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Abstract: Monte Carlo Filtering (MCF) is one of themethods of Experimental Statistical EnergyAnal‑
ysis (E‑SEA), which allows the correction of negative LFs (Loss Factors). In this article, a modifica‑
tion of the MCF method, called DESA (Diagonal Expansion of the Search Area), is proposed. The
technique applies a non‑uniform extension of the search area when generating a population of nor‑
malized energy matrices. The degree of expansion of the search area is controlled by the Diagonal
Penalty Factor (DPF). The authors demonstrated the method’s effectiveness on a system that could
not be identified in several frequency bands by the classical MCF method. After applying DESA, it
was possible to fill in the problematic bands that were missing CLF (coupling loss factor) and DLF
(damping loss factor) values. The paper also proposes a way to minimize the errors introduced by
using overly high DPF values.

Keywords: statistical energy analysis; coupling loss factor; power injectionmethod;monte carlo filtering

1. Introduction
Statistical Energy Analysis (SEA) is a numerical method for conducting vibroacoustic

energy flow analyses in complex systems in the high‑frequency range, including predic‑
tions of the acoustic power radiated by complex structures [1]. The idea of the SEAmethod
is to divide a structure into so‑called subsystems and write down the energy balance be‑
tween these subsystems in the form of a set of linear equations. The parameters describing
the SEAmodel are the Loss Factors (LF, Loss Factors), divided into the Coupling Loss Fac‑
tor (CLF), which describes the energy flowing between the subsystems, and the Damping
Loss Factor (DLF), which describes the internal losses of the individual subsystems. The
SEA model, based on the known excitation powers of each subsystem, gives the spatially,
frequency, and time domain averaged energies describing the individual subsystems as
output. From the determined energies, it is then easy to convert them to quantities directly
used in engineering: the average velocities present in the mechanical subsystem and the
average acoustic pressure in the acoustic subsystem. SEA is used inmany industrieswhere
vibration and noise transmission reduction plays a key role [2–4].

Parallel to the predictive SEA method, its experimental counterpart, Experimental
SEA (E‑SEA), was being developed. E‑SEA focuses on issues of measuring loss factors.
Bies andHamidwere the first to put into practice amethod known as PIM (Power Injection
Method) derived directly from the SEA energy balance [5]. PIM allows both CLF and
DLF factors of a structure to be determined experimentally without having to disassemble
individual system components.

Damping loss factor (DLF) coefficients can also be determined by analyzing the decay
curve determined from the impulse response (see, for example [6]). Bloss et al. compared
those twomethods for determiningDLF coefficients and showed good agreement between
themwhen using a sufficiently large number ofmeasurement points in the PIMmethod [7].
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Fahy et al. developed a method for measuring LF coefficients that does not require
input power measurement, called IPMT (Input Power Modulation Technique) [8]. In the
IPMT method, it is necessary to measure only one receiving point per subsystem, which
is its main advantage. IPMT was derived only for the special case of two coupled sub‑
systems and requires the use of specially modulated excitation signals. Another family of
methods that do not require input powermeasurement called ERM (Energy RatioMethod)
has also been developed, where it is necessary to know the energy ratios of the individual
subsystems during the calculation [9–12].

Fahy introduced new alternative coefficients to CLF and DLF called power transfer
coefficient (PTC) and power dissipation coefficient (PDC) and proposed a way to measure
them [13]. The advantage of the method is that there is no need to measure the input
power, and there is a better interpretation and physical sense of the defined coefficients.
Ming compared the method proposed by Fahy with the PIM measurements and showed
that the results from both methods converge for modal overlap conditions greater than
unity (µ > 1) [14].

Ming also proposed a method for approximating the value of loss factors by measur‑
ing the intensity in the structures under study [15]. He showed that the error of themethod
decreases with increasing the frequency and is negligible when the µ factor of the receiving
subsystem is smaller than the µ factor of the transmitting subsystem.

Cacciolati et al. developed a methodology for determining loss factors frommechani‑
cal admittancemeasurements [16]. Themethod is applicable only to point‑to‑point connec‑
tions and requires disassembling the system into its components to access the connection
points between subsystems.

During PIM measurements, an energy matrix is constructed, and from the matrix
that is its inverse, loss coefficients can be extracted. The energy matrix is sensitive to mea‑
surement errors, and its inversion can result in the determination of negative loss factors,
which have no physical interpretation and are considered measurement errors [17]. The
described problem limited the practical applicability of the PIMmethod, so many research
groups were engaged in developing methods to correct negative loss factors.

