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Abstract: In this paper, we address the problem of howling detection in speech reinforcement system
applications for utilization in howling control mechanisms. A general speech reinforcement system
acquires speech from a speaker’s microphone, and delivers a reinforced speech to other listeners in
the same room, or another room, through loudspeakers. The amount of gain that can be applied
to the acquired speech in the closed-loop system is constrained by electro-acoustic coupling in the
system, manifested in howling noises appearing as a result of acoustic feedback. A howling detection
algorithm aims to early detect frequency-howls in the system, before the human ear notices. The
proposed algorithm includes two cascaded stages: Soft Howling Detection and Howling False-Alarm
Detection. The Soft Howling Detection is based on the temporal magnitude-slope-deviation measure,
identifying potential candidate frequency-howls. Inspired by the temporal approach, the Howling
False-Alarm Detection stage considers the understanding of speech-signal frequency components’
magnitude behavior under different levels of acoustic feedback. A comprehensive howling detec-
tion performance evaluation process is designed, examining the proposed algorithm in terms of
detection accuracy and the time it takes for detection, under a devised set of howling scenarios.
The performance improvement of the proposed algorithm, with respect to a plain magnitude-slope-
deviation-based method, is demonstrated by showing faster detection response times over a set
of howling change-rate configurations. The two-staged proposed algorithm also provides a sig-
nificant recall improvement, while improving the precision decrease via the Howling False-Alarm
Detection stage.

Keywords: speech reinforcement; acoustic feedback; electro-acoustic coupling; howling detection;
howling control

1. Introduction

Speech reinforcement (SR) applications, whether in-room communication systems
or remote audio teleconference systems, usually encompass an inherited level of acoustic
feedback due to reverberation within the end-users’ locations. Such SR systems include
public announcement (PA) systems, live shows, in-car communications, in-room and remote
conference calls, and online video calls. SR systems consist of microphones, which aim to
acquire each speaker’s direct (and least reverberant) speech, and loudspeakers that amplify
the received speech signals and play them—back into the room or to the rooms of the end-
users (assuming no earphones). Unfortunately, when the amplification gain rises, or the
microphone is placed close to the loudspeaker, the level of acoustic feedback may become
excessively high, i.e., electro-acoustic coupling, manifesting as grating howling noises.
Namely, the acoustic echo from the loudspeaker might reach the speaker’s microphone due
to reverberation, i.e., reflections of sound waves inside the room [1].

A room’s reverberation time (T60) is dependent on the structure of the room, i.e., room
dimensions, the materials of the walls, and its interior, where all of these affect the time
taken for the sound signal to decay [2–5]. The room’s reverberation characteristics, to-
gether with the loudspeaker and microphone positions in the room, determine the sound
waves’ direct path and reflections. These loudspeaker-enclosure-microphone (LEM) paths

Acoustics 2022, 4, 967–995. https://doi.org/10.3390/acoustics4040060 https://www.mdpi.com/journal/acoustics

https://doi.org/10.3390/acoustics4040060
https://doi.org/10.3390/acoustics4040060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/acoustics
https://www.mdpi.com
https://orcid.org/0000-0002-7209-7900
https://orcid.org/0000-0002-2556-3972
https://doi.org/10.3390/acoustics4040060
https://www.mdpi.com/journal/acoustics
https://www.mdpi.com/article/10.3390/acoustics4040060?type=check_update&version=1


Acoustics 2022, 4 968

characterize the channel of the echo signal and directly affect the acoustic feedback in the
room, which at some level of amplification gain might trigger electro-acoustic coupling and
instability within the SR system, evoking howling at resonance frequencies of the system’s
closed-loop transfer function (TF) [6–8]. The attainable gain of the loudspeakers is thus
limited by a maximum stable gain (MSG) of the SR system [9]. However, the amplification
gain is only limited around the howling frequencies. When a clean speech signal arrives
at the microphone of a closed-loop SR system, assuming no thermal noise, only speech
harmonics close to the poles of the TF can evoke howling. Therefore, evoked frequency-
howls can be instinctively suppressed by changing the system’s TF, i.e., by reducing the
amplification gain or altering the LEM paths. After that, it is possible to return the SR
system to its initially configured state.

Two approaches are commonly used to tackle the howling problem in SR systems. To
prevent electro-acoustic coupling, an acoustic echo canceller (AEC) is often used, both in
hearing aids and in hands-free communication. AECs aim to cancel the echo signal from
the loudspeaker by adaptively identifying the room-impulse-response (RIR) of the LEM
paths and subtracting the estimated echo signal [1,3,10–17]. Another common (comple-
mentary) approach for acoustic feedback control is the use of notch-filter-based howling
suppression (NHS) techniques, a private case of howling control mechanisms that aim
at stabilizing the SR system by handling the appearance of frequency-howls (rather than
preventing it) [12,13]. This approach consists of a howling detection algorithm and a
notch filter design method, as in [7,18,19]. The state-of-the-art howling detection features
are the PTPR (Peak-to-Threshold Power Ratio), PAPR (Peak-to-Average Power Ratio),
PNPR (Peak-to-Neighboring Power Ratio), PHPR (Peak-to-Harmonic Power Ratio), IPMP
(Interframe Peak Magnitude Persistence), and the IMSD (Interframe Magnitude Slope
Deviation), as reviewed in [6,20]. The temporal IMSD feature evaluates the magnitude-
increase of a frequency component as a function of time, by measuring the logarithmic
magnitude’s frame-wise slope variation. Accordingly, Green et al. proposed the computa-
tionally efficient ‘summing’ method for assessing the MSD of frequency spectrum data [19].
Alternatively, a deep-learning-based approach for howling detection is proposed in [21],
utilizing a convolutional recurrent neural network (CRNN)-based method for howling
detection in real-time communication applications, which is robust to device-dependent
howling features.

While AECs work very well in several cases, unobservable input speech signals
acquired with the loudspeaker’s echo signal (double-talk), or changes in the room acoustics
(RIR), may get the AEC out of tune and affect the sound quality and the stability of the SR
system for the currently applied amplification gain [7,18]. Moreover, an AEC’s processing
delay must be lower than the minimal propagation delay that may exist in the room
(shortest LEM path) [22]. While NHS techniques may serve as a backup mechanism for
handling the appearance of frequency-howls, they depend on an accurate and early howling
detection algorithm. Furthermore, they may compromise speech quality in the case of
over-filtering. Consequently, feedback control via howling detection remains a significant
challenge for real-time applications. While the deep-learning-based approach was reported
to achieve a high detection rate and a low false-alarm rate, its spectral image of 32 frames
(1.28 s) suggests that howling would be noticed before being detected. Although the MSD
measure is reported to be accurate [19], the temporal IMSD feature, on which it is based, is
said to be extremely sensitive to the threshold choice [20]. Based on this, using the MSD
measure alone might not be sufficient.

In this paper, a temporal howling detection algorithm, based on the MSD measure, is
proposed for SR systems. The proposed algorithm aims to early detect frequency-howls in
the system, before the human ear notices. Thus, laying the foundation for howling control
mechanisms, and maintaining high-quality speech communication. The howling detection
algorithm includes two cascaded stages: Soft Howling Detection and Howling False-Alarm
Detection. The Soft Howling Detection is based on the temporal magnitude-slope-deviation
measure, identifying potential candidate frequency-howls. As opposed to using a plain
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MSD-based detector, the Soft Howling Detection stage is designed to be less strict, detecting
as many potential candidate frequency-howls as possible. Therefore, the detection process is
immediate, identifying suspected feedback howls across all frequency bins. As the majority
of howling false alarms can be attributed to frequency components of speech harmonics,
the proposed solution aims to authenticate each suspected frequency-howl with regard to
the signal behavior before detection. Inspired by the temporal approach, the Howling False-
Alarm Detection stage is added to refute candidate frequency-howl false alarms that are not
caused by feedback, based on their prior magnitude behavior under the system’s steady
state. Thus, examining the extended magnitude history only at the suspected frequency
bins, and refuting false-positive howling candidates. The contributions of this paper are
as follows: First, mathematical analysis of the howling’s temporal behavior within the SR
system in terms of a closed-loop feedback TF. Second, expansion of the temporal analysis
approach to assess identified frequency-howls with respect to the ongoing effect of the
system dominant poles on frequency components of speech. Thus, further exploiting
the MSD measure. Third, utilization of standard ISO 226:2003 [23] for early detection of
frequency-howls, i.e., before the human ear notices. Finally, a performance evaluation
framework for howling detection techniques is provided, characterizing the response time
and measuring the detection accuracy.

This paper is organized as follows: Section 2 describes the signal model and problem
formulation. Section 3 provides a mathematical analysis of the howling effect and its origins.
Accordingly, Section 4 analyzes the magnitude slope of a howl, and introduces the temporal
analysis approach and a plain howling detector based on the MSD measure. Section 5
presents the proposed MSD-based howling detection algorithm. Section 6 describes the
proposed performance evaluation framework. Then, Sections 7 and 8 demonstrate and
discuss the howling detection improvement, in terms of detection accuracy and response
time, that lies in further expanding the temporal analysis approach. Finally, Section 9
presents the conclusions of the study.

