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Abstract: Metasurfaces formed by monopole and dipole resonators are studied theoretically. The
monopole resonators are Helmholtz resonators or membranes vibrating on the first eigenfrequency;
the dipole ones are spheres on springs or membranes vibrating on the second eigenfrequency. It
is shown that acoustic properties of the metasurface formed by the built-in monopole resonators
can be described by an equivalent impedance, which characterizes a normal forcing to the surface,
whereas this impedance is not suitable for the metasurface formed by the dipole resonators, because
motion of the metasurface is excited by a forcing tangential to the surface. For such boundaries, a
new characteristic named “tangential impedance” is proposed. This is a ratio of the second derivative
of the sound pressure along a coordinate tangential to the boundary to the normal velocity of
the boundary. The dipole metasurface can be described by the equivalent tangential impedance.
Reflection and absorption coefficients of the surface with the tangential impedance are found for a
harmonic plane wave in dependance of an incidence angle. It is found that the angular dependences
of the coefficients are very different for the monopole and dipole metasurfaces.

Keywords: acoustic metamaterials; Helmholtz resonator; dipole resonator; membrane; impedance;
reflection coefficient; absorption coefficient

1. Introduction

A number of papers devoted to acoustic metamaterials is growing rapidly every year.
Lists of references in reviews [1–4] observing recent achievements show the development
of the metamaterials, their properties and areas of possible applications. Usually, the
metamaterials are artificial structures consisting of similar elements with small wave
dimensions, which can have specific properties. In most cases, the elements are resonators
of different types interacting with each other. A surface covering the resonant elements can
specifically react to an outer sound field; therefore, the surface is named a metasurface.

Resonant metasurfaces are being studied both theoretically and experimentally. One
of the first applications was a sound-absorbing structure made of Helmholtz resonators [5],
which is widely used for acoustic treatment in rooms today. At the macro-scale, an equiv-
alent surface impedance was proposed [6] to simplify boundary conditions on the meta-
surfaces. Due to homogenization methods, a periodic array of the Helmholtz resonators
can be described by the effective admittance depending on resonators’ parameters [7]. In
the simplest structures, the resonators interact acoustically through the medium. Specific
relations between neighbor resonators can change the effective impedance and, for example,
increase the sound absorption efficiency [8].

Stretched membranes are successfully used for producing the metamaterials. Due
to this technology, the metamaterial with the negative dynamic mass was experimentally
realized [9]. Rigid masses attached to the membranes are used to change the natural
frequencies and modes of the membrane elements [10,11]. Using the membranes with
curved shapes allows for one to adjust their eigenfrequencies as well [12]. The metasurface
manufactured from square membranes is proposed and studied in [13].

Specific acoustic properties of the metamaterials and metasurfaces appear in the
vicinity of the resonant frequency of the elements. To enlarge the band, the resonators with
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different but close eigenfrequencies are applied. The inner volume and neck sizes of the
Helmholtz resonator are varied in [14]. In case of quarter and half-wave resonators, their
lengths are different [15]. Another way is to use actively controlled elements. The known
techniques [16,17] propose to design electro-mechanical devices with resonant impedance
on a wide-frequency band.

Often, the Helmhltz resonator is chosen as a meta-atom. It is a monopole secondary
sound source; in other words, it is a source of the volume velocity. Another type of resonator
was proposed in [18], which oscillates with constant volume. Thus, their volume velocity is
zero, and they are sources of the force acting on the surrounding medium. The proposed
oscillators were named “dipole resonators” because the radiated sound field has dipole
characteristics. Then, the dipole resonators were successfully applied for reduction of noise
radiated from an open duct [19]. A combination of the monopole and dipole resonators
named “monopole–dipole resonator” is an effective absorber for narrow pipes [20,21] and
waveguides [22] and in planar arrays [23]. The surfaces covered by the dipole resonators
have not yet been studied, with the exception of a recent paper [24] investigating sound
propagation in a narrow waveguide lined with identical dipole resonators.

This paper focuses on the theoretical understanding of acoustic properties of the meta-
surfaces formed by means of the dipole resonators. We consider two types of resonators:
the first one is the mechanical oscillator, and the second one is the membrane-type cell.
On the basis of the obtained results, we propose a new characteristic for the metasurfaces
with specific features. The problem is formulated to obtain an exact and physically clear
solution analytically, but the study of more complex systems requires applying numerical
approaches, which are widely used for research in acoustic metamaterials [25–27].

