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Abstract: Considering the lack of studies on the transient vibro-acoustic properties of conical shell 
structures, a Jacobi–Ritz boundary element method for forced vibro-acoustic behaviors of structure 
is proposed based on the Newmark-β integral method and the Kirchhoff time domain boundary 
integral equation. Based on the idea of the differential element method and the first-order shear 
deformation theory (FSDT), the vibro-acoustic model of conical shells is established. The axial and 
circumferential displacement tolerance functions are expressed using Jacobi polynomials and the 
Fourier series. The time domain response of the forced vibration of conical shells is calculated based 
on the Rayleigh–Ritz method and Newmark-β integral method. On this basis, the time domain re-
sponse of radiated noise is solved based on the Kirchhoff integral equation, and the acoustic radia-
tion characteristics of conical shells from forced vibration are analyzed. Compared with the coupled 
FEM/BEM method, the numerical results demonstrate the high accuracy and great reliability of this 
method. Furthermore, the semi-vertex angle, load characteristics, and boundary conditions related 
to the vibro-acoustic response of conical shells are examined. 

Keywords: conical shell; vibro-acoustic analysis; Jacobi–Ritz boundary element method;  
time domain response 
 

1. Introduction 
The rotary structures include conical shells, spherical shells, and cylindrical shells. 

As a commonly used structure in pipelines, the conical shell is a basic structural type that 
is widely used in civil engineering, water conservancy, aerospace, marine engineering, 
and other fields. In engineering applications, it is often subjected to all kinds of excitation 
loads. The study of the acoustic radiation response of its forced vibration has been widely 
studied by scholars. Therefore, analyzing the acoustic radiation characteristics of the 
forced vibration of rotating conical shells under varied boundary conditions is extremely 
important [1,2]. 

Most of the existing research on conical shells focuses on the analysis of vibration 
characteristics, including free vibration and forced vibration responses. Lam et al. [3] used 
an improved generalized differential quadrature (GDQ) method to investigate the free 
vibration properties of conical plates with different circumferential wave numbers. Guo 
et al. [4] applied a numerical spectral-Tchebyshev approach to study the free vibration 
behavior of conical shells. Chen and his team [5,6] presented a semi-analytical technique 
to solve the free and forced vibration response of stiffened rotating shells, in which the 
displacement function of the conical segment was expressed by power series, and the gov-
erning equation was established using boundary conditions and continuity conditions. 
Caresta et al. [7] examined the frequency analysis of isotropic conical shells using the Don-
nell–Mushtair and Flügge methods. Ye et al. [8] utilized a combination of the Rayleigh–
Ritz technique and the Fourier series to figure out the vibration response of composite 
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laminated shallow shells. Qu et al. [9] extended an efficient domain decomposition 
method to carry out the vibration features of the cylindrical shell with combined boundary 
conditions. Su et al. [10] used the FSDT and Rayleigh–Ritz technique to solve the vibration 
response of conical shells under different boundary conditions. Tong et al. [11] devised a 
semi-analytical approach to determine the vibration response of laminated shells at any 
angle by applying the DQM and the state space technique (SST). Jafari et al. [12,13] inves-
tigated the vibration characteristics of composite cylindrical shells with clamped-free 
boundary conditions based on the FSDT. Based on the Jacobi–Ritz method, Li and his team 
[14–16] extended a unified analytical formulation to study the vibration characteristics of 
composite rotary structures, in which the effectiveness and accuracy of the method were 
proven by experiments and the literature. 