2. Signal Model and Problem Formulation

The scenarios of an SR system may be generally considered as an in-room closed-loop
system. That is, where the SR system is characterized by a single segment, as illustrated in
Figure 1. Figure 1 is intuitive in situations that pertain to an amplification system in a room.
However, this illustration may encompass more complex SR systems, such as conference
calls between at least two users, as illustrated in Figure A1, in Appendix A. In this case,
the entire SR system and the other user’s environment are considered as one.

u(n)
+

b(n)
+

+
m(n)

+

w(n)
+

y(n)x(n)
h(n)

g(n)
f(n)

1

Figure 1. In-room speech reinforcement system.

2.1. In-Room Speech Reinforcement System

The SR system’s signal model considers a microphone and a loudspeaker in a closed
room. The microphone is responsible for speech acquisition, and is denoted as the speaker’s
microphone. The loudspeaker plays the system’s output signal back into the room.

Figure 1 illustrates the considered SR system. The output signal of the system y(n)
comprises the loudspeaker signal x(n) and the thermal noise of the loudspeaker w(n), i.e.,

y(n) = x(n) + w(n) . (1)
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The signal y(n) propagates in the room through the LEM paths into the speaker’s micro-
phone, with an RIR g(n), generating the echo signal f (n):

f (n) = y(n) ∗ g(n) , (2)

where ∗ denotes the convolution operation. The input signal to the microphone m(n) is
composed of the desired near-end speech u(n), the background and thermal noises of the
microphone b(n), and the acoustic echo from the loudspeaker f (n):

m(n) = u(n) + b(n) + f (n) . (3)

To deliver the near-end speech through the loudspeaker, an SR-segment h(n) is utilized to
obtain the filtered estimated near-end speech û(n) from m(n), and amplify it by a gain factor K:

x(n) = h(n) ∗m(n) = K û(n) . (4)

In cases more complex than an amplification system in a room, the loudspeaker signal
x(n), provided by the SR-segment, may also contain sound sources and noises from
other environments.

2.2. Problem Formulation

Considering the signal model in Figure 1, our objective is to develop a howling
detection algorithm, which utilizes the speaker’s microphone, to provide fast howling
detection for the purpose of suppressing potential artifacts in the reinforced speech due to
electro-acoustic coupling, i.e., feedback in the system.

3. Mathematical Analysis of a Closed-Loop System Response

For a closed-loop control system, the dominant poles of the TF determine its response
to a unit step-function; among others, in terms of the response time [8]. Thus, in a closed-
loop amplification system, where feedback is present, the feedback effect on the reproduced
speech is determined by the poles of the system’s TF.

Considering a simple system TF H(z), with a single pole zp, it is desired to examine
its effect on the input signal X(z); where z denotes the complex frequency z-plane of the
Z-domain. Let H(z) be the TF

H(z) =
1

1− zp z−1 , (5)

then the output of the system will be

Y(z) = X(z) H(z) =
X(z)

1− zp z−1 . (6)

Transforming to the time-domain n, the output signal y[n] is desired. The development is
as follows, for |z| > |zp|:

y[n] = x[n] ∗
(

zn
p u[n]

)
=

∞

∑
m=−∞

x[n−m] zm
p u[m]

=
∞

∑
m=0

x[n−m] zm
p ,

(7)

where u[n] is the unit step function, and ∗ denotes convolution. Let us define the pole to be
zp , αp ejθp , where αp ∈ R , αp > 0 and θp ∈ [−π, π]. Given the sampling frequency fs, let

θp ,
2π fp

fs
, where fp ∈ R corresponds to a certain frequency fp ∈ [− fs

2 , fs
2 ].
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3.1. Response to a Complex Exponential Step Input Signal

Considering a complex exponential input signal of the form x[n] = u[n] ejθn, where
θ ∈ [−π, π], the output of the system is

y[n] =
∞

∑
m=0

x[n−m] zm
p =

∞

∑
m=0

u[n−m] ejθ(n−m) αm
p ejθpm

= ejθn
n

∑
m=0

αm
p ej(θp−θ)m

αp ej(θp−θ) 6=1
= ejθn 1− αn+1

p ej(θp−θ) (n+1)

1− αp ej(θp−θ)
.

(8)

Therefore, the convergence of the system’s output depends on αp = |zp|, and applies if
αp < 1.

In the case where x[n] = u[n] ejθn = u[n] ejθpn = u[n] ej2π fp
n
fs , the output of the

system is

y[n] =
∞

∑
m=0

x[n−m] zm
p =

∞

∑
m=0

u[n−m] ejθp(n−m) αm
p ejθpm

= ejθpn
n

∑
m=0

αm
p

αp 6=1
= ejθpn 1− αn+1

p

1− αp
.

(9)

Therefore, the output signal is the scaled complex exponential input signal of frequency fp.

3.2. Response to a Complex Exponential Reversed-Step Input Signal

Assuming the system is stable, i.e., αp < 1, and considering a complex exponential
input signal of the form x[n] = u[−n] ejθn, where θ ∈ [−π, π], the output of the system is

y[n] =
∞

∑
m=0

x[n−m] zm
p =

∞

∑
m=0

u[m− n] ejθ(n−m) αm
p ejθpm

n≥0
= ejθn

∞

∑
m=n

αm
p ej(θp−θ)m

αp ej(θp−θ) 6=1
= ejθn αn

p ej(θp−θ) n

(
1− αk+1

p ej(θp−θ) (k+1)

1− αp ej(θp−θ)

∣∣∣
k→∞

)
αp<1
= ejθn αn

p ej(θp−θ) n

1− αp ej(θp−θ)
=

αn
p ejθpn

1− αp ej(θp−θ)
.

(10)

As expected, the frequency of the system’s output signal depends only on θp, since the
complex exponential input signal has been switched off.

3.3. Response to a Sinusoidal Windowed Input Signal

As can be inferred from Equations (8)–(10), the rise and fall times of a windowed
input signal depend on the magnitude of the pole αp. To emphasize the resulting terms,
Figure 2 depicts the two-pole system TF response graphs for an input signal in the form
of a sine wave, followed by silence. The pair of complex conjugate poles of the system
TF corresponds to the frequency 2156.25 Hz, while the sampling frequency is 16 kHz,
and results in real coefficients in the TF. The magnitude-set of the conjugate poles in each

row is
{

0.9, 0.999, 1, 1.1
}

, which corresponds to the scenarios: Stable Pole, Close Stable
Pole, Unstable Pole, and More Unstable Pole. Two sinusoidal input signals are tested: the
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left column refers to a frequency of 2156.25 Hz (the pole’s frequency), and the right column
refers to a frequency of 3000 Hz. The middle column (Figure 2f–i) depicts the pole-zero
graphs of each scenario. The first row depicts the input signals (Figure 2a,j), and the other
rows depict the output signals (Figure 2b–e,k–n), for each of the resulting TFs.
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Figure 2. Two-pole system TF response graphs. The two complex conjugate poles of the system TF
correspond to a frequency of 2156.25 Hz, while the sampling frequency is 16 kHz. Each row (e.g.,

b,f,k) corresponds to a pair of conjugate poles with a magnitude in
{

0.9, 0.999, 1, 1.1
}

. The first row
depicts the input signals, and the other rows show the output signals for each of the resulting TFs.
Two sinusoidal input signals are tested: the left column (a–e) refers to a frequency of 2156.25 Hz,
and the right column (j–n) refers to a frequency of 3000 Hz. The middle column (f–i) depicts the
pole-zero graphs of each scenario.

Clearly, two interesting scenarios can be distinguished from Figure 2. The first
is the Close Stable Pole scenario, where the magnitude is less than 1 but close to it,
i.e., 0 << αp < 1. The second is the More Unstable Pole scenario, where the magnitude
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is larger than 1, i.e., αp > 1. The Close Stable Pole scenario shows a situation where the
response to the input signal is underdamped, i.e., it takes time for the output signal to
decrease back to zero, although there is negative feedback in the system. On the other hand,
the More Unstable Pole scenario shows a situation where the response to the input signal
diverges, i.e., positive feedback in the system leads to a rapid increase in the amplitude
of the output signal. In practice, a situation known as abrupt clipping may occur, most
commonly in electronic amplifiers, in which the signal amplitude exceeds the limits of the
amplifier’s power supply, resulting in signal distortion due to clipping [24].

4. Magnitude-Slope-Deviation-Based Howling Detection

Following Section 3.3, there are two types of howls. First, an increasing howl corre-
sponds to the More Unstable Pole scenario, i.e., when an unstable pole of the system’s TF
is excited by a frequency component of the input signal. Second, an underdamped howl
corresponds to the Close Stable Pole scenario, i.e., when a stable pole of the system’s TF,
located close to and inside the unit circle, is excited by a frequency component of the input
signal. This type of howling implies that a noticeable howling sound may arise even before
the SR system reaches instability.

Green et al. [19] suggest a temporal method to intelligently identify feedback howls
within candidate frequency bins. Namely, measuring the Magnitude Slope Deviation
(MSD) via the ‘summing’ MSD method. This method relies on the fact that the howling
components’ power changes linearly over time when calculated on a dB scale, i.e., the
gradient change (second-order derivative) is consistently close to zero.