2. Resonator-Based Metasurfaces

To understand the fundamental aspects, it is enough to consider the problem of sound
propagation in two-dimensional space and its interaction with a one-dimensional boundary.
We start with the surface with the Helmholtz resonators (for brevity, called simply the
monopole metasurface hereafter), and then, we compare it with the surface covered by the
dipole resonators called the dipole metasurface.

2.1. Monopole Resonators
2.1.1. Scattered Sound Field

We now find the sound field scattered by a flat rigid surface with built-in Helmholtz
resonators, which are monopoles. They are located periodically with a distance L as shown
in Figure 1. We consider the two-dimensional problem; thus, the surface coincides with
the plane z = 0 and the resonators are at points xn = nL, where n is the number of the
resonator. Assuming a time-harmonic disturbance in the form of e−iωt, where t is time,
and ω is an angular frequency, the sound pressure in the half space z ≥ 0 can be given
as follows

P(x, z) = Aeiξ0x−iκ0z + Aeiξ0x+iκ0z + P1, (1)

where ξ0 and κ0 are the components of the wave vector. The first term in the right part of
(1) is the incident plane wave with an amplitude A, the second one is the reflected plane
wave by the rigid surface, and P1 is the sound field radiated by the resonators. In addition,
we can introduce an incidence angle θ; thus, ξ0 = k sin θ and κ0 = k cos θ, where k = ω/c,
and c is speed of sound.

First, we find the field P1. Let the resonator with the number n be the volume velocity
Qn. According to the Bloch theorem, we can write Qn = Qeiξ0Ln and then obtain the wave
equation for point resonators.

∆P1 + k2P1 = iωρQ ∑
n

eiξ0Lnδ(x− nL)δ(z) (2)

where ρ is the density of the medium.
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The solution of (2) can be found by the Fourier method, giving the following result

P1 =
ωρQ

L

(
1
κ0

eiξ0x+iκ0z − i ∑
m 6=0

1
ηm

eiξmx−ηmz

)
, (3)

where ξm = ξ0 + 2πm/L, ηm =
√

ξ2
m − k2 .

The sound field (3) is a set of plane waves. If the distance between the resonators is less
than a half-wavelength L < λ/2, where λ = 2π/k, all waves with m 6= 0 are nonuniform
and decay along the z-axis. Thus, the resonators radiate only the plane wave with m = 0.
Further, we consider only compact arrays with the period L < λ/2.

The equation of motion for the resonator with n = 0 is

M
.

Q + γQ + K
∫

Qdt = −σP(0, 0), (4)

where M and K are the mass and stiffness of the Helmholtz resonator, γ is the loss coefficient,
and σ is the cross-section area of its neck.

Substituting (1) into (4), we find the volume velocity of the resonator

Q = − 2A
Z + Zr

, (5)

where Z is the mechanical impedance of the Helmholtz resonator, and Zr is the radiation
impedance of the monopole. These impedances are given by

Z =
1
σ

(
γ− iωM +

K
−iω

)
, (6)

Zr =
P1(0, 0)

Q
= R + iX, R =

ρc
L cos θ

, X = −ρc
L ∑

m 6=0

k
ηm

. (7)

Expressions 1, 3 and 5 define the sound field scattered by the monopole metasurface.

2.1.2. Reflection Coefficient

The scattered field at a far distance is defined by two plane waves with the same
wave vector. The first one is the wave reflected by the rigid surface; it is given by the
second term in the right part of (1). The second one is the wave radiated by the array of the
resonators; it is given by the first term in the brackets in (3). The running wave reflected by
the metasurface is a superposition of these waves. Now, we can introduce the reflection
coefficient as a ratio of the reflected wave amplitude to the incident one. From (1), (3), (5),
(7), we obtain

V =
Z + iX− R
Z + iX + R

=
(Z + iX)L cos θ − ρc
(Z + iX)L cos θ + ρc

. (8)

The resonance frequency ω0 of the Helmholtz resonator in the array can be found from
the equation ImZ + X = 0. At frequencies significantly different from ω0, the impedance



Acoustics 2022, 4 906

|Z| � R, X; hence, the reflection coefficient V ≈ 1. This means that the resonators do
not have an effect on the reflected field. Only near the resonance frequency is their effect
significant. For example, the metasurface absorbs the incident wave at resonance frequency
if the losses are optimal ReZ = R.