Lalor proposed breaking the system of E‑SEA equations into two independent parts
allowing to determine the DLF and CLF coefficients separately [18]. The method reduces
the size of the used matrices and improves their condition number. However, there is no
guarantee that the method will provide full correction of negative loss factors.

De las Heras et al. proposed a technique called MCF (Monte Carlo Filtering) [19].
MCF involves generating a population of energy matrices based on the matrix obtained
from measurements and discarding from the calculation those samples that do not meet
the imposed constraints. The authors compared their technique to other methods with
a similar philosophy of operation. They showed that the method of residue minimiza‑
tion [20] and the method of Lagrange multipliers [21] provide results at the boundary of
the set of admissible solutions, which results in obtaining extreme values after applying
these procedures (zeroing of loss factors). The superiority of the MCF method was also
demonstrated against the matrix fitting method based on mean‑square minimization [22],
where loss factors far from the correct values and close to zero were also obtained for some
frequency bands. The MCF method is a simulation of a multiply repeated measurement
process. It provides results that are inside the set of correct solutions (close to the correct
values) and is the most comprehensive method (it lacks additional assumptions, such as
weak coupling, no intermediate coupling, and a limited number of subsystems).

The MCF authors validated their method on two systems that met the SEA assump‑
tions. System 1 was virtually generated and consisted of seven subsystems (acoustic in‑
terior surrounded by six walls), whereas system 2 was real and consisted of a plate sus‑
pended in the acoustic interior (two subsystems) [19]. However, real systems (non‑virtual)
withmore than two subsystems have not been experimentally tested, and the effectiveness
of theMCFmethod for such systems is unknown. In this paper, we analyze this case using
an example of a system composed of two steel beams where wave scattering occurs. Thus,
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the system consisted of four subsystems (flexural wave fields of beams 1 and 2, longitudi‑
nal wave fields of beams 1 and 2). The analyzed system proved to be impossible to fully
identify by standard methods, which was the motivation for developing a modification of
the MCF method described in this paper.

As pointed out before, SEA is based on solving the energy balance between intercon‑
nected subsystems:

P = ω[L]E (1)

where P is a column vector of input powers, E is a column vector of a (unknown) subsys‑
tem’s energies, ω is the center angular frequency of the analyzed band ∆ω (i.e., octave or
1/3‑octave band), and [L] is the loss factor matrix.

The basic parameters describing the SEA model are the LFs (Loss Factors) ηij, which
in turn form the following loss factor matrix [L] [1].

Lij =

{
∑N

u=1 ηiu
−ηji

i f i = j
i f i ̸= j

(2)

where i = 1, . . . N, j = 1, . . . N.
The loss factor matrix [L] can be determined experimentally from the relationship [5]

[L] = [P] [E]−1/ω (3)

where [P] is the input power matrix, [E] is the energy matrix, and ω is the angular fre‑
quency. [E] matrix entries Eij stands for the energy of subsystem i when subsystem j
is excited. [P] is a diagonal matrix with entries Pjj, which stands for the power injected
into subsystem j. More details about this well‑known method, called the Power Injection
Method (PIM), can be obtained from other publications [17,23]. The energy matrix can be
normalized against input power and angular frequency [24].

[G] = ω[E] [P]−1 (4)

[L] is then equal to the inverse of [G].

[L] = [G]−1 (5)

The experimentally derived [L] matrix may contain negative LF coefficients, which
have no physical interpretation and which are considered as a measurement error associ‑
ated with the high sensitivity of [G]−1 to measurement uncertainties [17]. To correct the
error of negative LFs, theMonteCarlo Filtering (MCF)method can be used [19]. In theMCF
method, the essential step is to produce N matrices [Gs] comprising the population. The
subscript “s” comes from the word “sample,” which indicates that the matrix represents
a single sample from the population. Creating a [Gs] matrix involves adding a random
increment ∆Gs, ij to each element Gij of the original (derived from measurements) matrix
[G]. If we assume that the increments ∆Gs,ij are collected in the pooled matrix [∆Gs], the
formula for [Gs] can be written as

[Gs] = [G] + [∆Gs] (6)

For clarity, in the rest of the text, we will omit the subscript “s” in the [∆Gs] matrix.
The N matrices [Gs] generated according to (6) compose a set {[Gs]}, which is a Monte
Carlo population of normalized energy matrices. The set {[Gs]} can be written as the sum
of two disjoint subsets:

{[Gs]} =
{[

GN
s

]}
∪
{[

GP
s

]}
(7)
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where
{[

GN
s
]}

is the set of energy matrices, the inverses of which
{[

LN
s
]}

are not correct
loss matrices, while

{[
GP

s
]}

is the set of energy matrices, the inverses of which
{[

LP
s
]}

are
correct loss matrices.