Accordingly, this section first proves the linear magnitude change along time (when
calculated on a dB scale), for both howling types. Next, as suggested by the temporal
approach, the magnitude history buffer is introduced for an effective analysis of candidate
frequency bins. Then, a plain MSD-based howling detector is presented and discussed.
The cons of the plain detector will be addressed in the following section via the proposed
MSD-based howling detection algorithm.

4.1. Magnitude Slope of a Frequency-Howl

Let the output signal be the response to a frequency component of the input signal,
the magnitude slope shall be calculated on a dB scale, i.e., where

dB{y[n]} = 20 log10 |y[n]| . (11)

For an increasing howl at the pole’s frequency, following the development in Equation (9),

y[n] = ejθpn
n

∑
m=0

αm
p . (12)

Thus, the magnitude slope of the increasing signal is calculated by

dB{y[n]} − dB{y[n− 1]} = dB
{

y[n]
y[n− 1]

}
= dB

{
ejθpn ∑n

m=0 αm
p

ejθp(n−1) ∑n−1
m=0 αm

p

}

= dB

{
ejθp

1 + ∑n
m=1 αm

p

∑n−1
m=0 αm

p

}
= dB

{
1 + αp ∑n−1

k=0 αk
p

∑n−1
m=0 αm

p

}

= dB

{
αp +

1

∑n−1
m=0 αm

p

}
.

(13)

Since αp > 1, when n is large enough, the increase rate is dB
{

αp
}

.
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For an underdamped howl, following Equation (10),

y[n] =
αn

p ejθpn

1− αp ej(θp−θ)
. (14)

Thus, the magnitude slope of the decaying output signal is calculated by

dB{y[n]} − dB{y[n− 1]} = dB
{

y[n]
y[n− 1]

}
= dB


αn

p ejθpn

1−αp ej(θp−θ)

αn−1
p ejθp(n−1)

1−αp ej(θp−θ)


= dB

{
αp ejθp

}
= dB

{
αp
}

.

(15)

Hence, the gradient change should be consistently close to zero for both types of howls.
This means that the standard deviation of the magnitude’s second-order derivative should
be small.

Furthermore, considering the sampling frequency fs, the magnitude change rate of
the output signal (when calculated on a dB scale) is determined by

dB-Slope{y[n]} = fs dB
{

αp
}

. (16)

Accordingly, for a desired slope of the output signal, given a complex exponential input
signal at the pole’s frequency, the configured pole magnitude αp is determined by

αp = 10
Desired-Slope / fs

20 . (17)

4.2. Temporal Analysis Approach

To analyze the temporal behavior of the signal along the spectrum, i.e., the magnitude
behavior of each frequency component over time, the power spectral density (PSD) is
calculated on subsequent sample frames. In practice, signal samples are buffered in a
sample frame of length LMSD, referred to as the MSD-buffer. Once the MSD-buffer is filled
with LMSD samples, the dB-scale normalized PSD of the signal is calculated, and inserted
into the magnitude history buffer. This process repeats itself every Lframe-shift samples. In
detail, the PSD of the MSD-buffer is calculated by

PSD
{

MSD-buffer
}
= |FFT

{
MSD-buffer

}
|2 . (18)

Since the Fourier transform of a real-valued signal has Hermitian symmetry, the negative
frequencies in the spectrum do not provide new information with respect to the positive
frequencies. Therefore, using the normalized frequency units [−π, π), the positive frequen-
cies ([0, π)) of the PSD are considered. Then, the PSD is normalized by its squared length,
and the result is converted to a dB scale as follows:

Normalized-PSD (dB) = 10 log10

{
PSD(
LFFT

2

)2

}
, (19)

where LFFT is the FFT length, which is equal to LMSD. The howling detection process begins
when the magnitude history buffer is full, and repeats itself after each PSD calculation.
Thus, tracking the magnitude change using a dB-scale magnitude history buffer.

Considering the complex exponential input signal from Section 4.1, analyzing the
signal in terms of sample frames provides an average-magnitude estimate for each frame.
Then, a frequency-howl’s magnitude change rate within a frequency bin is the dB-Slope of
Equation (16) times 1/Lframe-shift.
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Accordingly, a temporal detection method depends on feature extraction based on the
magnitude history buffer and its gradients. The calculation of the gradient and the gradient
change is as follows:

G′(k, n)
[ dB

sec

]
=

G(k, n)− G(k, n− 1)
dt

;

G′′(k, n)
[ dB

sec2

]
=

G′(k, n)− G′(k, n− 1)
dt

=
G(k, n)− G(k, n− 2)

dt2 ;
(20)

where G(k, n) is the dB-scale magnitude history buffer data, at frequency bin k and analysis
frame n; and dt = Lframe-shift

fs
is the time-difference between two subsequent frames.

4.3. Plain Magnitude-Slope-Deviation-Based Howling Detector

Based on the fact that the gradient change should be consistently close to zero for
both types of frequency-howls, the plain MSD-based howling detector measures the MSD
and determines howling detection accordingly. In detail, the MSD at a suspected fre-
quency bin k is the root-mean-square deviation (RMS-Deviation) of the historical magni-
tude gradient-change measurements G′′(k, n) relative to zero, calculated by averaging the
squared absolute values as follows:

MSD(k, m) ,
1

N − 2

N−2

∑
n=1
|G′′(k, n)|2 , (21)

where m denotes the current frame, last inserted into the magnitude history buffer, and N
is the number of frames in the magnitude history buffer. Accordingly, a low MSD value of
a candidate frequency bin implies a probable howl. Unfortunately, the MSD measure alone
is not sufficient for immediate real-time howling detection.

4.3.1. Howling Detection Safety Mechanisms

Two safety mechanisms are used to refute false frequency-howls. First, detected
frequency-howls below 15 Hz are refuted, since only acoustic waves within the frequency
range of 20 Hz to 20 kHz are considered sound waves [25,26]. Furthermore, low MSD
values may be obtained for frequency bins with no (or very low) energy over time. Namely,
Close Stable Poles that are triggered by low noises in the microphone signal will decay
slowly, but will not be noticed by the human ear. Human sensitivity to sound varies
across the acoustic frequency range, as studied in the field of psychoacoustics [27]. That
is, the listener may perceive the same level of loudness from two pure tones, presented
to the human ear, at different frequencies and sound pressure levels (SPL). Accordingly,
standard ISO 226:2003 [23] of the International Organization for Standardization defines
the equal-loudness contours representing the average judgment of otologically normal
people. These contours lie in the SPL/frequency plane, where each such curve represents
the sound-pressure-level values in dB (dB SPL) of pure tones that are judged to be equally
loud. The loudness level of a contour is measured in phon units, which are equal to the
dB SPL of a similarly perceived 1 kHz pure tone. The equal-loudness contours provided
by the standard, fully apply to frequencies from 20 Hz to 12.5 kHz and loudness levels
between 20 and 80 phon, where the hearing threshold is below 20 phon. Regarding a
received sound as a combination of pure continuous tones, within a speech sample frame,
the hearing threshold can be determined for each frequency bin. Hence, the minimal howl
energy threshold for each frequency bin was determined using the equal-loudness-level
contour of 20 phon, as implemented in [28] according to [23], minus a safety gap of 5 dB.
In detail, calculating the dB SPL values of pure tones at all frequency bins between 0 Hz–
8 kHz (sampling frequency of 16 kHz), according to the equal-loudness-level contour at the
loudness level of 20 phon. As it is unlikely that the human ear would perceive a howl or
any other sound under this threshold-contour, it is considered silence. Therefore, candidate
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frequency-howls are refuted if their mean energy (among the magnitude history buffer) is
below the corresponding value on the threshold-contour.

4.3.2. Inherited Trade-Offs of the Temporal Approach

Given a sampling frequency fs, the following set of temporal parameters needs to
be set: the frame-length (in samples), the frame-shift (in samples), and the number of
frames in the magnitude history buffer used for howling detection; denoted by: LMSD,
Lframe-shift, and Ndetection. Although a longer LMSD means averaging the linearly changing
magnitude of a frequency-howl, it provides a higher frequency resolution and allows
averaging the effect of noise on the signal’s magnitude. Furthermore, the typical speech
analysis frame length is 20–40 ms, due to the quasi-stationarity of the speech signal [29].
Appropriately, a longer Lframe-shift provides a more distinct magnitude-change tracking.
Based on that, a large number of frames in the magnitude history buffer provides a more
accurate estimation of the MSD along the frequency-howl. On the other hand, the total
length of the magnitude history buffer determines the delay of the howling detection
process. The minimum delay of such a temporal howling detection process, from the
beginning of a howl, is calculated by

DelayTemporal =
LMSD + Lframe-shift (Ndetection − 1)

fs
. (22)

This means that a long magnitude history buffer, followed by a long howling detection delay,
is likely to result in frequency-howls being noticed by the human ear before being counter-
treated, as well in miss detection of short but noticeable underdamped frequency-howls.

Accordingly, the plain MSD-based howling detector was configured with a set of
parameters fine-tuned to maintain a low false-alarm rate. For the sample rate of 16 kHz,
Ndetection = 10 where LMSD = 1024 (the power of 2, closest to 60 ms—about twice the
typical length of a speech-analysis frame), and Lframe-shift corresponds to a shift of 10 ms
between subsequent sample frames. Hence, resulting in a minimum howling detection
delay of 154 ms. However, it appears that frequency-howls are still noticeable before they
are detected, and it miss-detects short howls.

