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Abstract: For manipulation tasks in uncertain environments, intentionally designed series
impedance in mechanical systems can provide significant benefits that cannot be achieved
in software. Traditionally, the design of actuated systems revolves around sizing torques,
speeds, and control strategies without considering the system’s passive dynamics. However,
the passive dynamics of the mechanical system, including inertia, stiffness, and damping
along with other parameters such as torque and stroke limits often impose performance
limitations that cannot be overcome with software control. In this paper, we develop
relationships between an actuator’s passive dynamics and the resulting performance for the
purpose of better understanding how to tune the passive dynamics for catching an unexpected
object. We use a mathematically optimal controller subject to force limitations to stop the
incoming object without breaking contact and bouncing. The use of an optimal controller
is important so that our results directly reflect the physical system’s performance. We
analytically calculate the maximum velocity that can be caught by a realistic actuator with
limitations such as force and stroke limits. The results show that in order to maximize the
velocity of an object that can be caught without exceeding the actuator’s torque and stroke
limits, a soft spring along with a strong damper will be desired.
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1. Introduction

Robots excel at precise position control and are useful for tasks that make use of this ability, such
as traditional industrial robots. However, physical interaction tasks such as catching a ball, walking,
running, grasping unknown objects, constrained contact and even simple force or torque control have
historically been difficult for robots. Each of these tasks involves dynamic effects such as unexpected
impacts and/or a significant transfer of kinetic energy between the robot and its environment. Animals
far outperform robots at many of these tasks, and we believe that the robot’s poor performance relative to
animals is due to inherent mechanical limitations (such as high inertia and improperly chosen impedance)
in traditional robotic mechanisms.

Consider a traditional industrial robot arm, powered by electric motors with large gear reductions
and rigid links. The traditional approach to catching an object is to rely on complex vision systems to
estimate the trajectory of the object and carefully match the velocity at the time of contact to avoid large
impact forces [1]. Because these systems require an enormous amount of information about the object
prior to contact, these methods are not robust or practical for systems outside of a controlled setting.
Any error in these calculations can cause very large impact forces, possibly damaging the robot. In the
extreme case where no information is known about the object prior to contact, the system must rely
completely on software control and the mechanics of the actuator to determine the response. However,
when the system impacts an unseen object in the environment, the motor’s inertia must be accelerated
through the transmission. If there is a gear reduction between the motor and the linkage, the motor’s
inertia as seen by the object is multiplied by the square of the gear reduction. The sudden acceleration of
this “reflected” inertia causes very large force spikes; these passive dynamics cannot be overcome using
software control alone. If an object impacts the arm, such as a baseball, the arm will behave as a rigid
inertial object and the software control will have no part in its dynamic response.

Passive dynamics are not always harmful. As an example of passive dynamics improving
performance, a mechanical spring in series with a motor can reduce force error in response to large
position disturbances, as exemplified by a fishing rod. The flexibility of the rod allows the fisherman to
maintain a steady force on the line, eliminating force spikes that would snap the fishing line. However,
this improvement applies only to the specific case of maintaining a constant force and its robustness to
position disturbances; a series spring will reduce the performance of the system for position control [2].
For peak performance in a robotic system, the passive dynamics must be tailored to the specific task.
This is roughly analogous to impedance matching in electrical systems.

In this paper we define how an actuator’s passive dynamics affect performance when experiencing
an unexpected impact such as catching an object (Figure 1). We lay out a mathematical framework for
realistic mechanical systems that includes a motor with torque limits and inertia, a series spring and a
series damper, as shown in Figure 2.
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Figure 1. Given a system’s characteristics such as torque limits, displacement, and inertias,
there exists an optimal passive element that, when used in series, will increase the system’s
performance when catching an object.

Figure 2. System schematic. The motor inertia is represented as a mass (mm) with gravity
(Fg) only acting on the load mass (mL). This is analogous to an electric motor attached to
a ball screw transmission where the rotational inertia is much greater than the mass of the
transmission itself. The load mass has initial velocity (ẋL0 = v0) at t = 0.
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In order to keep the problem well defined, we specify that the goal of the actuator is to stop
a mass moving relative to the actuator given some initial velocity without allowing it to bounce.
Examples of these tasks include but are not limited to docking a spacecraft, catching an object with
limited peak forces, landing on an uncertain ground with a legged robot, or minimizing head impact
trauma in a human/robot environment. We then describe the mathematically optimal passive dynamics
required to achieve the best possible response, based on fundamental physical limits. These results will
enable designs of mechanical systems that will be well suited for catching task, especially involving
spring-like behavior.