The aforementioned studies comprise the research status of the vibration character-
istics of conical shells in recent years. Most of the research content focuses on the analysis 
of free vibration and steady vibration in the frequency domain, while the analysis of tran-
sient vibration responses in the time domain is lacking. Then, the research on vibration 
acoustic radiation characteristics of shell structures in recent years is summarized as fol-
lows. Qu et al. [17,18] combined the modified variational method and the spectral Kirch-
hoff–Helmholtz integral formulation to investigate the vibro-acoustic behaviors of a rotat-
ing shell in different fluids. Zhong et al. [19,20] studied the vibro-acoustic behaviors of a 
fluid–structure coupling system composed of elliptical caps and a cylindrical shell by ap-
plying the unified Ritz energy and the FSDT. Sharma et al. [21] investigated the structural 
and acoustic behaviors of composite laminates when subjected to harmonic force excita-
tion using the finite element technique (FEM). Kumar et al.[22] figured out a parametric 
study to analyze the vibration and acoustic behaviors of an elliptical disk based on the 
FEM. Gao et al. [23,24] studied the vibration response and sound radiation of rotating 
shells in light and heavy fluids using the Ritz method and the test method. Xie et al. [25,26] 
presented a semi-analytic method to investigate the vibro-acoustic response of conical 
shells in light of the Flügge theory and the Fourier series. Li et al. [27] extended a meshfree 
method to analyze the vibrational and acoustic behaviors of composite conical shells, in 
which the shell displacement and acoustic pressure were described by the Fourier series 
and meshfree form functions. Jin et al. [28] investigated the vibro-acoustic behaviors of 
conical shells in heavy fluid by applying an energy-based formulation, where the formu-
lation expressed the external acoustic field and the displacement using the one-dimen-
sional Helmholtz integral formulation and the Fourier series, respectively. Chen et al. [29] 
studied vibrational behavior at low frequencies and acoustic radiation of stiffened conical 
shells in fluid using a power series and the element radiation superposition method. Wang 
et al. [30,31] investigated the vibro-acoustic behaviors of the conical shell by extending a 
precise transfer matrix method, which was validated by experimental evidence. Qu et al. 
[32] analyzed the acoustic properties of composite laminates under moving loads using 
accurate three-dimensional elastic theory and time domain BEM. Zuo et al. [33] used the 
time domain FEM/BEM to analyze the vibro-acoustic radiation characteristics of the un-
derwater vehicle cabin under transient impact loads. 

Based on a review of the literature described above, existing studies contain only a 
small number of analyses of the vibro-acoustic features of rotating conical shells, which 
mainly focused on vibration characteristics. Moreover, studies on the vibro-acoustic radi-
ation of conical shell structures mainly focus on the analysis of characteristics in the fre-
quency domain, which is suitable for solving steady sound fields with strong regularity. 
However, there are a large number of transient excitation sources in practical engineering. 
These sources are highly unstable, and the transient acoustic radiation and vibration re-
sponse of conical shells under random loads are rarely analyzed. Therefore, this paper 
attempts to establish an analysis model of vibration and acoustic behaviors of conical 
shells with arbitrary boundary conditions based on the differential element method and 
the FSDT. From the point of view of solving the time domain vibro-acoustic response of 
conical shells, a Jacobi–Ritz boundary element method for vibro-acoustic problems of 



Acoustics 2024, 6 525 
 

 

conical shells is proposed, which is based on the Newmark-β integration method and the 
Rayleigh–Ritz method, to calculate the time domain responses of forced vibration. The 
time domain acoustic radiation results of conical shells are analyzed in light of the Kirch-
hoff time domain boundary integral equation. This approach has been demonstrated to 
be reliable and accurate when compared to the responses of the FEM/BEM. On this basis, 
several instances are presented to illustrate the impact of various boundary conditions, 
semi-vertex angles, and load characteristics on the vibro-acoustic behaviors of conical 
shells. 

2. Theoretical Formulations of the Structure 
2.1. Theoretical Model of the Structure 

The calculational analysis model of the conical shell structure is displayed in Figure 
1, where L, h, α0, R1, and R2 are the length, thickness, semi-vertex angle, and radius of both 
ends, respectively. The displacement of the conical shell structure is described by the cy-
lindrical coordinate system, where the axial displacement is represented by x and the cir-
cumferential displacement is marked by θ. In addition, ,  ,  and u v w  represent the corre-
sponding axial, circumferential, and radial displacements. By introducing five series of 
spring stiffnesses ( ,  ,  ,  ,  and u v w xk k k k kθ ) at the ends, the conical shell boundary conditions 
are obtained, and various spring stiffness values are set to simulate arbitrary boundary 
conditions. The conical shell structure is evenly segmented into H parts along the x direc-
tion, following the principles of the differential element approach. Section i can be con-
nected to section i+1 by a manual connection spring, with the spring stiffness set to infinity 
to indicate a large coupling effect between the segments. 

o
α0 R1 R2

w u

h

z

θ 

R1

 
Figure 1. Calculation model of conical shell. 