2.1.3. Equivalent Impedance

A locally reacting surface can be characterized by the impedance, which is a ratio of the
sound pressure to the normal velocity. A flat surface at the plane z = 0 has the impedance
Z⊥ = P/vz, where P is the sound pressure, vz is the normal velocity. The pressure forms a
force acting normally on the surface. The force causes the surface to move; therefore, the
surface reacts to normal impact and the sign “⊥” underlines this fact. It is natural to call
the value Z⊥ the normal impedance.

The reflection coefficient of the surface with the impedance Z⊥ is

V =
Z⊥ cos θ − ρc
Z⊥ cos θ + ρc

. (9)

Comparing (8) and (9), we can note that the metasurface reflects the incident plane
wave like the uniform surface with the normal impedance Z′⊥ = (Z + iX)L. Therefore,
in order to characterize acoustic properties of the monopole metasurface, we can use the
equivalent impedance Z′⊥. This means that at the far field, the metasurface behaves like
an ordinary surface with the impedance Z′⊥, but the sound fields near the surfaces are
very different.

The concept of the equivalent impedance can be useful to describe properties of complex
planar systems. If the metasurface responds to the normal forcing, its equivalent impedance
should be normal. In a general case, the equivalent impedance can be nonuniform.

2.2. Dipole Resonators
2.2.1. Scattered Sound Field

Now let us consider the similar metasurface, but we replace monopole resonators with
dipole ones. The simplest model of the dipole resonator is an incompressible sphere on a
spring [18]. The dipole metasurface is shown in Figure 2. The spheres can oscillate only
along the x axis; their radius and the height of the springs are small in comparison with the
period L. Thus, the resonators can be considered as point dipole sound sources.
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Figure 2. A surface with an array of dipole resonators.

The resonator with the number n has the dipole momentum Dn = Deiξ0Ln. To find
the sound field radiated by the dipoles P2, the sound field of the monopoles (3) should be
differentiated by the coordinate x. Thus, we can write

P2 = − iωρD
L

(
ξ0

κ0
eiξ0x+iκ0z − i ∑

m 6=0

ξm

ηm
eiξmx−ηmz

)
. (10)

The total sound field in the half space z ≥ 0 is given by (1), where P1 should be
replaced by P2.

In accordance with [24], the equation of motion for the resonator with n = 0 has
the form

M
.
v + γv + K

∫
vdt = −µ

( .
v− .

ux
)
+ ρΩ

.
ux, (11)
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where M and Ω are the mass and the volume of the dipole, K is the stiffness of the spring, γ
is the loss coefficient, µ is the attached mass, v is the velocity of the dipole, ux is the velocity
of the medium in the x-direction outside the dipole.

The velocity of the medium can be found from (1) and (10)

ux =
1

iωρ

(
∂P
∂x

)
x=z=0

= 2A
ξ0

ωρ
− D

L

(
i
ξ2

0
κ0

+ ∑
m 6=0

ξ2
m

ηm

)
. (12)

The radiation impedance of the dipole is defined as a ratio of the force acting on the
dipole along the x-axis Fx = −(µ + ρΩ)

.
ux to its momentum, where ux is defined by (12).

Thus, the radiation impedance of the dipole in the periodic array is

Zr =
Fx

D
= R + iX, R =

ωξ2
0

κ0L
(µ + ρΩ), X = −ω

L
(µ + ρΩ) ∑

m 6=0

ξ2
m

ηm
. (13)

Note that Equations (11) and (13) are valid for dipoles of arbitrary form. The sphere
with a radius a and volume Ω = πa2 moving along a rigid surface with the velocity v has
the attached mass µ = 2πa2ρ and the dipole momentum D = 4πa2v [28].

Substituting (12) into (11), we find the dipole momentum of the resonator

D = −iξ0
µ + ρΩ

ρ

2A
Z + Zr

, (14)

Z =
1

4πa2

(
γ− iω(M + µ) +

K
−iω

)
. (15)

The sound field scattered by the dipole metasurface is defined by (10) and (14).

2.2.2. Reflection Coefficient

The real part of the radiation impedance (13) for the spherical dipole can be written in
the following view

R = 3π(ka)2 sin2 θ
ρc

L cos θ
. (16)

The far sound field consists of two plane waves; their superposition is the reflected
field. From (1), (10), (14), we can find the reflection coefficient

V =
Z + iX− R
Z + iX + R

=
(Z + iX) L

3π(ka)2 cos θ − ρc sin2 θ

(Z + iX) L
3π(ka)2 cos θ + ρc sin2 θ

. (17)

The angular dependances of the reflection coefficients for the monopole (8) and for
the dipole (17) metasurfaces are significantly different. At normal incidence θ = 0, the
reflection coefficient for the dipole surface is always equal to 1. The dipoles do not move if
the wavevector of the incident wave is perpendicular to their momentums. In other words,
the dipole metasurface does not respond to the normal impact and becomes absolutely
rigid. The reflection coefficient is V ≈ 1 at frequencies ω � ω0 and ω � ω0 as well. The
metasurface absorbs the oblique incident wave under usual conditions ImZ = −X and
ReZ = R.