Monte Carlo filtering (MCF) involves excluding
{[

LN
s
]}

from the calculation and de‑
termining the average value of the loss factors based on

{[
LP

s
]}

only [19]. The selection is
performed by inverting [Gs] and checking if the resulting matrix [Ls] meets the following
conditions:
• All elements off the main diagonal are negative.
• Elements on the main diagonal are positive and greater than the sum of the absolute

values of the remaining elements for a given column.
The matrices that satisfy these conditions are positive definite and diagonally domi‑

nant. The increment matrix [∆G] should be based on the measurement uncertainty associ‑
ated with the experiment, which ensures the generation of [Gs] in the immediate vicinity
of the original matrix [G]. A pooled matrix [σ] is then introduced, where the element σij
denotes the standard deviation for the element Gij. A matrix [a] of independent random
variables aij with distribution N (0,1) is also introduced. Then, the matrix of energy incre‑
ments can be determined from the relation

[∆G] = [a] ◦ [σ] (8)

where ◦ stands for element‑wise multiplication (Hadamard product) [25].
The main contributions of the following paper are as follows:

• The present paper proposes a modification of the MCF method. The modification is
called DESA (Diagonal Expansion of the Search Area), which is the main contribution
to the experimental SEAfield. DESA consists of applying a correction during theMCF,
which causes a non‑uniform expansion of the search area (Section 2.1). This novel
approach expands the range of vibroacoustic systems that can be properly identified
byMCF. It can be applied in the frequency bands forwhich correct results could not be
obtained using theMCFmethod in the basic version (using a homogeneous expansion
of the search area for the population {[Gs]} with a normal distribution), as will be
demonstrated by the example presented in Section 3.

• The effect of the expansion of the search area (parameter γ) on the errors introduced
into the loss factors was investigated. The so‑called shift error was observed and re‑
lated to the asymmetry present in the generated population of the energy matrices.
We pointed out that the asymmetry of the population increases with an increase in γ.

• We introduced a new parameter describing the degree of asymmetry of the energy
matrix population, the asymmetry index α, and proposed two methods (A and B)
for eliminating the shift error. Method A involves detecting matrices that introduce
asymmetry and rejecting them from the calculation, while method B involves using a
log‑normal distribution when generating the energy matrix population. A common
feature of both methods is the need to perform γ minimization.

2. Materials and Methods
This section presents the main contributions of the current paper in the E‑SEA field:

formulation of the DESA method (Section 2.1), and the introduction of Methods A and B,
which can compensate for errors associated with ESA (Section 2.2).

2.1. Expansion of the Search Area (UESA and DESA)
Theremay be caseswhere the standard deviations σij used in [∆G] are too small to find

the correct energy matrix [Gs], meaning that the set
{[

GP
s
]}

is empty. In order to increase
the success probability of filling

{[
GP

s
]}
, it is reasonable to use additional scaling factors
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γij > 1 gathered into the matrix [γ]. We will call the use of [γ] during the determination
of the [∆G]matrix an expansion of the search area (ESA).

[∆GESA] = [a] ◦ [σ] ◦ [γ] (9)

However, no guidelines are given in the literature about the selection of these scaling
factors, and no analysis has been formed of the effect of expanding the search area on errors
in the final results.

The most intuitive way to select scaling factors seems to be to take a common scaling
factor γU for all expressions of the matrix [γ], which in this work will be referred to as
the uniform expansion of the search area (UESA). UESA can be thought of as the use of
expanded measurement uncertainty, rather than standard uncertainty, when generating
the population. Then, the formula for [∆GUESA] simplifies to

[∆GUESA] = [a] ◦ γU [σ] (10)

Usually, after performing MCF, it is possible to obtain a non‑empty set
{[

GP
s
]}

due
to random and independent changes in the elements of the matrix. However, introducing
random changes uniformly for all elements (i.e., using [∆GUESA] increments) may not be
sufficient when the elements off the main diagonal are too large. In this paper, a non‑
uniform expansion of the search area is proposed, namely, the introduction of a scaling
factor for just the elements that are located on the main diagonal of the matrix [∆G]. The
method is called DESA (Diagonal Expansion of the Search Area) and takes its name from
this operation. Let us assign the scaling factor acting on the main diagonal symbol γD and
call it DPF (Diagonal Penalty Factor). The matrix of energy increments then takes the form