2.2. Vibration Response Solution of the Rayleigh–Ritz Method 
According to FSDT and generalized version of Hooke’s law, the constitutive equation 

of conical shell structures is as follows: 
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where 
i
xN  , 

iNθ  , 
i
xN θ  , 

i
xM  , 

iMθ  , 
i
xM θ  , 

i
xzQ  , and 

i
zQθ   represent the respective forces, 

moments, and shear forces of ith segment. The shear correction factor is generally 5/6 
[34,35]. 

The extensional stiffness coefficients and bending stiffness coefficients of the conical 
shell are denoted by , ( , 1, 2,6)ij ijA D i j = : 
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where E represents the elastic modulus and µ denotes Poisson’s ratio. 
According to the FSDT, the conical shell’s structural strain energy can be calculated 

as follows: 
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By introducing five sets of springs to simulate the boundary of the conical shell, the 
boundary potential energy Ub of the structure is 
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The connecting spring potential energy between different substructures is 
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The ith conical shell segment’s work performed by an external excitation load is as 
follows: 

,
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where fw,i denotes the concentrated force acting in the w direction towards the surface. 
The displacement functions of the structure are created using Jacobi orthogonal pol-

ynomials and Fourier series. Each function component of the structure can be shown as 
follows: 
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where ,  ,  ,  ,  ,  ,  ,  ,  , and m m m m m m m m m mA B C D E F G H I J  represent unknown coefficients, axial 
and circumferential wave numbers are represented by n and m, and N and M are the high-
est degrees of n and m. 

The conical shell structure’s overall Lagrange energy function is described as 

( )
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By applying the Rayleigh–Ritz method, the variational form of L is obtained: 
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Rayleigh damping is introduced, and the time domain vibration response is solved 
based on the Newmark-β integration approach. 

2.3. Acoustic Response Solution Based on the Boundary Element Method 
The time domain BEM can automatically satisfy Sommerfeld’s far-field radiation con-

ditions. Figure 2 shows the coordinate system of external acoustic radiation from a conical 
shell. 
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Figure 2. Coordinate system of external acoustic radiation from conical shell. 

When applying the Kirchhoff boundary integral formulation in the time domain, the 
sound pressure p(r, t) at any field point r can be stated as 
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where the vector re represents the source point, while the normal derivatives and basic 
solutions of the sound field wave equation in the time domain are denoted by 

( ) ( )* , , , , , ,e eG r r t G r r tτ τ， . The normal direction outside the boundary of the shell surface 
is represented by n+ , and the sound source dϒ can be identified at the sound field bound-
ary ϒ. 

The ( )rℜ  coefficients are defined as follows: 
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The time domain boundary integral equation is numerically discretized, in which the 
time axis is equally split into tN  parts ( ),  0,  1,n t t tt n t n N= ∆ = … . Time interpolation is 
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conducted on the physical quantities of the sound field using the mth time step, and the 
following results are obtained: 
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where ( )m
i eq r  and ( )m

i ep r  are the normal derivative and the spatial distribution func-
tions of the sound pressure, respectively. i is the order of the mth step of the time interpo-
lation function, and ( )m
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Given that the fundamental solution is time-translation invariant, the boundary inte-
gral equation of the discrete time domain sound field is as follows: 
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In the cylindrical coordinate system, Fourier series are used to transform the two-
dimensional sound field boundary integral equation into a one-dimensional sound field 
boundary integral equation along the circular direction. The sound field boundary inte-
gral equation is given by 
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where the variables ,
c
i np  and ,

s
i np  indicate the Fourier series expansion coefficients for the 

boundary sound pressure normal derivative. Also, the normal derivatives of Green’s func-
tion and its expansion are as follows: 
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The coefficients ( )( )1 1t

i
n m nG − +  and ( )( )1 1t

i
n m nH − +  are expressed as 
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where 

, ,d de e eφ θ θ θ φ θ θ φ= − = + =  (23) 

Based on the first kind of Chebyshev polynomial discrete sound field boundary, the 
configuration point is set on the boundary element to ensure that the sound field 
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boundary and the structure boundary match, and then the Fourier sound pressure coeffi-
cient is expanded as follows: 
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The jth Chebyshev polynomial of the first class is denoted by Tj (ξ). J denotes the 
maximum degree of j. The improved time domain boundary integral equation is calcu-
lated by inserting Equations (20)–(24) into Equation (19). 
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where Jξ  and Tp are the Jacobian matrix of coordinate transformation and a vector com-
posed of orthogonal polynomials, respectively. Each boundary element has (J + 1) collo-
cation points, which are precisely situated at the zero of the first Chebyshev polynomial. 