It is interesting that the monopole and dipole metasurfaces have the same reflection
coefficients for the gliding incidence. If θ → π/2 from (8) and (17), we can find V → −1 .
Thus, both metasurfaces behave like a soft boundary.

2.2.3. Equivalent Impedance

It is obvious that the usual impedance Z⊥ is not suitable for describing the properties
of the dipole metasurface, because its motion is produced by the tangential forcing. The
metasurface moves if ∂P/∂x 6= 0; therefore, the tangential impedance instead of the
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normal one should be used for such surfaces. To characterize the far sound field, we can
formally introduce the parameter Z|| = (Z + iX)L/

(
3π(ka)2

)
, where the sign “||” marks

the tangential excitation, and find from (17) the reflection coefficient

V =
Z|| cos θ − ρc sin2 θ

Z|| cos θ + ρc sin2 θ
. (18)

The tangential impedance is determined in Section 4. Now, we can see that the value
Z|| is suitable as the equivalent impedance of the dipole metasurface.

3. Membrane-type Metasurfaces
3.1. Membrane in the Baffle

If the membrane lies in the plane z = 0, its deflection w in z-direction is given
Equation [29]

T
∂2w
∂x2 − $h

..
w = −P, (19)

where h, $ and T are the thickness, density and tension of the membrane, and P is the
sound pressure acting on the membrane. In (19), we suppose that the membrane is installed
into a rigid infinite baffle. The sound wave acts on it from the half space z > 0; on the other
side of the membrane, the sound pressure is zero.

The membrane clamped at the points x = ±a has the first eigenfrequency ω1 and
eigenmode w1, which are

ω1 =
π

2a

√
T
$h

, w1 = cos
πx
2a

. (20)

The second eigenfrequency and eigenmode are as follows

ω2 =
π

a

√
T
$h

, w2 = sin
πx
a

. (21)

Figure 3 shows the first and the second eigenmodes of the membrane in the infinite
baffle. It is obvious that the membrane is the source of the volume velocity at the first
mode and behaves like a monopole if ka� 1. The second mode can be considered as two
antiphase monopoles at distance a from each other; the membrane radiates sound like
a dipole.
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Formally, we can use the results obtained in Section 2 for the monopole and dipole
resonators for the membranes. However, we consider the problem of the membrane type
metasurface separately. The first goal is to take into account the form of the oscillating
surface, the second one is to find the solution for the membrane of an arbitrary size.
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3.2. First Eigenmode

The membrane-type metasurface consists of the rigid surface with the installed pe-
riodic array of the membranes with the size 2a, as shown in Figure 4. The centers of the
membranes are at points xn = nL. The total sound field at z ≥ 0 is given by (1). We need to
find the field P1 scattered by the membranes.
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Let the frequency ω of the incident wave be close to the first eigenfrequency ω1,
defined by (20), and only the first eigenmode w1 is excited by the sound field. Note that the
exact solution for the membrane in the medium can be found, for example, in [30]. The
velocity of the membrane with the number n is vn = vw1(x− nL)eiξ0Ln, |x− nL| < a. The
sound field radiated by the membranes is found by the Fourier method

P1 = 4πv
ωρa

L

(
f (ξ0a)

κ0
eiξ0x+iκ0z − i ∑

m 6=0

f (ξma)
ηm

eiξmx−ηmz

)
, f (x) =

cos x
π2 − 4x2 . (22)

From the equation of motion (19), where w = vw1, and the pressure P is taken from
(1) with P1 given by (22), we can find the velocity amplitude of the membrane with the
number n = 0

v = −4πω f (ξ0a)
2A

Z + Zr
, (23)

where the mechanical impedance Z and the radiation impedance Zr are defined by

Z = i
(

$hω2 − T
( π

2a

)2
)

, (24)

Zr = R + iX, R = 16π2 aω2ρ

L
f 2(ξ0a)

κ0
, X = −16π2 aω2ρ

L ∑
m 6=0

f 2(ξma)
ηm

. (25)

Note that the losses in the membrane can be taken into account by using the complex
value T, in which the image part is a loss factor [31].

