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Abstract: Although voiced speech signals are physical signals which are approximately harmonic
and electric power signals are true harmonic, the algorithms used for harmonic analysis in electric
power systems can be successfully used in speech processing, including in speech enhancement,
noise reduction, speaker recognition, and hearing aids. The discrete Fourier transform (DFT), which
has been widely used as a phasor estimator due to its simplicity, has led to the development of new
DFT-based algorithms because of its poor performance under dynamic conditions. The multiple-
resonator (MR) filter structure proposed in previous papers has proven to be a suitable approach to
dynamic harmonic analysis. In this article, optimized postprocessing compensation filters are applied
to obtain frequency responses of the transfer functions convenient for fast measurements in dynamic
conditions. An optimization design method based on the constrained linear least-squares (CLLS) is
applied. This way, both the flatness in the passband and the equiripple attenuation in the stopband
are satisfied simultaneously, and the latency is reduced.

Keywords: audio signal; constrained linear least-squares (CLLS); group delay (GD); harmonic
analysis; multiple-resonator (MR)-based filter; total vector gradient (TVG); voiced speech signal

1. Introduction

Signals that consist of a sum of sine waves whose frequencies are integral multiples
of the lowest frequency (so-called fundamental) are said to be harmonic. Many physical
signals are approximately harmonic. Examples include voiced speech and other biological
signals, musical waveforms, helicopter and boat sound waves, and outputs of nonlinear
systems excited by a sinusoidal input [1,2]. Many different approaches are possible; some
basic underlying principles of speech enhancement techniques capitalize on the observation
that waveforms of voiced sounds are periodic, with a period that corresponds to the
fundamental frequency. One approach is based on comb filtering to pass the harmonics
of speech but reject the frequency components [3–5]. In addition, there are many signal
analyses and transformations that are best performed in the frequency domain [6–14].

Voltage and current signals in power systems are examples of true harmonic signals.
The frequency spectrum of the audio signal is still in the low-frequency range and approxi-
mately 2–3 times wider than of the electric one, which states that algorithms developed for
usage in electric power systems can be also applied in audio technology.

Due to the growing presence of harmonics in transmission and distribution networks,
the importance of estimating harmonic phasors is an increasingly important task. Their
fast measurements are very convenient for use in power system protection applications.
The extension of synchrophasor algorithms to provide phasor measurement units (PMUs)
with the capability of accurately estimating harmonic phasors has been recently carried
out in order to facilitate the proliferation of PMU applications in active distribution net-
works [15–21]. While more and more PMUs can provide harmonic phasor values together
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with fundamental values, the IEC/IEEE Standard 60255-118-1:2018 [22] deals with the
fundamental phasor only.

One of the primary mathematical tools used to decompose harmonic signals is the fast
Fourier transform (FFT), which is an optimized discrete Fourier transform algorithm (DFT).
The DFT algorithm has been widely used as phasor estimator due to its simplicity; regret-
tably, its poor performance under dynamic conditions [23,24] compromises compliance with
the standard, leading to the development of new DFT-based algorithms such as interpo-
lated DFT (IpDFT) [25,26]. Additionally, different techniques such as the Taylor series [27],
wavelet transform [28], recursive least-squares [29], Kalman filter [15,30], and combined
filter design concept [31] have also been proposed to provide solutions that improve the
performance presented in traditional DTF-based techniques under dynamic conditions.

Timely measurements are critical for addressing many challenges associated with
power system operation. The maximum reporting latency is perhaps one of the more
restrictive requirements. It should have in mind that in many algorithms, the time reference
is usually centered in the middle of the observation interval, which means an intrinsic
algorithm latency is at least half of the observation interval width. In addition to that, a
harmonic analysis under dynamic conditions is a growing necessity. The discrete Taylor–
Fourier transform (TFT) extends and improves estimations obtained by the DFT by using a
dynamic model of the signal [32]. As a result, the obtained reconstruction is more accurate
than the reconstruction obtained through DFT, which is a mainstream approach in harmonic
analysis. When the spectral density of narrow bandpass harmonic signals is limited to the
flat-gain harmonic intervals, the dynamic model-based estimators assure good estimates of
the first derivatives of complex harmonic envelopes.