2 1cos ,     1, 2,..., ( 1
2( 1)j

j j J
J

ξ π
 −

= = + + 
） (26) 

At the radiation surface of the shell, 

0
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e
e
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where 0ρ  is the fluid density, and ( , )jw t er  denotes the normal acceleration of the con-
ical shell, which is solved by the Newmark-β integral method and Equation (12). Equa-
tions (25) and (26) are jointly expressed in matrix form as: 

 ( )( ) ( )( )
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1 1 1 1
1 1 1 1

  
t t

t t

N NI Iin l n i n
n m i in m

m i m i
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= +∑∑ ∑∑p pC G w H  (28) 

where n
iw   and n

ip   stand for the acceleration and sound pressure, respectively, and 
 ( )( )1 1t

i
n m− +G and ( )( )1 1t

i
n m− +H  represent the coefficient matrix. The generalized sound pressure 

vector on the lth boundary element is represented by ,n lp . 

3. Convergence Discussion and Validity Verification 
3.1. Computational Model 

In this section, through a discussion of the vibration results and the acoustic radiation 
of conical shells, the convergence and accuracy of the presented method are verified. The 
conical shell structure dimensions are as follows: 0 π/6α = , R1 = 0.5 m, L = 3 m, and h = 
0.008 m. The material and convergence parameters are 37850 /kg mρ =  , 210 E Gpa=  , 

0.3µ = , 8M N= = , 1α β= = , 4H = , and 4J = . In Table 1, virtual spring stiffness val-
ues for both end boundaries of the conical shell structure are presented [36,37]. 

Table 1. The virtual spring stiffness values of complex boundary conditions. 
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Type 
Wire Spring Stiffness 

ku = kv = kw (N/m) 
Rotating Spring Stiffness 

kx = kθ (N·m/rad) 
Clamped--C 1015 1015 

Simply Support--S 1015 0 
Free--F 0 0 

Elastic--E 108 10 

Figure 3 shows the selected triangular pulse excitation load. The excitation point is 
(0.25L, 0, R), the vibration examination point is (0.75L, 0, R), and the acoustic examination 
point is (0.5L, 0, 2). 

 
(a) Single triangular pulse load 

 
(b) Periodic triangle pulse load 

Figure 3. Forced vibration excitation load. 
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3.2. Convergence Discussion 
Under the simply supported edges on both sides of a conical shell, the convergence 

of the method is discussed. Similarly, the conclusion of the discussion is consistent with 
the arbitrary boundary conditions of conical shells. According to the abovementioned the-
oretical derivation, the energy function of the structure is established based on the differ-
ential element method, and the arbitrary boundary is simulated using the artificial spring 
technique. Therefore, convergence depends on the displacement tolerance function, the 
number of segments, Jacobi parameters, and the sound pressure function. 

Figure 4 shows the effects of different segment numbers H and displacement allow-
able function truncation numbers M and N on the calculation results of the natural fre-
quency of the conical shell when the Jacobi parameters are as follows: α = 1 and β = 1. As 
can be observed, with the addition of the truncation number of the displacement tolerance 
function and the number of segments, the natural frequency of the conical shell structure 
tends to converge gradually. The free vibration results of the conical shell converge and 
agree with the FEM results when the truncation coefficients reach H ≥ 3, M ≥ 6, and N 
≥ 6 However, the order of the matrix calculation will increase with an increase in con-
vergence parameters. On the basis of ensuring calculation accuracy, the subsequent anal-
ysis of the number of segments and the truncation number of the displacement tolerance 
function is chosen as follows: H = 4, M = 8, and N = 8. 

 
Figure 4. Natural frequency comparison of conical shell. 

In terms of the values of the Jacobi parameters, the natural frequencies under α = 0 
and β = 0 are taken as reference values. Figure 5 displays the absolute errors of structural 
natural frequencies under different Jacobi parameters. 

Figure 5 shows that the maximum absolute percentage error of the different Jacobi 
parameters α and β under simply supported boundary conditions is less than 3 × 10−6, 
indicating that the selection of Jacobi parameters has little effect on the vibration responses 
of conical shell structures. 

Figure 6 shows the acoustic radiation under different sound pressure truncation 
functions J. The analysis results show that the acoustic pressure level of the conical shell 
converges rapidly and stably with an increase in the truncation number of the sound pres-
sure function J, when the calculation parameters of the structural vibration response are 
fixed. By the same token, the sound pressure truncation function is chosen as follows: J = 
4. 
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Figure 5. Absolute percentage errors of natural frequency under different Jacobi parameters. 