5. Proposed MSD-Based Howling Detection Algorithm

The proposed howling detector includes two cascaded stages: Soft Howling Detection
and Howling False-Alarm Detection. As opposed to the performance constraint on the
plain MSD-based detector, the Soft Howling Detection stage is designed to be less strict,
aiming to detect as many potential candidate frequency-howls as possible. Thus, achieving
a low miss-detect probability at the cost of a high false-alarm rate. Analysis of the howling
false alarms reveals that they are primarily caused by speech harmonics. Namely, similarly
to frequency-howls, the frequency components of speech harmonics (especially the low-
number harmonics): rise (like an increasing howl), keep steady for a few moments, and
then decay (like an underdamped howl). Accordingly, the second stage is added to refute
candidate frequency-howl false alarms that are not caused by feedback, based on their
prior magnitude behavior under the system’s steady state.

The proposed MSD-based howling detection algorithm, within the in-room SR system,
is illustrated in Figure 3. The MSD-buffer stores the samples of the microphone signal m(n).
The magnitude history buffer stores the magnitude per frequency bin, for each iteration
of the MSD-buffer, as detailed in Section 4.2. As denoted in Figure 3, all frame-blocks,
of the magnitude history buffer and its gradients, are related to the history-buffer; and
the gray-colored frames are related to the detection-buffer. Accordingly, the detection-
buffer is used in the Soft Howling Detection stage, and the history-buffer is used in the
subsequent Howling False-Alarm Detection stage. Thus, achieving a fast and reliable
howling detection process.
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Figure 3. Proposed Magnitude-Slope-Deviation (MSD)-based howling detection algorithm within the
in-room SR system. Each frame of the Magnitude History Buffer contains the frequency component
magnitudes of the microphone signal, determined by the Power-Spectral-Density (PSD) on the
microphone signal samples, stored in the MSD-buffer. The recent frames of the Magnitude History
Buffer are referred to as the detection-buffer, and the entire buffer as the history-buffer. Accordingly,
the Soft Howling Detection stage evaluates the detection-buffer, and the subsequent Howling False-
Alarm (FA) Detection stage evaluates the history-buffer at the suspected frequency bins, to refute the
false-positive howling candidates.

5.1. History-Buffer Analysis

As illustrated in Figure 3, the magnitude history buffer and its gradients are used in
both stages of the howling detector to extract features, where each stage analyzes the part
of the history-buffer relevant to its analysis. The first stage analyzes the recent NImmediate
frames of the history-buffer, i.e., the detection-buffer, to detect suspected feedback howls
across all frequency bins. The second stage analyzes the entire NHistory frames of the history-
buffer, at the suspected frequency bins, to refute the false-positive howling candidates.

Accordingly, for a fast howling detection as well as a legitimate behavioral analysis
of the magnitude’s history, the magnitude history buffer parameters were fine-tuned. For
the sample rate of 16 kHz, NImmediate = 6 and the frame-length is shortened to LMSD = 512
(the power of 2, closest to 30 ms—a typical length of a speech-analysis frame). Thus,
enabling an early howling detection while still minimizing irrelevant false alarms. Besides,
Lframe-shift remains similar to the plain MSD-based detector. Regarding the history-buffer,
NHistory = 120. Hence, resulting in a minimum howling detection delay of 82 ms, and an
initial delay of 1.222 s until the history-buffer is filled with samples.

5.2. Soft Howling Detection

The detection of frequency-howls is based on the theory of the MSD measure, see
Section 4.1. Namely, the power of howling components changes linearly over time, when
calculated on a dB scale, and the gradient change (second-order derivative) should be
consistently close to zero. Accordingly, regarding the detection-buffer GImmediate(k, n) ,

G(k, n − NImmediate + 1 : n) at all frequency bins k ∈
[
1, LFFT

2

]
, the Immediate Feature

Extraction relates to extracting the mean gradient for each frequency bin Ḡ′Immediate(k, n),
which is supposed to be constant; the gradient’s standard-deviation σG′ ,Immediate(k, n),
which assesses the linearity assumption; the absolute value of the mean gradient-change,
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which should be close to 0; and the RMS-Deviation of the gradient-change, which is
the MSD measure, see Equation (21) in Section 4.3. Accordingly, the Immediate Feature
Extraction process is summarized as follows:

G′Immediate(k, n)→ Ḡ′Immediate(k, n) , σG′ ,Immediate(k, n) ;

G′′Immediate(k, n)→ |Ḡ′′Immediate(k, n)| , MSD(k, n) .
(23)

As the value of Ḡ′Immediate(k, n) is used to determine the howling type of a candidate
frequency-howl, frequency bins with positive mean gradients are examined with thresholds,
fine-tuned for increasing howls; and frequency bins with negative mean gradients, greater
than −1000 dB/s, are examined with thresholds fine-tuned for underdamped howls. When
magnitude slopes are below −1000 dB/s, frequency-howls will disappear before one can
notice them.

5.3. Howling False-Alarm Detection

The false-alarm detection of frequency-howls is based on the understanding of the
over-time behavior of frequency components under different levels of acoustic feedback,
see Section 3. As the majority of howling false alarms can be attributed to frequency com-
ponents of speech harmonics, the proposed solution aims to authenticate each suspected
frequency-howl with regard to the signal behavior before detection. Figure 4 illustrates the
signal behavior of a speech signal’s frequency component under no feedback and when the
system’s output is underdamped. Observing the energy decays over time, shows that while
a natural speech signal decays with different slopes along time, the signal decay rate in the
underdamped scenario is lower-bounded, as can also be seen by the less noisy magnitude
gradient and gradient-change of the analyzed frequency bin, which is mainly due to the
dominant pole of the TF.

(a) (b)

Figure 4. Comparison of spectrogram and history-buffer analysis features along time, between an
input test speech signal and the resulting underdamped reinforced speech: (a) Original Signal;
(b) Underdamped Reinforced Signal. The features are extracted for the magnitude of a specific
frequency bin, which consists of multiple soft howling detections. The beginnings of the detected
underdamped howling segments are marked by red asterisks on the spectrogram, and by vertical
dashed lines on the feature graphs.

The possible spectral component sources are: thermal noise of the microphone, back-
ground noise, or speech. At the same time, the considered feedback types, per frequency,
are: Stable Pole, which results in no feedback; Close Stable Pole, which results in an under-
damped howl and an underdamped behavior of the signal prior to detection; and More
Unstable Pole, which results in an increasing howl. The magnitude signal analysis along
time thus aims to diagnose the origins of the suspected frequency-howl. Accordingly,
for analysis of underdamped and increasing howling false alarms, a simulated signal is
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injected, composed of Gaussian thermal noise, a chirp signal, and four speech samples
from the TIMIT speech database [30].

Regarding underdamped howls, such a howl can be detected at two stages. The first
stage is at the beginning of the howl, i.e., at the end of magnitude rising—before its decay
rate is “about-constant”, i.e., stationary. The second stage is during the time the decay rate is
stationary. At this stage, the momentary estimation of the magnitude slope (the immediate
mean gradient) should be similar to the average estimation (or median estimation—for
dealing with outliers) over a larger time period. As for increasing howls, after an input
energy rise, an increasing howl can be distinguished only when the increase rate is already
stationary. Clearly, it is easier to examine suspected frequency-howls when the change rate
is stationary. However, it is desired to detect howling as early as possible.

5.3.1. Historical Feature Extraction

Regarding the history-buffer GHistory(k, n) , G(k, n− NHistory + 1 : n) for each candi-
date frequency bin k, the Historical Feature Extraction relates to extracting features that
assess the entire history of the frequency-component signal, before detection. The features
are extracted from the magnitude-gradient buffer G′History(k, n) and from the centered
magnitude-gradient buffer G′∗History(k, n), where

G′∗History(k, n) = G′History(k, n)− Ḡ′Immediate(k, n) . (24)

Ḡ′Immediate(k, n) (calculated in Section 5.2) can also be referred to as the momentary howl
average gradient. The numerical extracted features are the percentages of G′History(k, n) ≥ 0
and of G′∗History(k, n) ≥ −σG′ ,Immediate(k, n).