Based on the multiple-resonator (MR) estimation structure, a simple recursive algo-
rithm for dynamic harmonic analysis with some advantages over DFT/FFT, together with
benefits in the reduced computational complexity, is proposed in [33]. The good sensitivity
properties are assured by the infinite loop gain at the resonator frequencies. In addition,
multiple zeros provide reinforcement of the required attenuations and zero-gain flatness
at the harmonic components together with a high overall attenuation in the stopband(s).
While the rise of the resonator multiplicity improves the amplitude response and selectivity,
it adversely influences the phase response and increases the latency. Due to this feature,
large values of the resonator multiplicity could be inconvenient in the control application.
In order to obtain an algorithm that can be utilized in a wide range of signal dynamics in a
unified way and to improve the frequency response that allows a tracking-mode harmonic
estimation technique that is both accurate enough in nonstationary conditions and fast
enough, a linear combination of the differentiators’ outputs in the resonator cascade has
been used [34–36]. The order of the resulting compensation filter was low and equal to the
pole multiplicity. In [37], the proposed approach was generalized to any necessary order
through the postprocessing compensation FIR filters applied to the output signals obtained
by the basic MR structure.

A similar approach that assures equiripple frequency responses is presented in this
paper. The initially formulated objective (cost) and constraining functions are nonlinear.
These functions are quadratic, so convex semi-infinite programming can be applied [38].
Through the convenient linearization of the objective and constraint functions, which al-
ready was applied in various articles [35–37], the design problem is solved by a constrained
linear least-squares (CLLS) algorithm. The difference in reference to the approach proposed
in [37] is that, in this article, the equiripple-limited amplitude-frequency response in the
stopband is provided.

2. Design Method

In this section, a design of the postprocessing compensator filters for the zeroth deriva-
tive of the harmonics for K type estimator is shown. The structure consists of two parts;
see Figure 1. The first part is the basic one already described in [33,34]. The structure
consists of 2M + 1 branches consisting of K + 1 resonators (having poles on the unit circle)
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in the cascade. Each resonator in the mth cascade is associated with complex gains gm,k,
m= −M, . . . , 0, . . . , M, k = 0, 1, . . . , K. All these resonator cascades operate in parallel
within a common feedback loop. At the frequencies corresponding to the resonator pole
frequencies, this loop has infinite loop gain; therefore, the transfer value equals 1 indepen-
dently of the other parameters of the system. The overall system order is 3N, N = 2M + 1
where Mω1 < π; ω1 = 2π f1/ fS is an angular frequency of the fundamental component;
fS is a sampling frequency; and M is the highest order of harmonic to be analyzed. The
second part is postprocessing of the resonators’ output signals. The postprocessing can
be applied selectively for some particular signals, e.g., the fundamental component and
dominant harmonic, whose estimation are potentially important for control applications.

Figure 1. Block diagram of the K-type MR-based harmonic analyzer.

For dead-beat estimators, we have [33]:

Tm,k

(
z−1
)
=

Vm,k
(
z−1)

V(z−1)
= g′m,kz−1

(
1− zmz−1

)k
Pm

(
z−1
)

(1)

where

Pm

(
z−1
)
= ∏M

i = −M
i 6= m

(
1− ziz−1

)K+1
, zi = exp(jωi), ωi = iω1. (2)

g′m,k =
K

∏
i=k

gm,i, k = 0 . . . K. (3)

Calculation of gains g′m,k and gm,k, k = 0 . . . K is given in [33,34,39].
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In the postprocessing part, the compensation filter Qm
(
z−1) is applied to the output

signal Vm
(
z−1) = Vm,0

(
z−1). The resulting transfer function of the complete estimation

filter (including the compensation) is

TQ
m,0

(
z−1
)
= Qm

(
z−1
)

Tm,0

(
z−1
)
= g′m,0z−1Qm

(
z−1
)

Pm

(
z−1
)

. (4)

where
Qm

(
z−1
)
= qm,0 + qm,1z−1 + · · ·+ qm,NQ z−NQ (5)

The part Tm,0
(
z−1) = g′m,0z−1Pm

(
z−1) originated from the basic resonator structure. It

is actually the FIR filter with zeros obtained from resonator poles by the common feedback.
The polynomial Pm

(
z−1) consists of all resonator poles, excluding poles zm.