[∆GDESA] = [a] ◦ [σ] ◦ [γD] (11)

where the elements of the matrix [γD] are defined as follows

γ
i,j
D =

{
1, i f i ̸= j

γD, i f i = j
(12)

In Section 3, an example of the system for which the problem described above oc‑
curred for several frequency bands is presented. The identification of this system appeared
to be impossible using MCF and MCF combined with UESA (regardless of the scaling fac‑
tor adopted) for a normal population distribution. The introduction of DESA made it pos‑
sible to obtain a non‑empty set

{[
GP

s
]}

and to correct the negative LF coefficients.

2.2. Errors Associated with ESA
2.2.1. Population Asymmetry and Shift Error

In this subsection, [∆G], where it will not lead to ambiguity, will refer simultaneously
to [∆G], [∆GUESA], and [∆GDESA].

Since the matrices [G] and [G] + [∆G] are different from each other, one should also
expect differences between their inverses. This leads to the conclusion that the result of
an MCF simulation is always subject to some error. A different set of LF coefficients is
associated with each

[
LP

s
]
matrix. The average value of the LF coefficients determined

from the set
{[

LP
s
]}

is considered a good approximation of the true quantities. In this
article, we will relate this assumption to the preservation of symmetry in the generated
population of the energy matrix.

The [∆G] increments can take both positive and negative values, since they are defined
with random variables [a], which randomly determine their signs. When the values of the
[∆G] elements are small compared to the [G] elements, there is a symmetric population of
matrices. In such a symmetric population, there are, with equal probability, matrices [Gs]
with smaller element values than the corresponding elements in [G], and alsomatrices [Gs]
with larger values than in [G]. This results in the determination of slightly smaller, as well
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as slightly larger, LF coefficients, with the average value from the population being close
to the CLF coefficients determined directly from [G].

Note that the energy matrix [Gs] cannot contain negative elements since they have no
physical interpretation and always lead to incorrect loss matrices. An isolated example of
a matrix with negative elements that can be wrongly classified as correct is a diagonally
dominant matrix with all negative elements, for example

[Gs] =

(
−3 −20
−20 −3

)
To guard against drawing such samples, it is recommended to discard all matrices

[Gs] that have at least one negative element.
A consequence of the fact that all drawn matrices [Gs] with negative elements are

invalid is the possibility of producing an asymmetric population when the value of any
element ∆Gij is not in the interval

(
−Gij; Gij

)
. This situation can occur if there is a consid‑

erable measurement uncertainty or if an excessive scaling factor is adopted. If ∆Gij > Gij,
thematrix [G] + [∆G] can be both correct and incorrect, but the possible “balancing”matrix
[G]− [∆G] that could be drawn in subsequent iterations will always be an incorrect matrix
due to the negative energy value that occurs in it. Similarly, if ∆Gij < −Gij, the [G]− [∆G]
matrix can be both correct and incorrect, but [G] + [∆G] will always be incorrect.

The described process leads to a population that is dominated by [Gs] matrices with
elements larger than the original [G]matrix. This imbalance after matrix inversion results
in the underestimation of LF coefficients. Let us call this effect a shift error, which is an error
that occurs due to operating on an asymmetric population of the energy matrices. Based
on the above description, we propose the following definition of matrices that introduce
asymmetry

[
GA

s
]
.

Definition 1. If the test matrix [Gs,test] corresponding to the generated matrix [Gs] contains at
least one negative element, then [Gs] is a

[
GA

s
]
matrix. For each [Gs] = [G] + [∆G], the test

matrix can be determined from the relation [Gs,test] = [G]− [∆G].

Let us note that the moment of classifying a given matrix as
[
GA

s
]
occurs before its in‑

version, and therefore both the
[
GP

s
]
and

[
GN

s
]
matrices can be considered to be symmetry‑

disruptive. For the purpose of further consideration, let us mark this fact by writing the
set
{[

GA
s
]}

as {[
GA

s

]}
=
{[

GA,N
s

]}
∪
{
[GA,P

s ]
}

(13)

The distinguished disjoint subsets of the set
{[

GA
s
]}

have the following interpreta‑
tion. The subset

{[
GA,N

s

]}
=
{[

GA
s
]}

\
{
[GP

s ]
}
is the set of incorrect matrices that intro‑

duce asymmetry, while the complement
{[

GA,P
s

]}
=
{[

GA
s
]}

\
{
[GN

s ]
}
is the set of correct

matrices that introduce asymmetry. The relations between the described sets are shown
in Figure 1.