 
Figure 6. Acoustic pressure level under different truncation numbers of sound pressure function. 

3.3. Validity Verification 
In order to verify the effectiveness of the Jacobi–Ritz boundary element method, a 

single triangular pulse load is applied, as seen in Figure 3a. The number of segments, the 
displacement tolerance function, the Jacobi parameters, and the truncation number of the 
sound pressure function are chosen as follows: H = 4, M = 8, N = 8, α = 1, β = 1, and J = 4; 
the boundary conditions are simply supported. Figure 7 exhibits the comparison of the 
vibro-acoustic responses between the proposed method and the FEM/BEM in the time and 
frequency domains. 

From the abovementioned comparison curves, the vibro-acoustic responses calcu-
lated using the proposed method in the time–frequency domain are in agreement with 
FEM/BEM. The difference may be due to the inconsistency of matching algorithms be-
tween sound field nodes and structural nodes at the fluid-solid interface. There is a small 
error between the proposed method and the FEM/BEM, which verifies the effectiveness 
of the Jacobi–Ritz boundary element method. 
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(a) Time domain response of vibration acceleration (b) Frequency domain response of vibration acceleration 

  
(c) Time domain response of acoustic radiation (d) Frequency domain response of acoustic radiation 

Figure 7. The vibro-acoustic responses compared with FEM/BEM. 

4. Results and Discussion 
According to the spring stiffness values shown in Table 1, take the single triangular 

pulse load shown in Figure 3a as the excitation. Under various boundary conditions, Fig-
ure 8 shows the time–frequency response curve of vibration acceleration and acoustic ra-
diation of the structure. 

  
(a) Time domain response of vibration acceleration (b) Frequency domain response of vibration acceleration 
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(c) Time domain response of acoustic radiation (d) Frequency domain response of acoustic radiation 

Figure 8. Response curve under different boundary conditions. 

Figure 8 shows that the change in boundary conditions has a great effect on the acous-
tic radiation response of the forced vibration of the structure. The “SF” causes the value 
of the forced vibration response to peak at 13 Hz and 23 Hz compared with the other three 
boundary conditions “CC”, “SS”, and “SC”. Because the “SF” boundary condition is com-
pared with other boundary conditions, there are inherent modes at 13.3 Hz and 22.5 Hz. 
In addition, the fixed boundary condition constrains the stiffness value of the rotating 
spring compared with the simply supported boundary condition, but it has a smaller in-
fluence on the natural frequency of the conical shell structure, so the difference in the res-
onance peak frequency of the acoustic result under the other three boundary conditions 
is small. 

In order to discuss the vibration and sound radiation characteristics of conical shells 
at different semi-vertex angles, the structural parameters, such as the length and thickness 
of the structure, are fixed, and the semi-vertex angle of the structure is adjusted. Figure 9 
exhibits the frequency domain response curve of the vibro-acoustic results of the conical 
shell at various semi-vertex angles. 

  
(a) Frequency domain response of vibration acceleration (b) Frequency domain response of acoustic radiation 

Figure 9. Vibro-acoustic characteristic curves under different semi-vertex angles. 

Figure 9 demonstrates that altering the semi-vertex angles of the conical shell has a 
substantial impact on the acoustic radiation resulting from forced vibration. As the semi-
vertex angle of the structure grows, the acoustic radiation response of the forced vibration 
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increases gradually, and the peak frequency moves to the left mainly because the struc-
tural stiffness decreases with an increase in the semi-vertex angle, and its natural fre-
quency moves to a low frequency. 

In order to explore the influence of acoustic radiation characteristics on the forced 
vibration of the structure under various excitation loads, a single triangular pulse and a 
periodic triangular pulse with a pulse width of 0.02 s and an amplitude of 1 N are selected, 
as shown in Figure 3, and the duration of each pulse is 1 s. Figure 10 shows the vibro-
acoustic characteristic curves under two forms of excitation. 

  
(a) Frequency domain response of vibration acceleration (b) Frequency domain response of acoustic radiation 

Figure 10. Vibro-acoustic characteristic curves under different excitation loads. 