Equation (4) can be written in a matrix form as follows:

TQ
m,0

(
z−1
)
= am,1(z)qm (6)

where
am,1(z) =

[
am,0(z) am,1(z) · · · am,NQ−1(z) am,NQ(z)

]
am,n(z) = g′m,0z−(n+1)Pm

(
z−1
)

, n = 0, 1, 2, · · · , NQ.

qm =
[

qm,0 qm,1 · · · qm,NQ−1 qm,NQ

]T
.

To assure a unity gain in the harmonic frequency, the following condition has to
be satisfied:

Qm

(
z−1
)∣∣∣

z=zm
= 1, i.e., zmqm = 1 (7)

where
zm =

[
1 z−1 z−2 · · · z−(NQ−1) z−NQ

]∣∣∣
z=zm

Complex equality constraints (6) can be written as[
Re{zm}
Im{zm}

]
qm =

[
1
0

]
. (8)

2.1. Total Vector Gradient (TVG) Calculation

The latency of the estimator is directly related to the group delay (GD) of the filter.
Due to the complexity of the estimation of the GD, in this paper a gradient of the transfer
function dTQ

m,0
(
z−1)/dz is applied, herein called a total vector gradient (TVG). It could be

proved that in the flat band with small amplitude changes, TVG and GD are proportional,
and optimization of one leads to the optimization of the other.

The first derivative of the transfer function TQ
m,0
(
z−1) is

dTQ
m,0
(
z−1)/dz = g′m,0

[
−z−2Qm

(
z−1)Pm

(
z−1)

+z−1Pm
(
z−1)dQm

(
z−1)/dz + z−1Qm

(
z−1)dPm

(
z−1)/dz

]
= g′m,0z−1[Pm

(
z−1)dQm

(
z−1)/dz + Ψm

(
z−1)Qm

(
z−1)] (9)

where
dQm

(
z−1)

dz
= −qm,1z−2 − 2qm,2z−3 − · · · − NQqm,NQ z−(NQ+1)

Ψm

(
z−1
)
= −z−1Pm

(
z−1
)
+ dPm

(
z−1
)

/dz
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dPm
(
z−1)

dz
= (K + 1)Pm

(
z−1
) M

∑
i = −M

i 6= m

ziz−2

1− ziz−1

Equation (9) can be written in a matrix form as follows:

dTQ
m,0

(
z−1
)

/dz = am,2(z)qm (10)

where
am,2(z) =

[
am,0(z) am,1(z) · · · am,NQ−1(z) am,NQ(z)

]
,

am,n(z) = g′m,0z−(n+1)
[
Ψm

(
z−1
)
− nz−1Pm

(
z−1
)]

, n = 0, 1, . . . , NQ.

2.2. Constrainting Conditions Linearization

In the stop- and transition bands, the following condition has to be satisfied:∣∣∣TQ
m,0

(
z−1
)∣∣∣

z=zi
≤ lm,i, i = 1, 2, · · · , NF. (11)

where lm,i, i = 1, 2, · · · , NF is a settled limit in the frequency point i.
If we need to limit |TVG|, the following condition should be satisfied.∣∣∣dTQ

m,0

(
z−1
)

/dz
∣∣∣ ≤ lm,i. i = 1, 2, · · · , NF (12)

Both (11) and (12) are nonlinear and have to be linearized. For that purpose, let us
define the following vectors for harmonic m and frequency point zi, depending on which
function is limited:

gm,i = am,1(zi) or gm,i = am,2(zi) (13)

Equations (11) and (12) can be linearized [35–37] and written in a matrix form

Am,iqm ≤ bm,i , i = 1, 2, · · · , NF (14)

Am,i =


Re
{

gm,i

}
cos αi1 + Im

{
gm,i

}
sin αi1

Re
{

gm,i

}
cos αi2 + Im

{
gm,i

}
sin αi2

...
Re
{

gm,i

}
cos αiL + Im

{
gm,i

}
sin αiL

, bm,i =


lm,i
lm,i

...
lm,i

.