If the membrane is small in comparison with the wavelength, i.e., ka � 1, then
f (ξ0a) ≈ π−2, and the reflection coefficient is equal to

V =
Z + iX− R
Z + iX + R

=
(Z + iX) π2L

16aω cos θ − ρc

(Z + iX) π2L
16aω cos θ + ρc

. (26)

We see that the reflection coefficients (8) and (26) have the same angular dependance.
As expected, the surface with the membranes vibrating at the first eigenfrequency is the
monopole metasurface with the equivalent normal impedance Z′⊥ = (Z + iX)π2L/(16aω).

3.3. Second Eigenmode

Now, we consider the array of the membranes vibrating at the second eigenfrequency
(Figure 5). At ω ≈ ω2, we assume that the deflection of the membrane is strictly defined by
the eigenmode w2. Therefore, the velocities of the membranes are vn = vw2(x− nL)eiξ0Ln,
|x− nL| < a. Using the same calculations, we can find the following results.
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The sound field radiated by the array is

P2 = −2πiv ωρa
L

(
g(ξ0a)

κ0
eiξ0x+iκ0z − i ∑

m 6=0

g(ξma)
ηm

eiξmx−ηmz

)
,

g(x) = sin x
π2−x2 .

(27)

By means of (27), the velocity amplitude can be found

v = −2πiωg(ξ0a)
2A

Z + Zr
. (28)

Now, the impedances are equal

Z = −i
(

$hω2 − T
(π

a

)2
)

, (29)

Zr = R + iX, R = 4π2 aω2ρ

L
g2(ξ0a)

κ0
, X = −4π2 aω2ρ

L ∑
m 6=0

g2(ξma)
ηm

. (30)

With the approximation g(x) ≈ x/π2 if x � 1, the reflection coefficient is

V =
Z + iX− R
Z + iX + R

=
(Z + iX) π2L

4c(ka)3 cos θ − ρc sin2 θ

(Z + iX) π2L
4c(ka)3 cos θ + ρc sin2 θ

. (31)

The dependance (31) coincides with (17) obtained for the dipole metasurface. Thus, the
membrane-type metasurface can be characterized by the equivalent tangential impedance
Z|| = (Z + iX)π2L/

(
4c(ka)3

)
.

Note that the membranes in both metasurfaces (Figures 4 and 5) can be placed without
gaps between each other. We should only suppose L = 2a to obtain the formulas for
this case.

4. Tangential Impedance
4.1. Definition

Generally, the impedance is defined as the ratio of an external forcing on an object to a
reaction of the object. In electricity, the external forcing is a voltage supplied to a circuit,
and the reaction is a current in the circuit. In acoustics, the sound pressure acting on a
boundary is considered as the forcing, whereas the velocity of the boundary is its reaction.
Their ratio depends only on the acoustic properties of the boundary and is usually used as
a boundary condition.

The ordinary definition of the impedance of a surface is Z⊥ = P/vn, where P is the
sound pressure, and vn is the normal velocity of the surface. It is important that here
we deal with the local impedance, which means that each point of the surface moves
independently on the others. Above, we suggested to name the value Z⊥ the normal
impedance, because the pressure P produces the force acting normally to the surface.

As shown in Sections 2.2 and 3.3, there are specific surfaces, in which moving is
caused by a forcing acting tangentially on the surface. The forcing acting on the dipole
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metasurface laying in the plane z = 0 is proportional to the tangential component of the
velocity ux ∼ ∂P/∂x of the medium near the surface. In addition, we have to remember
that the field of the dipole array is found as the gradient in the x-direction. Thus, the forcing
is proportional to the value ∂2P/∂x2. The reaction of the surface can be described by the
normal velocity vz in an ordinary way, because the tangential component of the surface
velocity does not cause radiated waves in an inviscid medium.

Now, we can propose the value characterizing the impedance of the dipole metasur-
faces as the ratio of ∂2P/∂x2 to vz. However, it would be convenient to have the dimension
of the new impedance like the traditional one. The values ∂2P/∂x2 and P differ by a
value proportional to the square of the distance. In the problem with the infinite plane,
there is only one measure of the distance, which is the wavelength λ or the wavenumber
k = 2π/λ. Finally, we can suggest the following definition of the tangential impedance for
the dipole metasurface.

Z|| =
∂2P/∂x2

−k2vz
. (32)

Of course, the definition (32) is valid only for the harmonic plane wave. In general,
the ratio −

(
∂2P/∂x2)/vz is more appropriate for the tangential impedance, but it has a

different dimension relative to Z⊥.