Figure 10 shows that, in addition to the natural mode of the structure, the influence 
of the form of excitation load on the vibration response and acoustic radiation of the struc-
ture is also more significant. Compared with the single triangular pulse load, the periodic 
triangular pulse load causes the vibration response and radiation noise to peak at the fre-
quency doubling of 25 Hz, 75 Hz, 125 Hz, and so on, mainly because the periodic triangu-
lar pulse load has the excitation peak value and its frequency doubling component at this 
frequency. In order to reflect the transmission of radiated noise and the sound pressure 
distribution of the conical shell under a characteristic frequency, the radiation directivity 
patterns of radiated sound at circumferential distances of 2 m, 4 m, and 8 m under a peri-
odic triangular wave load at 0.5 s and 0.7 s and at frequencies of 75 Hz and 125 Hz are 
shown in Figure 11. 

  
(a) (b) 
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(c) (d) 

Figure 11. Acoustic radiation directivity patterns with different circumferential distances. (a) Acous-
tic radiation directivity patterns in time domain at 0.5s. (b) Acoustic radiation directivity patterns in 
time domain at 0.7s. (c) Acoustic radiation directivity patterns in frequency domain at 75 Hz. (d) 
Acoustic radiation directivity patterns in frequency domain at 125 Hz. 

Figure 11 shows that the acoustic radiation is symmetrically distributed in the con-
nection line between 90° (the excitation direction of the force) and 270° in the time and 
frequency domains. In addition, the circumferential sound pressure distribution at the 
peak of the vibration response of the conical shell is closely related to the vibration mode 
shape. In order to explore the influence of the randomness of the excitation load on the 
vibro-acoustic response of the conical shell, the random excitation load is applied at the 
excitation point (0.25 L, 0, R). Figure 12 shows the random excitation load curve. Figure 
13 displays the structural vibration response and the acoustic radiation curve under the 
random excitation load. 

    
(a) Time domain curve of random excitation load (b) Frequency domain curve of random excitation load 

Figure 12. Amplitude curve of random excitation load. 

Figure 13 shows that the vibration response of the conical shell structure under ran-
dom excitation has peak values at 62 Hz, 92 Hz, and 75 Hz; 62 Hz and 92 Hz are caused 
by the excitation load at this frequency peak, while 75 Hz is caused by the strong charac-
teristic line spectrum of the conical shell structure under a natural frequency of 75.4 Hz. 
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(a) Frequency domain response of vibration acceleration (b) Frequency domain response of acoustic radiation 

Figure 13. Vibro-acoustic characteristic curves of random excitation load. 

5. Conclusions 
In light of the Jacobi–Ritz boundary element method, this paper describes the vibro-

acoustic behaviors of conical shells under various boundary conditions. The analytical 
model was constructed by utilizing the differential element method and artificial spring 
technology. The proposed method ensured convergence and efficacy through the incor-
poration of the Fourier series and Jacobi polynomials. In addition, the vibration result was 
determined using the Newmark-β integration method, and the external acoustic field was 
calculated using the Kirchhoff boundary integral formulation in the time domain. Addi-
tionally, the acoustic model of forced vibration in the time domain was established for the 
conical shell and took into account the external excitation operating on its surface. The 
proposed method was demonstrated to possess high accuracy and reliability when com-
pared to the coupled FEM/BEM. Notably, this method needs to be further extended to the 
transient vibro-acoustic radiation analysis of composite structures. The main conclusions 
are as follows: 
1. Under simply supported boundary conditions, the results of the Jacobi–Ritz bound-

ary element method were in agreement with the coupled FEM/BEM, which has ad-
vantages such as fast calculation efficiency and high accuracy and can be used to cal-
culate the acoustic radiation characteristics of the forced vibration of conical shells. 

2. Changes in structural parameters such as boundary conditions and semi-vertex angle 
had a great effect on the vibro-acoustic response. As the stiffness of the boundary 
conditions decreased, the natural frequency moved to the left. When the length and 
thickness were fixed, the natural frequency of the structure decreased with an in-
crease in the semi-vertex angle; the amplitude of the vibro-acoustic response in-
creased, and the peak frequency of the forced vibration response moved to the left. 

3. The characteristic line spectrum of the forced vibration response and acoustic radia-
tion of the conical shell under an impulse load and random load excitation was 
caused by the natural frequency of the structure and the peak value of the excitation 
load. At the natural frequency of the structure, the small excitation load may also 
cause a strong characteristic line spectrum. 
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