A number of angles L should be settled depending on the desired tolerance. By taking
a sufficient number of angles, the criterion (11) can be approximated by the system (14) with
the desired accuracy. Square and octagon approximations (L = 4 and L = 8, respectively)
are shown in Figure 2. In this article, L = 16 is used.

Using matrix notation and collecting inequality linearization systems in all settled
frequency points, (14) becomes the following linear form:

Amqm ≤ bm (15)

where matrix Am and vector bm are given by

Am =


Am,1
Am,2

...
Am,NF

bm =


bm,1
bm,2

...
bm,NF

.
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Figure 2. Approximation of a cycle with a square and an octagon.

2.3. Sum of Squares Calculation

Let us define the following vector for harmonic m and harmonic frequency point zm,
depending on which function it is:

hm,i = am,1(zi) or hm,i = am,2(zi) (16)

An objective is to find a minimum of the sum of squares of absolute values of hm,iqm
in the assembly of the NF selected frequencies subject to the vector qm:

min
qm

∑NF
i=1|hm,iqm|

2 (17)

If we apply the following equality

|hm,iqm|
2 = Re2{hm,iqm}+ Im2{hm,iqm} = ||Cm,i, qm ||

2
2 (18)

where Cm,i =

[
Re{hm,i}
Im{hm,i}

]
, (17) can be written in a matrix form:

min
qm
||Cm, qm ||

2
2. (19)

where

Cm =


Cm,1
Cm,2

...
Cm,NF

.

2.4. Constrained Linear Least-Squares (CLLS) Model

The constrained linear least-squares (CLLS) is an optimization problem that deals with
the maximization or minimization of a linear function called the objective function subject
to linear constraints. Summarizing (19), (15) and (8), the CLLS problem is formulated
as follows:

min
qm

1
2‖Cmqm‖2

2

subject to Amqm ≤ bm and
[

Re{zm}
Im{zm}

]
qm =

[
1
0

] (20)

Among a variety of different optimization scenarios, here, two optimization tasks are
formulated. Task 1 considers the optimization of |TVG| in the passband with a limitation
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of
∣∣∣TQ

m,0
(
z−1)∣∣∣ in the stop- and transition bands [hm,i = am,2(zi) and gm,i = am,1(zi)], while

Task 2, similar to [37], optimizes the sum of squares of
∣∣∣TQ

m,0
(
z−1)∣∣∣ in the stopband subject

to the limitation of |TVG| in the passband and
∣∣∣TQ

m,0
(
z−1)∣∣∣ in the transition band [hm,i =

am,1(zi), gm,i = am,2(zi) in the passband, and gm,i = am,1(zi) in the transition band].

3. Design Example

For example purposes, Figures 3 and 4 show frequency responses of the third har-
monic’s transfer function TQ

3,0
(
z−1) in the case of K = 2, (a) (Task 1) for different values

of maximally allowed gains in the stopbands lSB
m ∈ {0.1, 0.01, 0.001} corresponding to

attenuations of {20, 40, 60} dB, respectively, and (b) (Task 2) for different maximum al-
lowed values of |TVG| in the harmonic frequency zm |TVG|max ∈ {24, 32, 48}. In the inset
figures at the bottom, zoomed amplitude and |TVG| characteristics around the harmonic
frequency are shown. The maximum gain in the passband and transition bands is chosen
to be lPB

m = 1.005. Notice that a higher value of NQ provides a smaller |TVG| and a wider
passband. In addition to that, it is visible from the amplitude frequency responses that
sidelobes are much larger for smaller values of |TVG|, which decreases robustness against
interharmonics and noise. On the other hand, the passband width is increased for smaller
values of |TVG|.