The shift error increases as the cardinality of the set {[GA,P
s ]} increases relative to the

cardinality of
{[

GP
s
]}
. Let us introduce the naturally resulting definition of the population

asymmetry measure from this relationship as

α =
card(

{
[GA,P

s ]
}
)

card({[GP
s ]})

(14)

where card ( . . . ) denotes the cardinality of the set. The asymmetry index α can be directly
controlled by changing the values of [∆GESA]. In turn, [∆GESA], according to Equation (9),
depends on the scaling factor γ. Figure 2 shows the effect of changing γ inUESA andDESA
on shift errors when identifying an example system. Figure 2 was formed by sequentially
recalculating Equations (10) and (11) with different values of [γU ] and [γD] to obtain en‑
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ergy increments [∆Gs] associated with different values of γ (2.5, 20 and 100). Then, from
Equation (6) the sample energy matrix [Gs] was obtained for each γ. This process was
repeated 1 × 105 times to obtain the populations {[Gs]}. Each energy matrix was then
inverted using Equation (5) to obtain the resulting {[Ls]} population. Next, the MCF pro‑
cedure was performed, as described in “Introduction”, to obtain the set of correct matrices{[

LP
s
]}
. Elements of

{[
LP

s
]}

were averaged arithmetically to obtain [Lmean]. Then, based
on Equation (2), the mean loss factors shown in the figure were extracted from [Lmean] as
follows. Coupling loss factor ηij is off‑diagonal term Lji multiplied by −1, and damping
loss factor ηii is obtained by summing the elements of column i.
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From Figure 2, it can be seen that an increase in γ is associated with an increase in the
shift error. It can also be seen that the shift error (i.e., underestimation of LF) is most signifi‑
cant for large scaling factors. When the scaling factors are smaller, LF can also be observed
to be larger in relation to the original values. To trace this relationship more closely, let us
focus on one of the frequency bands, e.g., 800 Hz. Figure 3 shows how the relative error in
determining the loss factors ∆η (both CLF and DLF) and the population asymmetry index
α change as a function of γ. For α > 50%, the effects associated with population asymme‑
try begin to dominate, and an increasing shift error is observed (∆η < 0). For α < 50%, ∆η
is positive. It is worth noting that due to ∆η reaching a maximum for a certain γmax , there
is such a γopt > γmax for which ∆η = 0.
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2.2.2. Scaling Factor Minimization
It follows from the considerations in Section 2.2.1 that small values of γ lead to a

minimization of the shift error. A zero∆η error can also be achieved by using the γopt value
for ESA (γopt > γmax > 0), but finding γopt in practice is problematic or even impossible
(a small error in the estimation of γopt results in a large change in ∆η). A more practical
solution seems to be to perform γ minimization.

To minimize γ, one can use an algorithm of choice, such as a simple search, the prin‑
ciples of which are reflected in Figure 4. As can be seen, a starting value of γ0 = 1 proved
to be insufficient to determine the correct loss matrix. In step No. 1, the value of γ1 = 2γ0
also had no effect. The correct matrix was obtained in iteration No. 2 for γ2 = 2γ1. In
step No. 3, one went back to the value of γ3 = (γ1 + γ2)/2, and again the wrong matrix
was determined. In step No. 4, the value of γ was increased to γ4 = (γ3 + γ2)/2, and as
a result, the correct matrix was obtained and the stop condition was satisfied (the sought
optimum value of γ5 was approached).

The optimization process is stochastic (each matrix contains a random element in it),
and therefore each execution of the process may indicate a slightly different optimal value.
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The solution to the problemmay be to run the optimization multiple times, and then to de‑
termine the average value or to choose the minimum value from all the processes. The pre‑
sented example illustrates that the proposed method can be time‑consuming and should
therefore only be used for problematic frequency bands.
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2.2.3. Enforcing Symmetry of the Population
Performing γ minimization (Section 2.2.2) is necessary to generate correct matrices

lying in the closest vicinity of the original matrix. The minimization of γ, however, does
not completely eliminate the shift error, but only minimizes it (the matrices inducing the
shift error may still be present in the set