To examine the momentary immediate-estimations before the soft howling detec-
tion, moving filters are calculated along the history-buffers, where the window length is
NImmediate for magnitude-based estimations, and NImmediate − 1 for magnitude-gradient-
based estimations. The moving magnitude average buffer is denoted as MHistory(k, n),
and the moving magnitude-gradient average buffer is denoted as M′History(k, n). More-
over, since the slope of an ongoing howl should be about-constant when an increasing-
or underdamped-howl is stationary, then a moving RMS filter is applied to the centered
magnitude-gradient buffer, resulting in M̃′∗History(k, n). The centered magnitude-gradient
buffer is utilized, rather than the gradient change (which would result in the MSD mea-
sure), since the deviation around the momentary howl average gradient is desired. Thus,
low-RMS sequences are detected from M̃′∗History(k, n), in order to formulate valid slope
estimations by combining several subsequent momentary immediate-estimations. Valid
slope estimations are calculated as the median of subsequent average gradient immediate-
estimations from M′History(k, n), where the minimum length of a low-RMS subsequence is
lower bounded by 5. Namely, 6 momentary immediate-estimations are required for a valid
middle slope estimation, and 5 for a valid final slope estimation. Additionally, a second set
of higher- (although still acceptable) RMS sequences is also detected, to be used in cases
where no low-RMS sequences are detected and noisy underdamped speech is suspected.
Accordingly, the process of extracting the moving filters and their features is summarized
as follows:

GHistory(k, n)
Moving-Avg.−→ MHistory(k, n) ;

G′History(k, n)
Moving-Avg.−→ M′History(k, n) ;

G′∗History(k, n)
Moving-RMS−→ M̃′∗History(k, n) =⇒ Detect Low-RMS Sequences ;

(25)

where all history-buffers, after applying the moving filters, have a length of
NHistory − NImmediate + 1.
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Subsequently, the analysis of each suspected frequency-howl is done by classify-
ing the state of the detected suspected howl, and then evaluating the extracted features.
In the beginning, the suspected frequency-howl is tested as an underdamped howl if
Ḡ′Immediate(k, n) < 0, or as an increasing howl otherwise. In both cases, the state of the de-
tected howl is determined based on whether M̃′∗History(k, n) ends with a low-RMS sequence
(howl is stationary) or not. Without loss of generality, for an underdamped howl, if the
history-buffer ends with a low-RMS sequence, the valid final slope estimation is expected to
be negative, i.e., an underdamped low-RMS sequence. If so, the quality of the momentary
howl average gradient Ḡ′Immediate(k, n) is determined by the difference from the valid final
slope estimation, relative to a threshold, and used as a feature. Also, since the decay rate in
the underdamped scenario is lower-bounded, another numerical extracted feature is the
percentage of G′History(k, n) above the valid final slope estimation.

Next, it is desired to determine whether the suspected howl comes after a potential
silence, i.e., silence and then an energy rise that is followed by a howl, which means that
there is no history to rely on for refuting a possible false detected howl, see Figure 4. In
practice, to prove that there is an energy rise after silence, it is checked that the energy before
the howl is considered silence, and that there is a distinct overall energy change in the
magnitude buffer. First, a check for a prior silence is done by comparing the median energy
before the howl with the minimal howl energy threshold, which corresponds to frequency
bin k, see Section 4.3.1. If M̃′∗History(k, n) ends with a low-RMS sequence, the median energy
before the howl is calculated via MHistory(k, n) until the beginning of the final low-RMS
sequence. Otherwise, a median is taken on the entire MHistory(k, n), since the suspected
howl is considered momentary in this case. Second, checking for a distinct overall energy
change is done by calculating the mid-range of the magnitude buffer MHistory(k, n) before
the howl; and then calculating the percentage of this magnitude buffer above the mid-range
magnitude. Hence, low median energy before the howl and low percentage above the
mid-range magnitude suggest that the suspected howl comes after a potential silence and
can not be refuted.

Otherwise, a howl preceded by no silence is probably preceded by speech or a noisy
speech. In that case, as the number of middle underdamped low-RMS sequences increases,
the valid middle slope estimations may assist in determining the type of feedback that is
evident in the history-buffer GHistory(k, n).

5.3.2. False-Alarm Detection Algorithm

Naturally, to classify the state of each suspected frequency-howl, according to the
extracted features, the Howling False-Alarm Detection algorithm is implemented as a
decision tree. The thresholds for each decision node were fine-tuned, based on the perfor-
mance of the aforementioned simulated signal, under different levels of feedback within a
simulated amplification system in a car cabin, see Section 6. The thresholds were calibrated
for a relatively clean channel, i.e., with a low noise level. As the channel is noisier, under-
damped howls are less likely to decay “naturally”, as the model assumes, and performance
might deteriorate.

Furthermore, another safety mechanism is added to cope with speech harmonics-
induced howling false alarms, detected in the soft howling detection stage, based on
the natural properties of speech harmonics. During speech production, voiced sounds
are excited at the vocal cords, where the volume flow of air through the glottis has a
frequency spectrum consisting of voice harmonics [31]. The frequency distribution of
the voice harmonics constitutes a series of band-limited peaks at integer multiples of the
fundamental frequency (pitch) [32]. Analyzing the vocal tract in terms of a TF, the normal
modes (that correspond to the poles) of the vocal tract are manifested as spectral peaks in
the output sound, i.e., the formants [31]. Different formants produce spectral variations in
the sound radiated from the mouth, thus filtering the voice harmonics to generate different
vowels. In light of this, the impact of fundamental frequency changes along a vowel,
on harmonic structure, tends to increase with harmonic number [32]. On the contrary,
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as low-number harmonics may be quite insensitive to fundamental frequency variations,
it results in frequency bins having energy that may rise or decay like a frequency-howl.
Accordingly, the howling false-alarm detector shall disregard frequency components below
1 kHz.

5.4. Post-Detection Howling Detection

In general, once howling is detected, a howling cancellation solution should take
place for suppressing the feedback in the system. Since the RIR is unknown and dynamic,
one can only treat the symptom, rather than the cause, i.e., eliminate the frequency-howls.
Instinctively, such a solution may be based on reducing the amplification gain factor K,
see Section 2. However, it is likely that the amplification gain will be raised again after
the howling effect has passed. Therefore, a gain-change coping mechanism is applied to
appropriately manage the howling detection process after an amplification-gain reduction
or increment.

Based on that, each time a frame is added to the magnitude history buffer, see
Section 4.2, the time difference from the last gain-change, ∆tchange, is calculated. Initially,
to provide the howling cancellation solution enough time to act, the howling detection pro-
cess is frozen for a time-span τhd = 60 ms. In that case, as long as ∆tchange < τhd, the howl-
ing detection process is paused. After that, the number of added frames Nsince change is
calculated from ∆tchange, based on Equation (22), as

Nsince change =
⌊

1 +
fs ∆tchange − LMSD

Lframe-shift

⌋
. (26)

Then, the number of frames actually used for howling false-alarm detection shall be the closest
value to Nsince change that is between a pre-determined threshold of NHistory, Post-Detection = 60
and the entire length of the history-buffer NHistory = 120, see Section 5.1. Appropriately,
some of the False-Alarm Detection algorithm’s thresholds are also modified.

6. Performance Evaluation

A howling detection algorithm aims to detect frequency-howls, in advance of being
noticed by the human ear. Therefore, the performance of a howling detector shall be
evaluated in terms of detection accuracy, as well as the time it takes for detection. Since
both types of frequency-howls correspond to different levels of feedback within the SR
system, a devised set of feedback scenarios shall be composed. One feasible way for
analyzing the response of an SR system within a feedback scenario, is by simulating a
simple amplification system within a specific room configuration, i.e., room dimensions
and characteristics as well as microphone and loudspeaker locations, see Appendix B.
That is, simulating the LEM paths of the room configuration, e.g., via the Room Impulse
Response (RIR) Generator [33], and setting a system amplification gain. This way, for each
room configuration, the MSG is empirically obtained and then used for setting different
amplification gain values for triggering underdamped and increasing frequency-howls
within the system. Alternatively, a simpler approach is to simulate feedback using a two-
pole system TF, by setting a pair of pole magnitude and frequency. That way, the devised
set of scenarios consists of simulated TFs that correspond to different signal-magnitude
change rates, at various frequencies across the acoustic spectrum, see Equation (17) in
Section 4.1. This generic approach can cover a wider scope of acoustic feedback scenarios
than simulating an SR system within a specific sample room configuration. However,
simulated room configurations may provide complex feedback scenarios, which are closer
to reality.

6.1. Detection Response Time

In order to measure the response time of a howling detector within an SR system under
a given feedback scenario, a devised input signal is inserted into the system, providing a
clean response for acquiring the first detection time. The devised input signal comprises a
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preamble, an energy burst, and silence for analyzing the response. The preamble consists
of silence or a speech sample, for a time span larger than the minimum delay of the history-
buffer (until it is filled), see Section 5.1. Afterward, the energy burst should be long enough
to excite the poles of the SR system, yet short enough to affect the system’s response as little
as possible. Accordingly, the length of the energy burst is set to a time span of at least one
MSD-buffer, specifically, LMSD + Lframe-shift samples. Hence, acquiring the first howling
detection time, relative to the energy burst.

In order to thoroughly examine the response time of a howling detector at all feed-
back scenarios per frequency, the generic TF approach is utilized. Namely, considering
a sampling frequency of 16 kHz, examining TFs with poles at frequencies between 2000

and 6750 Hz, with pole-magnitudes that correspond to change rates
{
− 1000 : 100 :

−600 , −500 : 50 : −50 , 0 : 10 : 150 , 200 : 100 : 1500
}

dB/s. Thus, examining the scenarios:
Close Stable Pole, Unstable Pole, and More Unstable Pole.