2. Background

Muscular systems in animals incorporate elastic elements, which are most often examined while
investigating locomotion, and are generally discussed in the context of energy storage [3–5]. Roboticists
have built machines designed to mimic this spring-like behavior [6–9]. Although the designers of
these running machines acknowledge that elasticity provides robustness, their studies generally focus on
energy storage and efficiency. We wish to examine in more detail how these passive elements contribute
to general force control and manipulation with the environment.
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Discussions into how actuators behave when moving from free motion to a constrained contact
(an impact) often focus on how to develop controllers to remove energy from the impact [10–12].
In most cases the authors acknowledge that the controllers are limited by the delay caused by the
intrinsic mass and inertia even with instantaneous physical collision detection. They avoid this issue
by limiting the investigation to contact with soft, compliant types of surfaces [12] or rely on intrinsic
(and uncharacterized) mechanical compliance in the design [11].

Investigations into force control found that series compliance in an actuator can increase stability, and
in some cases is required for stable operation [13–17]. Researchers at the Massachusetts Institute of
Technology (MIT) Leg Laboratory explored these ideas and created the Series Elastic Actuator (SEA).
The MIT-SEA is designed specifically to include an elastic element as a force sensor and low impedance
coupling between the drive system and the load to improve force control. It has been shown that this
configuration provides mechanical filtering to handle shock loads and increases the bandwidth for force
control [18,19]. The MIT-SEA offers great advantages when considering force control, however, there
has been no formal study of the performance on impacts such as catching unknown objects. Further
work to improve the MIT-SEA has focused on control architecture, e.g., [20,21] or transmission design
(e.g., [22–24]). Buerger et al. [25] presents a loop shaping design method for the design of the actuator
controllers for physically interactive machines. They redefined stability and performance and introduced
a measure of complementary stability. They showed that their control strategy works well on real robots.

An extension of MIT-SEA has been proposed by Hurst et al. [26]. They concluded that the
added damping provides higher bandwidth than a purely series-elastic element and reduces unwanted
oscillations in specific situations. Initial force spikes observed by the drive system at impact are greater
than would be observed by just an elastic element, but are vastly improved compared with a fully
rigid system.

In this work we derived mathematical formulas for the design of the passive elements of the catching
system. Previous studies investigated this problem numerically and there is not any closed form formulas
for this problem. The closed form formulas in this work helps the designer to understand the effect and
sensitivity of the actuator parameters on the behavior of the system. This paper builds on our previous
investigation into how the passive dynamics of the physical system contribute to the performance of an
actuator in “constrained contact” tasks [2]. In that earlier work, we described two actuation scenarios,
position control and force control, and derived the relationship between physical damping and stiffness
to the respective goals. We concluded that for an actuator to perform well at maintaining a constant force
on a moving object, low system impedance is needed, while a higher impedance is needed to obtain high
performance position control. For a system to perform well at both of these tasks, variable impedance
is necessary.

3. Problem Domain

There are several performance metrics for a catching system. These include the maximum initial
velocity given a particular load mass that can be stopped, the peak force experienced by the load,
the torque required by the motor, and the stroke length needed to dissipate the relative kinetic energy.
Depending on the design of the system, certain aspects of the design may be fixed. One example of a
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stroke and force limited actuator is a hydraulic cylinder. These fixed parameters affect the optimal spring
and damper that could allow this system to catch a particular mass at an unknown velocity.

To develop the relationships between an actuator’s design parameters, we investigate the series
elastic/damping actuator (SEDA) in Figure 2. Our actuator includes damping and elasticity because
they are both inherent in a physical system and possibly useful in decoupling the inertias to help us
minimize peak forces. We want to know how to select these elements (k and B) to design the best
possible actuator for a catching task.

In this paper, we define relationships between series stiffness, series damping, drive system inertia
and the drive system torque limits in a specific theoretical scenario. To simplify the discussion, we use
“motor” to describe the drive system as a whole—transmission and motor characteristics. The following
symbols in Table 1 describe our model:

Table 1. Symbols for mathematical formulas and simulation.

Symbol Description Unit

xL Load position m

xm Motor position m

z1 Rigid body motion of two masses m

z2 Relative motion of two masses m

k Spring constant N ·m
B Damping constant N ·s

m

g Acceleration of gravity m
s2

mm Motor/transmission mass kg

mL Load mass kg

Fm Motor force N

Flimit Motor force limit N

Fg Force due to gravity N

Fd Force caused by the dynamic elements N

v0 Load initial velocity m
s

In addition to the reactive elements k and B, we include motor force limits as well as motor inertia
(represented as the mass mm). If infinite force were possible, there would be no requirements for
designing the impedance of the actuator. In other words, it would not matter how soft or stiff the elements
were, so long as the motor and load are kinematically linked. Likewise, if we have zero motor mass,
we do not need to be concerned with the values of k and B since our motor could instantaneously move
to provide the required force. These ideal cases, while highly desired, are not physically possible. In
realistic systems there are limits to the actuator’s force, stroke length, and inertia.