{[
GP

s
]}
). In this section, we propose twomethods

to eliminate the shift error, which involve forcing the symmetry of the population of energy
matrices (SFM, Symmetry Forcing Methods):
• Method A, which involves discarding from the calculation matrices that fall into the

tail of the normal distribution.
• Method B, which involves generating a population with a log‑normal distribution.
• The use of one of the presented SFM methods in combination with γ‑minimization

allows us to:
• Correct negative loss factors and replace them with factors that are free of offset

error.
• Obtain results close to the original results in bands that do not require correction,

which can be good in terms of the quality control of the applied methods.
Method A makes it possible to enforce the symmetry of the population by excluding

the set
{[

GA
s
]}

from the calculation, where
{[

GA
s
]}

can be detected based on the defini‑
tions presented in Section 2.2.1. Let us follow this process for a selected frequency (3150Hz)
and an element (I = 1, j = 2) of the {[Gs]} from Section 3. Figure 5 shows the histogram
of the analyzed element (1 × 105 samples). As expected, the population generated from
Formulas (6) and (8) has a normal distribution. Method A is based on the rejection of ele‑
ments introducing asymmetry, as seen in Figure 5.

It can be seen from the figure that it is necessary to detect the correct value between
0 and 2 G ij, where G ij is an element from the original measurement matrix [G]. The fulfill‑
ment of this condition in the context of the matrix population depends on the relationship
between the cardinality of the set

{[
GP

s
]}

and {[GA,P
s ]}. There are two possible identifica‑

tion results with A:
1. When card

({[
GP

s
]})

> card({[GA,P
s ]}), or equivalently α < 1, the result obtained

will be free of both shift error and negative LF. Then, the identification result ob‑
tained by Method A can be considered correct, and α = 0 occurs for the resulting
population.

2. When card
({[

GP
s
]})

= card({[GA,P
s ]}), or equivalently α = 1 (which also means

that
{[

GP
s
]}

= {[GA,P
s ]}), all correct matrices will be discarded and the correction of

negative LF coefficients will not take place. Method A is then ineffective. However,
it is possible to take the LF coefficients determined for an asymmetric population of
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matrices as the final result. In such a situation, the result obtained will be affected
by a shift error. However, this error will be minimized by using γmin during the
calculation (the distance between the matrices

[
GA

s
]
and the original matrix [G] will

be relatively small).
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Figure 5. Histogramof the selected itemGs,ij (i = 1, j = 2) fromapopulationwith a normal distribution.

Figure 6 shows how ∆η and α change as a function of γ when Method A is applied. Of
course, due to the rejectionof all samples from {[GA,P

s ]},wehave card({[GA,P
s ]}) = 0 → α = 0 .

Note that Method A eliminates from the population only those matrices that introduce er‑
ror due to asymmetry. Forcing symmetry cannot cancel the errors caused by the presence
of matrices

[
GP

s
]
in the population that are significantly distant from the original [G] (large

values of ∆η for large γ in Figure 6). When a given population is formed on the basis of
a huge scaling factor, Method A will provide the result associated with the broadest pos‑
sible increase in ∆G, which does not introduce asymmetry (the area of stabilization of ∆η
in Figure 6, well seen especially in Figure 6b,d) Figure 6a,c also shows the case when the
population before symmetry forcing was characterized by α = 1 for a sufficiently large γ.
Then, all

[
GP

s
]
were in the discarded region, and determining the loss factorswas impossible.

For the reasons mentioned above, it is strongly discouraged to take arbitrarily large
values of γ during ESA operations and to omit the minimization of γ based on the er‑
roneous assumption that Method A can correct the result automatically. For example,
Figure 7a,c shows the effect of Method A on an asymmetric population generated with
γ = 100 (DESA). It can be seen that the shift error (underestimation of the result) has been
removed, but the final result is overestimated. Figure 7b,d, on the other hand, concerns the
asymmetric population generated with γ = 1.5. In this case, the search area was narrower,
and more matrices closer to the original one were included in the population. For this rea‑
son, the LF coefficients in Figure 7b,d are closer to the result of the experiment without
using MCF. Therefore, the problem described above should be of little importance when
the γ‑minimization procedure is carried out before proceeding with SFM.