These feedback scenarios shall be tested under the following set of five howling
scenarios, as summarized in Figure 5 for a Close Stable Pole feedback scenario. The
Impulse Response Howl scenario measures the response time to an energy burst that
comes after silence. Since acquiring the first detection time around a specific known pole
frequency, only detected frequency-howls within 50 Hz around the pole frequency are
considered. For the same reason, the energy burst is a short sine wave at the evaluated
pole frequency (rather than white noise). To prevent a situation where the system’s output
diverges before the energy burst occurs (due to thermal noise), for pole magnitudes greater
than or equal to 1 (Unstable Pole), a neutral TF (TF(s) = 1) is applied during the preamble
and the examined two-pole TF is applied from the beginning of the energy burst. Next,
the Speech Howl scenario measures the response time to an energy burst that comes after
speech. For a valid response time estimation, multiple speech samples shall be inserted,
taking the median on the obtained response time measurements. As opposed to the Impulse
Response Howl scenario, in this scenario, the examined two-pole TF is applied to the entire
input signal. The following three tests relate to Gain-Control Howl scenarios, as mentioned
in Section 5.4. When howling is noticed by the human ear, the natural response is to reduce
the amplification gain of the SR system. Afterward, when the howling disappears, naturally
it is desired to increase the amplification gain back to the desired amplification level. All of
the following tests measure the response time to an energy burst that comes after speech.
First, the Full Stability Gain-Control Howl scenario evaluates howling detection after a
positive gain-change, that comes after full stability. To simulate full stability, a neutral
two-pole TF is applied to the preamble, with the same pole frequency and a pole magnitude
that corresponds to a signal-magnitude change rate of −3000 dB/s. Second, the Recovery
Gain-Control Howl scenario evaluates howling detection after a positive gain-change,
that comes after a gain-reduction—as if howling was noticed and then eliminated due
to gain-reduction. For this purpose, an extreme two-pole TF is applied to the preamble
until 0.5 s before the energy burst, then the neutral two-pole TF is applied to the rest of the
preamble, and the examined two-pole TF is applied from the beginning of the energy burst.
The extreme two-pole TF is simply a TF with the same pole frequency as the examined TF,
and a pole magnitude that corresponds to a signal-magnitude change rate greater than
that of the examined TF by 100 dB/s. Third, the Increasing Gain-Control Howl scenario
evaluates howling detection after a positive gain-change, that comes after a previous
positive gain-change—as if howling was not noticed even after an initial gain-increment.
For this purpose, the neutral two-pole TF is applied to the preamble until 0.5 s before the
energy burst, then a moderate two-pole TF is applied to the rest of the preamble, and the
examined two-pole TF is applied from the beginning of the energy burst. Similar to the
extreme two-pole TF, the moderate two-pole TF is simply a TF with the same pole frequency
as the examined TF, and a pole magnitude that corresponds to a signal-magnitude change
rate less than that of the examined TF by 100 dB/s.
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Figure 5. Summary of howling scenarios for a Close Stable Pole feedback scenario: (a) Impulse
Response Howl; (b) Speech Howl; (c) Full Stability Gain-Control Howl; (d) Recovery Gain-Control
Howl; (e) Increasing Gain-Control Howl. The howling scenarios vary by the input signal and
the configured signal-magnitude change rate over time. The examined two-pole TF has a pole
at frequency 2000 Hz, with a magnitude that corresponds to a signal-magnitude change rate of
−150 dB/s. Each figure includes a spectrogram comparison between u(n) and y(n), and the applied
pole magnitudes over time. The howling artifacts in y(n) were retrospectively detected using the
Plain MSD-based howling detector, and are marked in both spectrograms by red circles.

To obtain a valid response time in howling scenarios where a speech sample is inserted
in the preamble, a long test speech signal is composed of the TIMIT speech database [30],
lasting for about 98 s. Thus, providing a variety of speech samples by splitting the long
speech signal into 1.5 s speech samples with a shift of half the time-span of the history-
buffer, see Section 5.1. Accordingly, a collection of devised input signals is inserted for each
two-pole TF and the median is taken on the resulting first detection time measurements.
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6.2. Detection Accuracy

To evaluate the detection accuracy of a howling detector, a devised input signal
is inserted into a simulated SR system under a given feedback scenario, providing the
feedback effect on the input signal. Post factum, a retrospective howling detection is
applied to the output signal and analyzed. First of all, evaluation of the retrospective
howling detection results on the clean input signal provides a measure of the false-alarm
rate over a clean signal.

6.2.1. Feedback Scenario Simulation

To evaluate the howling detection accuracy in situations as close to reality as possible,
simple SR system TFs are simulated, i.e., by generating RIRs for a cherry-picked set of
room configurations, and simply setting the system amplification gain to obtain the desired
feedback scenarios, as mentioned in Section 6. The cherry-picked set of room configurations
includes a car cabin, characterized as a relatively small room (short LEM paths) with a very
short reverberation time (due to the sound-absorbing materials), and a study room, which is
larger and has a longer reverberation time (although still short), where the MSG is obtained
empirically for each room configuration [2–5], see Appendix B. Such simulated TFs provide
complex feedback scenarios, consisting of Stable Poles and Close Stable Poles and, above the
MSG, also Unstable Poles and More Unstable Poles. That is, while amplification gain values
below the MSG may produce underdamped frequency-howls, amplification gain values
above the MSG may provide a mixture of underdamped and increasing frequency-howls.
Note that above the MSG, once the output signal exceeds the dynamic range of the computer
due to a certain unstable pole, the magnitude values of other frequency bins are affected as
well, and the howling effect of other poles cannot be analyzed. Therefore, considering that
the poles of a simulated TF are unknown, only retrieved howling detections can be used
for performance evaluation.

6.2.2. Accuracy Performance Evaluation

Knowing whether a detected frequency-howl is a true-positive or a false-positive,
requires mapping the howling frequencies of the system, i.e., retrieving a ground truth from
the output signal regarding the sensitive TF pole frequencies. For underdamped frequency-
howls, the sensitive frequency bins can be triggered using a chirp signal, followed by silence
to analyze the response. For increasing frequency-howls, even low-level thermal noise
can trigger divergence within the system, i.e., excite the unstable poles of the closed-loop
system TF. Therefore, the frequency-howl ground truth shall be obtained using a chirp
signal. Similar to the energy burst in Section 6.1, the chirp signal needs to cover each
frequency bin for a short, yet adequate, time span. Exploiting the fact that no false-positive
frequency-howls can appear after an energy burst within a frequency bin, a sensitive
howling detector shall be utilized to obtain the ground truth. Specifically, a howling
detector that successfully identifies true frequency-howls, even at the cost of identifying
false frequency-howls that have a similar temporal behavior along the spectrum, e.g., speech
harmonics. After obtaining the frequency-howl ground truth, retrospectively detected
frequency-howls can be reviewed with regard to the ground truth, and false-positive
detections can be disclosed. Since the howling detector’s performance evaluation can
only be conducted using retrieved instances, it is evaluated in terms of precision and
recall. Identifying the relevant frequency-howl candidates via a sensitive howling detector
provides data for a posterior classification, where labeling true and false frequency-howl
candidates is done with respect to whether a corresponding frequency bin is flagged by the
ground truth. Hence, the recall of an examined howling detector is calculated as the number
of true-positive instances that were retrieved, over the number of true frequency-howl
candidates. On the other hand, the precision is calculated as the number of true-positive
instances that were retrieved, over the number of the entire retrieved positive instances.

For all of the above reasons, the devised input signal is responsible for composing a
valid frequency-howl ground truth under the analyzed feedback scenario, and for retrieving
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enough howling detection instances to create a legitimate corpus, so the number of false-
positive detections is negligible within ground-truth frequency bins. Therefore, the devised
input signal consists of a silence preamble to fill up the history-buffer (as in Section 6.1),
a chirp signal followed by silence, another silence preamble to initialize the history-buffer,
and the entire long-duration speech signal used in Section 6.1. Considering a sampling
frequency of 16 kHz, the chirp signal varies linearly between 200 and 7800 Hz for a duration
of 1 s, and is followed by 4 s of silence in order to identify the howling frequency bins of
the SR system under the given feedback scenario. Then, the test speech signal lasts for
about 98 s, providing the opportunity to detect a variety of howling instances. Respectively,
the simulated TF is first applied during the preamble, the 1-second chirp signal and the
following 2.5 s of silence. Then, a neutral TF (TF(s) = 1) is applied during 1.5 s of silence,
to suppress any evoked frequency-howl. After that, the simulated TF is applied for the rest
of the input signal—the additional silence preamble and the long-duration speech signal.

6.2.3. Evaluating Multiple Detection Methods

In practice, comparing multiple howling detection methods, where each may divide
the frequency and time domains differently, may result in detecting a specific frequency-
howl at different times and frequencies. Therefore, a united corpus of howling detection
instances is created by appending the retrospective howling detections from all detection
methods. Before analyzing a given temporal detection method with respect to the united
howling detection corpus, one must first match the frequencies of the howling instances
to the frequency bins determined by the given method. For a given decreased-resolution
method, the howling frequencies are rounded (down) to fit the frequency grid, and du-
plicates are dropped. For a given increased-resolution method, the howling instances are
duplicated based on their resolution ratio, to fit the middle frequency bins. Appropriately,
one must also match the detection times of the instances to the determined time division.
Specifically, reviewing the detection times for each howling frequency, finding the relevant
frame indices, and solving duplicates by choosing the instance with the frame length closest
to that of the given method. Thus, the spectrogram of the devised input signal is calculated
based on the parameters of the given temporal method, getting the magnitude history of the
entire signal. After that, for each howling frequency bin, evaluating the magnitude history
buffers ending at each of the matched detection times, via the given detection method.
Regarding the duplicated howling instances, in case of an increased-resolution method,
the howling detection labels are united, where at least one of the duplicated instances is
hopefully detected. Finally, since simulating complex feedback scenarios, each detector’s
performance is evaluated separately for underdamped and increasing frequency-howls.