4.2. Reflection Coefficient of a Plane Surface

The reflection coefficient of a plane wave incident on the plane surface can be found if
the impedance of the surface is known. The surface characterized by the normal impedance
Z⊥ has the reflection coefficient given by (9). If the surface has the tangential impedance
(32), the reflection coefficient can be calculated by means of (18).

Let us compare the angle dependances (9) and (18). At normal incidence, the reflection
coefficient of the surface with the normal impedance is V = (Z⊥ − ρc)/(Z⊥ + ρc), when
V = 1 for the surface with the tangential impedance. At gliding incidence, the surfaces of
both types behave like a soft boundary because V → −1 . At oblique incidence, the sound
wave is absorbed if Z⊥ = ρc/ cos θ or Z|| = ρc sin2 θ/ cos θ. For total absorption, both
impedances should be real, and the normal impedance should be Z⊥ ≥ ρc. It is interesting
that there is a value of the incidence angle θ for any value of Z||, when the wave is absorbed.

Figure 6 shows the dependances of the reflection coefficient on the incidence angle for
some real values of the normal and tangential impedances. The impedances of the resonant
metasurfaces are real if the resonant frequency found from the equations Im(Z⊥ + Z) = 0
or Im

(
Z|| + Z

)
= 0 coincides with the frequency of the incident wave. The value of the real

part can be adjusted by varying dissipation properties of the resonators. For example, the
membranes could be manufactured from elastic materials with different loss coefficients,
which are described by the image part of the modulus of elasticity.

The dependance for Z⊥ is well known, the coefficient V for Z|| varies from 1 to –1. By
increasing the impedances Z⊥ and Z||, the angle at which full absorption is provided tends
to be π/2.

4.3. Diffuse Absorption Coefficient

In some cases, the metasurfaces could be used for sound absorption. The reflection
coefficient α is connected with the absorption one by the relation α = 1− |V|2. The surfaces
with the impedances of both types can completely absorb the incident sound wave only at
a certain angle. The absorption coefficient in the diffuse sound field is given by

αd =
2
π

∫ π
2

0
αdθ. (33)

The diffuse absorption coefficient for the real values of the impedance is presented
in Figure 7. Both curves have one maximum, which means that the absorption can be
optimized. The surface with the normal impedance has the maximal absorption coefficient
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αd = 0.89 if the impedance is Z⊥ = 1.63ρc. The same value for the tangential impedance
surface is αd = 0.61 at Z|| = 0.86ρc. Thus, this type of the surface is a less efficient absorber;
however, at low values, Z < 0.35ρc has larger absorption coefficient.
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Figure 7. The diffuse absorption coefficients of the surfaces with normal (1) and tangential
(2) impedances.

5. Conclusions

We studied the acoustic properties of the surfaces with the integrated resonators lo-
cated at a distance of less than a half-wavelength from each other. These surfaces are named
“metasurfaces” because under some conditions, they have unusual acoustic characteristics.

Helmholtz resonators or membranes vibrating at the first eigenfrequency are monopole
resonators; thus, their periodic array forms the monopole metasurface. To describe the
sound reflection properties, one can use the ordinary impedance Z⊥, which is the ratio of
the pressure to the normal velocity of the surface. This means that the surface with the
uniform impedance and the monopole metasurface produce the same reflected wave in the
far field. In this sense, these surfaces are equivalent.

Another result takes place in the case of the dipole metasurface formed by spheres
on springs or by membranes vibrating at the second eigenfrequency. The motion of the
surface is excited by the velocity of the medium along the surface. In other words, the
excitation does not occur normally, but tangentially. In particular, it causes the different
dependences of the reflection coefficient on the incidence angle. Therefore, the impedance
Z⊥ is not suitable for the dipole metasurface.

For this reason, the concept of a tangential impedance is proposed. Calculations show
that the exciting impact on the dipole metasurface is proportional to the second derivative
of the pressure along the direction tangential to the surface. The definition of the tangential
impedance Z|| for the dipole metasurface is given by (32). Using this parameter, we can
obtain the reflection coefficient, which is found by means of the exact solution. Thus, the
dipole metasurface is equivalent to the surface with the uniform impedance Z||.

The surfaces with the normal and tangential impedances have different reflective
properties. The tangential impedance can be used to describe the acoustic properties of
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surfaces with a complex structure. It is important that definition (32) is valid only for
the metasurfaces shown in Figures 2 and 5. However, other metasurfaces may require a
different definition of the tangential impedance.
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