Since the case α = 1 may occur, where Method A is unreliable, we propose an al‑
ternative approach that enforces population symmetry—Method B. So far, our considera‑
tions have been carried out assuming a normal distribution of the population of generated
energy matrices based on Equation (6). Note that by changing this approach and assum‑
ing a log‑normal distribution, we naturally exclude all matrix elements with negative val‑
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ues from the procedure (Figure 8). In turn, the dominants of the individual elements are
smaller than the corresponding values of the elements in [G]. For a population with a log‑
normal distribution, asymmetry does not arise (α = 0 always occurs, and shift error does
not occur).
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Figure 7. Loss factors after applying Method A with arbitrary scaling factor values (influence of
minimization omission). □—the original value,▼—the value after expanding the search area, •—the
value after forcing the symmetry of the population using Method A. (a) DLF for γ = 100, (b) DLF
for γ = 1.5, (c) CLF for γ = 100, (d) CLF for γ = 1.5.
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Figure 8. Histogram of the selected item Gs,ij (i = 1, j = 2) from a population with a log‑normal
distribution.

The parameters µ and σ2 of the log‑normal distribution can be determined from the
relationship [26].

µ = ln

 µ2
X√

µ2
X + σ2

x

 (15)

σ2 = ln

(
1 +

σ2
x

µ2
X

)
(16)

which allows the obtaining of the mean µX and the variance σ2
x of the log‑normal distribu‑

tion to be equal to that of the normal distribution from Method A.
Figure 9 shows an example of the dependence of α and∆η on γwhen a log‑normal dis‑

tribution is assumed. As inMethod A, the error in determining the loss factor ∆η increases
with an increasing γ. However, the error in∆η does not stabilize for some sufficiently large
γ, but increases unlimitedly. Particularly large values can be seen in Figure 9a,c. This is
because in Method B, there is no need to exclude from the calculation values the falling
into the tail of the distribution. The error ∆η converges to zero for a small γ, as in Method
A. Thus, the minimization of γ is also necessary in Method B.
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Figure 9. Dependence of the error of loss factors (□) and the population asymmetry index (•) on the
scaling factor for a matrix population with log‑normal distribution. (a) DLF for γ = 100, (b) DLF
for γ = 1.5, (c) CLF for γ = 100, (d) CLF for γ = 1.5.
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3. Results
Power injection method (PIM) measurements were carried out using MCF on a struc‑

ture composed of two steel beams connected to each other at right angles. The mechanical
and geometric parameters of the subsystems are given in Table 1.

Table 1. Mechanical and geometric parameters of the subsystems.

Geometry

Thickness 20 mm

Length 80 mm

Width 500 mm

Mechanical Parameters

Material Steel

Density 7827 kg/m3

Young’s modulus 205 GPa

Poisson number 0.3

Bothflexural and longitudinalwaveswere considered in the SEAmodel. This resulted
in the system being divided into four subsystems: the flexural wave field of beam 1, the
longitudinal wave field of beam 1, the flexural wave field of beam 2, and the longitudinal
wave field of beam 2. The loss matrix and energy matrix were therefore 4 × 4 in size.

Figure 10 shows the values of the CLF (η12) that describe the energy flow between the
flexural wave field of beams 1 and 2 as a function of frequency. In turn, Figure 11 shows
the values of two selected elements of the energy matrix for all the Monte Carlo iterations
carried out for the selected frequency of 250 Hz. The elements Gs,22 were on the main
diagonal, while the elements Gs,23 were off the main diagonal. The red dots on the graphs
indicate the iterations where the correct matrices

[
GP

s
]
were detected.
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Figure 10. CLF coefficients between the flexural wave fields of the measured beams. ▼—MCF with‑
out ESA; •—MCF+DESA with minimized γ = 6; □—MCF+UESA with forced population symmetry
(Method B), γ = 1.5. Red circles indicate frequency bands where MCF without ESA was not successful.
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Figure 11. Values of elements G_ (s,22) (�) and G_ (s,23) (�) for all the Monte Carlo iterations. Red
dots indicate iterations with the correct loss matrix. (a) no ESA; (b) UESAwith γ = 20; (c) DESAwith
γ = 6; (d) DESA with γ = 6 + Method A; (e) DESA with γ = 1.5 + Method B; in this variant only one
correct matrix (area indicated by the red circle) was found (f) UESA with γ = 1.5 + Method B.