7. Results

In proposing an improved howling detector that includes the Soft Howling Detection
and the Howling False-Alarm Detection stages, its performance should be evaluated in
comparison with that of the plain MSD-based detector in Section 4.3, as well as to that
of the Soft Howling Detection stage alone. When comparing the detection response time
measure, the gain-change coping mechanism, discussed in Section 5.4, is applied to the
improved howling detector and evaluated as well. That is, shortening the length of the
history-buffer to NHistory, Post-Detection. Hence, the examined howling detection methods
are denoted as Plain MSD-based, Soft MSD-based, Soft MSD-based with FA (False-Alarm)
Detection, and Soft MSD-based with FA Detection & GC (Gain-Change) Coping.

7.1. Detection Response Time

As described in Section 6.1, characterizing the response time of a howling detec-
tor involves testing two-pole TFs with poles at frequencies between 2000 and 6750 Hz,
and magnitudes that correspond to change rates from −1000 to 1500 dB/s; under the five
howling scenarios: Impulse Response Howl, Speech Howl, Full Stability Gain-Control
Howl, Recovery Gain-Control Howl, and Increasing Gain-Control Howl. In this manner,
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for each combination of these three aspects, inserting a devised input signal and acquiring
the first howling detection time relative to the energy burst, i.e., the response time. As men-
tioned in Section 6.1, for the four howling scenarios that involve inserting speech samples,
the median response time is calculated. In effect, for each howling scenario, the response
time of a howling detector is characterized by examining the response time distribution
among all pole frequencies, across the different howling change-rate configurations.

The response time distributions over the set of howling change-rate configurations,
are illustrated in Figure 6 for each howling scenario.
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Figure 6. Response time distributions over the set of howling change-rate configurations, for each
howling scenarios: (a) Impulse Response Howl; (b) Speech Howl; (c) Full Stability Gain-Control
Howl; (d) Recovery Gain-Control Howl; (e) Increasing Gain-Control Howl. The (median) first
howling detection time, relative to the energy burst, is depicted by the mean value and its 90%
confidence-interval, when averaged over the set of pole frequencies.

As expected, the Soft MSD-based detector exhibits the shortest response time, across all pole
frequencies and magnitudes, in all howling scenarios except in the Recovery Gain-Control
Howl scenario (Figure 6d), where the Plain MSD-based detector seems to provide a shorter
response time for signal change rates above 1300 dB/s. Specifically, above 1300 dB/s,
the 0.5 s before the energy burst are not enough for the neutral two-pole TF (−3000 dB/s)
to eliminate the evoked howl. The fast response time of the Soft MSD-based detector lies in
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the fact that it has a shorter detection-buffer than the Plain MSD-based detector, and its
thresholds are more permissive. In both Figure 6a,b, the Soft MSD-based with FA Detection
detector provides an earlier detection time than the Plain MSD-based detector, for both
negative and positive signal-magnitude change rates. For 0 dB/s (Unstable Pole), there
seems to be a variance in the detection time among the pole frequencies. Figure 6c–e relate
to the Gain-Control Howl scenarios. In the Full Stability Gain-Control Howl scenario,
Figure 6c, it appears that the Soft MSD-based with FA Detection detector provides a
faster reaction than the Plain MSD-based detector for most configured signal-magnitude
change rates, except for −300, −250, and 0 dB/s. Fortunately, the gain-change coping
mechanism succeeds in providing a faster response time for the first two change rates. In
the Recovery Gain-Control Howl scenario, Figure 6d, it seems that the Soft MSD-based
with FA Detection detector fails to provide a faster reaction than the Plain MSD-based
detector for all positive-configured signal-magnitude change rates (Unstable and More
Unstable Poles). However, the gain-change coping mechanism succeeds in providing a
much faster howling detection for these change rates, although compromising the response
time for some of the Close Stable Poles. Finally, in the Increasing Gain-Control Howl
scenario, Figure 6e, the Soft MSD-based with FA Detection detector provides a shorter
response time than the Plain MSD-based detector for the negative configured change rates
and for the positive change rates above 140 dB/s. For the configured change rates of 0 dB/s
and between 90 and 130 dB/s, the Plain MSD-based detector provides better results. As
expected, the gain-change coping mechanism succeeds to improve the howling detection
response times.

7.2. Detection Accuracy

First, evaluation of the detectors’ false-alarm rate over a clean signal relies on the fact
that no howling artifacts should be identified. Therefore, measuring the average number
of identified howling instances per second, for both howling types. For the devised input
signal, with a total duration of 105.75 s, the Plain MSD-based has detected no frequency-
howls from both types, as expected. While the Soft MSD-based detector has identified
224 underdamped howling artifacts and 2 increasing howling artifacts, the Soft MSD-based
with FA Detection detector has identified 92 and 2 artifacts, correspondingly. That is, there
is an improvement in the false-alarm rate, from 2.118 howls per second to 0.87 howls per
second. The false-alarm rate improvement is illustrated in Figure 7.
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Figure 7. Spectrogram of the devised input signal and the united retrospectively detected howling
artifacts. Considering the Soft MSD-based with FA Detection detector, increasing howls are colored
red; underdamped howls are colored blue and separated by their magnitude slope; and undetected
frequency-howls are colored in shades of gray and marked with arrows to indicate the slope of the
suspected frequency-howl.
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It seems that most of the identified frequency-howls are underdamped, as well as the
false alarms detected by the FA Detection stage.

The united corpus of howling detection instances, for obtaining the ground truth and
the relevant frequency-howl candidates, is created by appending the retrospective howling
detections from both the Plain MSD-based and Soft MSD-based detectors, which differ
in their spectral and temporal resolutions. Accordingly, the detection accuracy results for
each feedback scenario within the simulated room configurations are shown in Figure 8,
where both axes are aimed to be maximized. Regarding the detectors’ performance for the
feedback scenarios below the MSG (cyan-colored squares), it seems that the FA Detection
stage provides better precision than the Soft Howling Detection stage by itself, while still
having a good recall (above 80%) for the detection of underdamped howls. Regarding the
detectors’ performance for the feedback scenarios above the MSG, specifically the detection
of increasing howls (pink-colored circles), while both the Soft MSD-based and the Soft
MSD-based with FA Detection detectors achieve a recall and precision of approximately
100% for the simulated car cabin, the precision is lower for all detectors within the simulated
study room. However, the recall is still high and the precision is improved when using the
FA Detection stage. As amplification gain values above the MSG may provide a mixture of
underdamped and increasing frequency-howls, the feedback scenario within the simulated
study room comprises underdamped frequency-howls as well. In that case, the Soft MSD-
based with FA Detection detector achieves a lower recall and precision, although not
significantly. On the other hand, the Plain MSD-based detector has identified only a few
underdamped frequency-howls. Figure 9 illustrates the howling artifacts, retrospectively
detected via the Soft MSD-based with FA Detection detector, in case of the simulated study
room above the MSG. Many underdamped frequency-howls that were detected during the
speech signal were not detected as ground truth by the chirp signal.
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Figure 8. Summarized detection accuracy performance evaluation graph. The simulated car cabin
results are marked by a pentagram, and the simulated study room results are marked by a diamond.
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Figure 9. Spectrogram of the SR system’s output within the simulated study room, where the
amplification gain is above the MSG, and the united retrospectively detected howling artifacts.
Considering the Soft MSD-based with FA Detection detector, increasing howls are colored red;
underdamped howls are colored blue and separated by their magnitude-slope; and undetected
frequency-howls are colored in shades of gray and marked with arrows to indicate the slope of the
suspected frequency-howl. (a) Entire Output Signal and Howling Detection; (b) Chirp Signal and
Howling Ground-Truth.

8. Discussion

The proposed performance evaluation framework compares the group of howling
detection techniques in terms of both the response time and detection accuracy. The generic
TF approach is applied in order to analyze the response time of a howling detector un-
der each of the devised set of howling scenarios, illustrating the detection response time
distributions over the set of howling change-rate configurations. In the simple howling
scenarios, the Soft MSD-based with FA Detection detector provides a faster howling de-
tection response time than the Plain MSD-based detector, especially in Close Stable Pole
feedback scenarios. The advantage of a shortened history-buffer in these scenarios, as used
in the Soft MSD-based with FA Detection & GC Coping detector, is not absolute for all
feedback scenarios. Nevertheless, the improvement by the gain-change coping mechanism
is significant in Gain-Control Howl scenarios for the Close Stable Pole feedback scenarios,
although not much better than the Plain MSD-based detector in the More Unstable Pole
feedback scenarios. Since aiming to detect howling before the SR system becomes unsta-
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ble, the improvement in detection response time is more significant for Close Stable Pole
feedback scenarios.

