overlapping community
partitioning mechanisms.

7. Conclusions

This study proposes a user segmentation method based on multilayer information
fusion and attention mechanism, aiming to accurately and effectively segment user com-
munities in heterogeneous OICs. The method is based on stratifying the heterogeneous
OIC according to different edge types to obtain a layered embedding representation of user
nodes. Then, the user fusion embedding representation required for user segmentation is
obtained by combining the semantic information between the layers. The objective function
of mutual information is used to optimize the relevant parameters of user nodes to obtain
the final optimized user fusion embedding representation. Finally, the k-means clustering
algorithm is used to obtain the results of user segmentation. Experimental analysis of the
proposed method on several OIC datasets of business intelligence and analytics software
shows that the method outperforms current state-of-the-art community segmentation meth-
ods in node clustering and node similarity search experiments and improves the accuracy
of user segmentation.

Our method makes a practical contribution to the knowledge creation and innovation
process. To better understand community mechanisms and facilitate effective knowledge
transfer in the innovation process, our method suggests that user groups exchange data and
acquire knowledge from other groups by segmenting users in an open innovation network,
which requires both external access and internal capabilities. Internal capabilities can be
improved by improving knowledge sharing and contribution capabilities, while external
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access to new knowledge can be improved by connecting with other user segments. The
study of social relationships within open innovation communities facilitates the transfer
and contribution of knowledge, including exchanges between community members, to
stimulate the generation of new ideas. As a result of incorporating heterogeneous networks
into our method, it is possible to improve not only the performance of user segmentation
in heterogeneous OICs, but also the accuracy of knowledge content and incremental
predictions.

From a knowledge management perspective, our method can facilitate early detection
of high-quality content and common interests in OICs. This not only allows learning from
participants of the same group but is also suitable for detecting knowledge patterns and
common interests of members of the same group. The combination of network structure
and graph-centric networking improves the accuracy of the potential value discovery model
of community users’ ideas, and also provides technical support for the community to target
user participation and fully exploit community innovation resources. Thus, the positioning
and relationships of users in the cluster are important for improving the efficiency of
the community.

In addition, the communication structure is crucial to the success of many OIC schemes.
In this study, we investigate and solve the problem of node neighborhood propagation
range constraints in heterogeneous OICs. Our technique is an unsupervised approach
with an end-to-end structure capable of performing several downstream tasks (i.e., node
classification, similarity search, and node clustering). We build a model that accommodates
node neighborhood information at a local scale, while capturing global neighborhood
information as well. Additionally, our method removes a portion of edges to increase
the unpredictability and diversity of graph connectivity, making the model more resilient
and generalizable.

As most of current OICs and platforms support vector computing, using this method
to identify the connectivity between nodes in open innovation applications can further
enable significant improvements in the quality and efficiency of community operations
and knowledge contributions, leading to better innovation management and performance.
In our future work, we will investigate more effective dissemination strategies for more
complex practical applications, such as knowledge transfer and management embedded in
different kinds of community structures.
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