In the K = 1 case, the transfer function T3,0
(
z−1) has a smaller inherent |TVG| than in

the K = 2 case. Hence, in this case, the total |TVG| for
∣∣∣TQ

3,0
(
z−1)∣∣∣ is smaller; see Figure 5.

Due to smaller values of NQ = 16, the passband is narrower. Notice that for a requested
lSB
m = 0.001, the problem is infeasible.

Figure 3. Frequency responses for the basic (T3,0
(
z−1)) and reshaped (TQ

3,0
(
z−1)) transfer func-

tion for the third order of resonator multiplicity (K = 2) for fs = 1.6 kHz, NQ = 16 and
(a) lSB

3 ∈ {0.1, 0.01, 0.001} and (b) |TVG|max ∈ {24, 32, 48}.
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Figure 4. Frequency responses for the basic (T3,0
(
z−1)) and reshaped (TQ

3,0
(
z−1)) transfer func-

tion for the third order of resonator multiplicity (K = 2) for fs = 1.6 kHz, NQ = 32 and
(a) lSB

3 ∈ {0.1, 0.01, 0.001} and (b) |TVG|max ∈ {24, 32, 48}.

Figure 5. Frequency responses for the basic (T3,0
(
z−1)) and reshaped (TQ

3,0
(
z−1)) transfer func-

tion for the second order of resonator multiplicity (K = 1) for fs = 1.6 kHz, NQ = 16 and
(a) lSB

3 ∈ {0.1, 0.01, 0.001} and (b) |TVG|max ∈ {16, 24, 32}.

4. Simulation Results

Two following tests are given to illustrate the filter’s (i.e., estimator’s) dynamic fea-
tures, while static characteristics are obviously clear from the frequency responses. From
Figures 3 and 4, it is visible that the filters designed through Task 2 have larger sidelobes
close to the passband, while filters corresponding to Task 1 have nearly equiripple ampli-
tude responses in the stopbands. High sidelobes can cause sensibility to interharmonic
disturbances. The constant fundamental frequency over time is settled, and it equals
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50 Hz. The sampling rate is fS = 1600 Hz. The input signal contains the third, fifth and
seventh harmonics of 30%, 10%, and 10%, respectively. In the presented examples, only the
estimation of the third harmonic is shown. Estimations of the other harmonics have the
same characteristics.

4.1. Amplitude Modulated Signal

A test with the amplitude modulated signal is applied to illustrate the measurement
bandwidth and latency depending on the settled constraints and subject of optimization.
In the test signal, the amplitude of the third harmonic is defined as follows:

A3(t) = X3[1 + 0.1 cos(2π fmt)] (21)

where X3 is the third harmonic amplitude, the amplitude modulation depth is 0.1 (10%),
and fm is the modulating signal frequency. Values of modulated signals are chosen in
line with the suggestion of the PMU IEC/IEEE Standard 60255-118-1:2018–2011 [22]. The
maximum modulation frequency is fm = 2 Hz. The fundamental frequency is constant
over time and equals 50 Hz. X3 = 0.3 (p.u.).

The influence of modulation of the sinusoidal amplitude of the magnitude amounting
to 10% of the fundamental one and the modulation frequency equal to 2 Hz is shown in
Figure 6. In Figure 6, it is notable that in all cases, estimates of the amplitude follow the
actual latencies, which are in line with the |TVG|s shown in Figures 3 and 4.

Figure 6. Simulation results obtained for the amplitude modulated signal with fm = 2 Hz for K = 2,
and with f1 = 50 Hz and fS = 1600 Hz for: (a) Task 1 for NQ = 16, (b) Task 2 for NQ = 16, (c) Task 1
for NQ = 32, (d) Task 2 for NQ = 32.