The Detection Accuracy is measured in terms of the false-alarm rate over a clean
signal, and the detectors’ recall and precision in complex feedback scenarios, generated
by simulating a simple SR system TF in a cherry-picked set of room configurations. Re-
garding the clean signal, almost 60% of the false-positive underdamped frequency-howls
detected in the Soft Howling Detection stage are refuted by the Howling FA Detection stage.
However, the two false-positive increasing frequency-howls were not refuted. Regarding
the detection accuracy in complex feedback scenarios below the MSG, the FA Detection
stage improves the precision of the Soft Howling Detection stage, while keeping a good
recall for the detection of underdamped howls. In feedback scenarios above the MSG, the
FA Detection stage resulted in better recall and precision measurements for increasing
howls, although the precision for underdamped howls was low for all detectors within
the simulated study room. As mentioned above, a few aspects need to be considered in
this case. First, the diverging output signal has affected the magnitude values among the
entire frequency bins, and has possibly added artifacts to the signal that were identified
as howling. In addition, it seems that the howling detectors were not sensitive enough to
obtain all of the frequency-howl ground truth in this scenario. Thus, the low precision can
be attributed to identifying many underdamped howls along the output signal, and not
identifying all of the howling frequencies in the system at the beginning. Still, the detection
accuracy of increasing howls within the More Unstable Pole feedback scenario is good.

As the algorithm thresholds were calibrated within the simulated car cabin, the better
results may indicate overfitting. However, the results are satisfying for the study room as
well.

9. Conclusions

We have considered a howling detection algorithm within in-room speech reinforce-
ment system applications, for utilization in howling control mechanisms. The loudspeaker-
enclosure-microphone paths and the room’s reverberation characteristics directly affect the
acoustic feedback in the room, and the resonance frequencies of the system’s closed-loop TF.
Therefore, the amount of gain that can be applied to the acquired speech in the closed-loop
system is constrained by electro-acoustic coupling in the system, manifested in howling
noises appearing as a result of acoustic feedback. In fact, these howling noises can be
divided into underdamped and increasing frequency-howls, based on what happens to the
frequency component of the output signal after exciting a pole of the system’s closed-loop
TF. A temporal howling detection algorithm based on the MSD measure is proposed for SR
systems. The proposed algorithm aims to early detect frequency-howls in the closed-loop
system, before the human ear notices. Thus, laying the foundation for howling control
mechanisms, and maintaining high-quality speech communication. In reality, when the
applied gain is increased gradually, a howling detection algorithm mainly aims to detect un-
derdamped frequency-howls when the system is stable, rather than increasing howls when
the system is unstable. The howling detection algorithm includes two cascaded stages: Soft
Howling Detection and Howling False-Alarm Detection. The Soft Howling Detection stage
is designed to identify potential candidate frequency-howls, and is calibrated for a low
miss-detect probability. Accordingly, the proposed Howling False-Alarm Detection stage
aims to authenticate each suspected frequency-howl with regard to the signal behavior
prior to detection. As the majority of howling false alarms can be attributed to frequency
components of speech harmonics, candidate frequency-howl false alarms can be refuted
based on their prior magnitude behavior under the system’s steady state. Furthermore,
a gain-change coping mechanism is applied to appropriately manage the howling detec-
tion process when the applied gain is reduced or increased as part of a howling control
mechanism. In order to judge whether a candidate frequency-howl is about to be heard by
the human ear, i.e., relevant for howling detection, a hearing threshold-contour is defined
across the frequency bins based on standard ISO 226:2003 [23].
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A comprehensive performance evaluation process was designed to characterize and
compare a group of howling detection algorithms, under a devised set of howling detection
scenarios. Namely, examining the howling detection algorithms in terms of the detection
response time and the detection accuracy. First, characterizing the howling detection
response time as a function of howling change rate, under different howling detection
scenarios, shows that the proposed algorithm provides a faster howling detection response
time than the plain MSD-based detector; and that the improvement of the gain-change
coping mechanism is significant in the gain-control scenarios for underdamped feedback
scenarios. Second, evaluating the detection accuracy on a clean test signal and under
complex stable- and unstable-feedback scenarios, within simulated room configurations
of a car cabin and a study room, shows that the proposed temporal howling detection
algorithm provides better accuracy than the plain MSD-based detector as well as the Soft
Detection stage alone. Hence, the proposed temporal howling detection algorithm is fast
and reliable and, all in all, outperforms the plain howling detector, which does not benefit
from utilizing the past of the detected frequency-howls due to its prominent trade-offs.

Future work may concern optimizing the thresholds of the proposed howling detection
algorithm for each type of room configuration, e.g., room dimensions and reverberation
time. Moreover, incorporating more advanced algorithms for howling detection that make
use of the proposed temporal approach and features.
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SR Speech Reinforcement
RIR Room Impulse Response
LEM Loudspeaker Enclosure Microphone
TF Transfer Function
MSG Maximum Stable Gain
MSD Magnitude Slope Deviation
RMS Root Mean Square
PSD Power Spectral Density
SPL Sound Pressure Level
FA False Alarm
PA Public Announcement
AEC Acoustic Echo Canceller
NHS Notch-filter-based Howling Suppression
PTPR Peak-to-Threshold Power Ratio
PAPR Peak-to-Average Power Ratio
PNPR Peak-to-Neighboring Power Ratio
PHPR Peak-to-Harmonic Power Ratio
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IPMP Interframe Peak Magnitude Persistence
IMSD Interframe Magnitude Slope Deviation
CRNN Convolutional Recurrent Neural Network

Appendix A. Multi-Room Speech Reinforcement System

Figure A1 illustrates the multi-room SR system. In the multi-room scenario, the signal
model of the SR system considers two pairs of a microphone and a loudspeaker, where
each pair is located in a closed room. The left side of the diagram is considered the room
of interest.

The output signal of the right-side system y2(n) comprises the loudspeaker signal
x2(n) and the thermal noise of the loudspeaker w2(n), i.e.,

y2(n) = x2(n) + w2(n) . (A1)

The signal y2(n) propagates in the room of interest, through the LEM paths, into the
speaker’s microphone (mic1), with an RIR g1(n), generating the echo signal f1(n):

f1(n) = y2(n) ∗ g1(n) . (A2)

The input signal to mic1 m1(n) is given by

m1(n) = u1(n) + b1(n) + f1(n) , (A3)

where u1(n) is the near-end speech in mic1, and b1(n) represents the background and
thermal noises of the microphone. In fact, u1(n) is the desired signal to be reproduced to
the room on the right side of the diagram. For delivering the near-end speech through
the loudspeaker, an SR-segment h1(n) is utilized to obtain the amplified filtered estimated
near-end speech x1(n) from m1(n):

x1(n) = h1(n) ∗m1(n) . (A4)

Thus, the output signal of the left-side system is given by

y1(n) = x1(n) + w1(n) , (A5)

where x1(n) is the loudspeaker signal and w1(n) is the thermal noise of the loudspeaker.
Simultaneously, y1(n) propagates through the LEM paths of the other room into the

other speaker’s microphone (mic2), with an RIR g2(n), generating the echo signal f2(n).
The input signal to mic2 m2(n) is then given by

m2(n) = u2(n) + b2(n) + f2(n) , (A6)

where u2(n) is the near-end speech in mic2, and b2(n) represents the background and
thermal noises of the microphone. Hence, the amplified filtered estimated near-end speech
of the right-side system is given by

x2(n) = h2(n) ∗m2(n) , (A7)

where h2(n) is the corresponding utilized SR-segment.
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Figure A1. Two-room speech reinforcement system. The left-side system (the room of interest)
includes the microphone signal m1(n) and the loudspeaker signal y2(n). Correspondingly, the right-
side system considers m2(n) and y1(n).

Appendix B. Room Configurations

This research examines the use of a speech communication system in a room. The
communication system comprises omnidirectional microphones, directional sources, such
as speakers and loudspeakers, and background noises. The overall room configuration
can be characterized by the RIR, which is mainly dependent on the LEM paths and on the
reverberation time in the room, determined by the materials of the walls and the interior
of the room. To simulate RIRs for different rooms, to the authors’ choice, the rooms were
designed using the known Room Impulse Response Generator Matlab code [33]. Due
to limitations of the RIR Generator, an empty room is assumed, with identical reflection
characteristics of the walls (set by the reverberation time), and the sound sources are
assumed to be omnidirectional.

Two real-life scenarios are considered in this paper. First, a speech reinforcement
system inside a car cabin. A car cabin can be characterized as a relatively small room
(short LEM paths) with a short reverberation time of 50 ms, due to the sound absorbing
materials in a car, according to papers [3,35]. In order to simulate a car cabin, the system
was tested via simulations inside a room of dimensions: [x, y, z] = [2, 3, 1] in meters, where
the speaker’s microphone is located on the ceiling above the driver, in (0.375, 2.5, 1), and
the loudspeaker of the backseat passengers is located in (1, 1.375, 1). Second, a speech
reinforcement system in a closed ordinary study room in a house. In order to simu-
late a study room, the system was tested via simulations inside a room of dimensions:
[x, y, z] = [2.7, 3.6, 3] in meters, based on [36], where the speaker’s microphone is suppos-
edly located on a desk, in (0.5, 1.5, 1), and the loudspeaker is also located on the desk in
(0.25, 1.6, 1). A corresponding reverberation time of 0.28 s was used, according to [4,5]. The
sampling frequency used to generate the impulse responses is 16 kHz.
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