4. Discussion
Figure 10 shows that the application of theMCFmethod in its basic version (i.e., with‑

out expanding the search area in a population with a normal distribution) failed to deter‑
mine positive loss factors in the 1/3‑octave bands of 250 Hz, 315 Hz, and 3150 Hz. For
250 Hz, this situation corresponds to Figure 11a. The energy matrix has no possibility
of becoming a diagonally dominant matrix (the energy of a subsystem is higher when it
is a source subsystem, and lower when it is a receiving subsystem) due to the fact that
Gs,22 < Gs,23 occurs in almost every iteration. However, there is a non‑zero probability
of Gs,22 > Gs,23 occurring. Based on the tracking of a single pair of elements, one cannot
draw any conclusion about the entire energy matrix. The condition Gs,22 > Gs,23 is, of
course, necessary, but is not sufficient for the matrix [Gs] to be a diagonally dominant ma‑
trix. A sufficient condition is the fulfillment of the set of conditions Gs,jj > Gs,ji, i ̸= j for
each row j. In the case of the 4 × 4 matrix in question, the probability of simultaneously
satisfying each condition turned out to be unacceptably small. The number of iterations
in Figure 11a is equal to 1 × 105, but trials continued (unsuccessfully) until the number of
iterations reached 2 × 107.

Figure 11b shows that the use of UESA with γ = 20 only resulted in an even shift
in the values of the two elements of the matrix and did not improve the efficiency of the
applied method.

The calculations in Figure 11c used DESA with a minimized DPF value of γ = 6,
resulting in a non‑empty set

{[
GP

s
]}
. Figure 10 shows that the CLF spectrum obtained in

this way is subject to shift error. For the case under consideration, α = 1 also occurred.
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Indeed, after forcing the symmetry of the population using Method A (Figure 11d), the set{[
GP

s
]}

again became empty since all the correct matrices were in the tail of the normal
distribution.

Using a log‑normal distribution of the population according to Method B (Figure 11e
for DESA and 11f for UESA) proved to be effective. Positive loss factors with no shift error
were obtained, as can be seen in Figure 10. It was noted that by using γ minimization for a
log‑normal distribution,much smaller optimal values of γ can be obtainedwhen compared
to a population with a normal distribution (in the case in question, γ = 1.5). This made it
possible to obtain loss factor values close to the original values in the uncorrected bands.

The above analysis clearly shows the advantage of the proposed method compared
to the previously known approaches. The standard method (MCF procedure with UESA)
was insufficient to correct negative loss factors in the considered case because energy terms
could not match requirements in any Monte Carlo iteration. On the other hand, the pro‑
posed method DESA and standard UESA combined with new error correction methods
A and B were successful. In other words, the proposed approach’s novelty results from
extending the range of potential vibroacoustic systems that can be properly identified in
E‑SEA (withminimized error andwithout negative loss factors). Therefore, this case study
confirms the paper’s main contributions indicated in the Section 1.

5. Conclusions
The paper proposes a modification of the MCF method. The modification is called

DESA and involves the use of a non‑uniform expansion of the search area (using scaling
factor γ, DPF) during Monte Carlo population generation and also makes it possible to
correct negative loss factors in frequency bands that are problematic for the MCF method.

The paper analyzed the effect of the degree of search area expansion on the result‑
ing errors introduced into the loss factors. A so‑called shift error was observed, which
was related to the asymmetry present in the generated population of the energy matrix.
It was pointed out that the asymmetry of the population increases with the expansion of
the search area and is due to the domination of the population by matrices with elements
larger than in the original experimentally determined matrix. The favoritism of matrices
with large elements is related to the presence in the population of always incorrect and
rejected matrices containing negative elements, which occurs when the values of the ap‑
plied energy increments are larger than the values of the elements of the original matrix.
A new parameter α was proposed to describe the degree of asymmetry of the population
of energy matrices, as well as two methods for compensating for the shift error: Method A
and Method B.

Method A involves performing DPF minimization and rejecting matrices that intro‑
duce asymmetry from the calculation. Method A is applicable when α < 1, and therefore
is not including the possible case of α = 1.

Method B proposes an alternative model for matrix population generation using a
log‑normal distribution and by performing DPF minimization. Method B is free of the
limitations ofMethodAand allows for the correction of negative loss factorswith the use of
smaller DPF values when compared toMethod A, which is based on a normal distribution
of matrix elements.

The DESA method was tested on a system consisting of two steel beams, where the
SEAmodel took into account the phenomenon ofwave conversion (four subsystems). Dur‑
ing the determination of the loss factors of the tested system, the proposed methods for
minimizing the shift error were also applied, and the superiority of Method B was demon‑
strated. Replacing UESAwith the DESAmethod allowed for the correction of the negative
loss factors, but Method A did not enable the shift error to be removed. The best results
were obtained by using Method B, which made it possible to cancel the shift error and use
smaller optimal scaling coefficients.
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