4.2. Amplitude Step Signal

In this test, the estimates of the third harmonic’s amplitude when the signal with a
step change of the amplitude of the third harmonic by 10% is applied is presented. Other
harmonics are constant over time. In addition, the fundamental frequency is constant over
time, and it equals 50 Hz. Figure 7 illustrates the convergence of the amplitude estimate. It
is possible to observe faster responses for a higher lSB

3 for Task 1, and a smaller |TVG|max
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for Task 2. In Task 1 case, for NQ = 16 and lSB
3 = 0.001, the latency is higher than for the

basic T3,0
(
z−1) due to the high requested attenuation, while for NQ = 32, the latency for

these two cases is nearly the same. For Task 2, the latency is defined by |TVG|max, and it is
equal for both NQ = 16 and NQ = 32. However, the attenuation in the stopbands is higher
for NQ = 32; see Figures 3b and 4b.

Figure 7. Simulation results obtained for the amplitude step signal, for K = 2, with f1 = 50 Hz and
fS = 1600 Hz, for: (a) Task 1 for NQ = 16, (b) Task 2 for NQ = 16, (c) Task 1 for NQ = 32, (d) Task 2
for NQ = 32.

It should be mentioned that similar estimation shapes are obtained for the phase
modulation and the phase step change.

5. Conclusions

This article continues the research presented in the previous articles, which dealt
with harmonic analysis based on the recursive MR-based parallel structure with common
feedback. The CLLS optimization technique is applied to optimize frequency responses,
assuring adequate flatness of the frequency responses and reduced latency in the passband
and high equiripple attenuation and acceptable levels of the sidelobes in the stopband.
Thus, the obtained estimates can be simultaneously accurate, resistant to the presence of
harmonics/interharmonics and noise, and fast enough to allow tracking of the nonsta-
tionary signal content. For different estimators’ properties, a unique compensator can be
designed for each harmonic. Furthermore, different harmonic phasors can be estimated
simultaneously with different estimation performances.

Author Contributions: Conceptualization, M.D.K. and V.V.V.; methodology, M.D.K.; software,
M.D.K.; validation, M.D.K. and V.V.V.; formal analysis, M.D.K.; investigation, M.D.K. and V.V.V.; re-
sources, M.D.K.; data curation, M.D.K.; writing—original draft preparation, M.D.K.; writing—review
and editing, M.D.K. and V.V.V.; visualization, M.D.K.; supervision, V.V.V.; project administration,
M.D.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Acoustics 2022, 4 121

Informed Consent Statement: Not applicable.

Data Availability Statement: This study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nehorai, A.; Porat, B. Adaptive Comb Filtering for Harmonic Signal Enhancement. IEEE Trans. Acoust. Speech Signal Process. 1986,

34, 1124–1138. [CrossRef]
2. Widrow, B.; Williams, C.S.; Glover, J.R.; McCool, J.M.; Hearn, R.H.; Zeidler, J.R.; Kaunitz, J.; Dong, E.; Goodlin, R.C. Adaptive

Noise Cancelling: Principles and Applications. Proc. IEEE 1975, 63, 1692–1716. [CrossRef]
3. Pariente, M.; Cornell, S.; Deleforge, A.; Vincent, E. Filterbank Design for End-to-End Speech Separation. In Proceedings of the

ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 4–8 May 2020.
4. Li, Q.; Chen, W.G.; He, C.; Malvar, H.S. Design of Oversampled DFT Modulated Filter Banks Optimized for Acoustic Echo

Cancellation. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona,
Spain, 4–8 May 2009.

5. Jin, W.; Liu, X.; Scordilis, M.S.; Han, L. Speech Enhancement Using Harmonic Emphasis and Adaptive Comb Filtering. IEEE
Trans. Audio Speech Lang. Process. 2010, 18, 356–368. [CrossRef]

6. Russo, E. Tools for Interactive Audio Signal Analysis Based on Sliding DFT. In Proceedings of the 12th International Conference
on Digital Audio Effects, DAFx, Como, Italy, 28 July 2009.

7. Lazzarini, V.; Lysaght, T.; Timoney, J. Spectral Signal Processing in Csound 5. In Proceedings of the International Computer Music
Conference, ICMC, New Orleans, LA, USA, 6–11 November 2006.
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