4. System Model

Our series impedance actuator model, shown in Figure 2, is entirely linear with gravity only acting
on the load. The model is analogous to an electric motor attached to a ball screw transmission where
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the rotational inertia is much greater than the mass of the transmission itself. We start by defining the
differential equations that describe the motion of the system:

[m]

{
ẍL

ẍm

}
+ [B]

{
ẋL

ẋm

}
+ [k]

{
xL

xm

}
=

{
mLg

Fm (t)

}
(1)

where

[B] =

[
B −B
−B B

]
(2)

[k] =

[
k −k
−k k

]
(3)

[m] =

[
mL 0

0 mm

]
(4)

We define the performance of the system as the largest possible v0 that the system can encounter
without bouncing the incoming load, given a motor torque limit. Because of this limit and the objective
function (velocity) that we have here, the problem cannot be expressed within the framework of classical
optimal control theory (e.g., LQR).

In order to calculate the maximum v0 the actuator can handle, we decouple (1) into two independent
single degree of freedom (SDOF) systems, which will isolate the relative motion and the global
movement in the system. Since the mode shapes are perpendicular to each other with respect to the
mass, stiffness and damping matrices:

{φ}Ti [m] {φ}j = 0, i 6= j (5)

{φ}Ti [k] {φ}j = 0, i 6= j (6)

{φ}Ti [B] {φ}j = 0, i 6= j (7)

we have {
xL

xm

}
= {φ}1 z1 (t) + {φ}2 z2 (t) (8)

This allows us to decouple the system by pre-multiplying both sides by {φ}Ti . The vectors {φ}1
and {φ}2 are the mode shapes of the system. We then can write a new set of equations describing the
decoupled system as

(mL +mm) z̈1 (t) = mLg + Fm (t) (9)

mez̈2 (t) +Beż2 (t) + kez2 (t) = mLg − µFm (t) (10)

where the equivalent parameters are

me = mL (1 + µ) (11)

Be = B (1 + µ)2 (12)

ke = k (1 + µ)2 (13)

µ =
mL

mm

(14)
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Equations (9) and (10) can be described in Figure 3(a) and Figure 3(b) respectively.

Figure 3. The original system in Figure 2 can be broken into two separate single degree of
freedom systems. Figure 3(a) and Figure 3(b) illustrate a physical representation of the new
systems. The rigid body motion describes how the masses move together and the relative
motion shows how the two masses move relative to each other. (a) The rigid body motion of
the system; (b) Relative motion of the masses.
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The two new models demonstrated in Figure 3 are the two independent behaviors exhibited by the
system. Figure 3(a) represents the rigid body motion of the system and describes how the masses move
together. Figure 3(b) describes the oscillation of the masses relative to each other.

The boundary conditions for the initial system are{
xL

xm

}
t=0

=

[
0

0

]
,

{
ẋL

ẋm

}
t=0

=

[
v0

0

]
(15)

then the initial conditions for the new system become

z1 (0) = 0 (16)

ż1 (0) =
µv0
1 + µ

(17)

z2 (0) = 0 (18)

ż2 (0) =
v0

1 + µ
(19)

The force generated by the dynamics is defined as

Fd (t) = B (ẋm − ẋL) + k (xm − xL) (20)

This can be written in the new SDOF coordinate system by substituting Equation (8) into Equation (20):

Fd (t) = −B (1 + µ) ż2 (t)− k (1 + µ) z2 (t) (21)

Equation (21) can be interpreted as the reaction force in Figure 3(b) if the dynamics of the system is
divided by (1 + µ).

mLz̈2 +B (1 + µ) ż2 + k (1 + µ) z2 =
mLg

1 + µ
− µFm

1 + µ
(22)

To keep the dynamic force (Fd (t)) always negative (the spring in compression), the support reaction in
the equivalent SDOF has to be positive (or in tension) because of the minus sign in Equation (21).
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5. Controller

Because we are interested in determining the influence of the passive dynamics and physical
limitations of the system, we must develop controllers that are optimal for each specific configuration
of system parameters. The optimal controller can most easily be understood from the perspective of
the SDOF system in Figure 3(b), which represents the relative motion of the two masses in our original
system (Figure 2). The differential equation of this system was represented in Equations (10–14). The
most important goal is to prevent the load from bouncing away from the actuator—therefore, the force
applied relative to each other must remain positive, keeping the spring compressed. Immediately after
impact, the equivalent object (object in Figure 3(b)) is compressing the spring (ż2 < 0). The optimal
control strategy is to slow this motion down and immediately begin removing energy from the system.
For this purpose, the maximum motor force should be applied in the opposite direction of the load
movement to apply the largest negative work to the system (Figure 4(a)). Therefore, the differential
equation would be Equation (23). When the velocity of the equivalent object reaches zero and switches
direction, which is equivalent to the time that the relative velocity of our two original masses becomes
zero and switches direction, ż2 = 0 in Equation (23), the motor force should also switch direction
and continue to remove energy from the system. In this case, since the load is moving back and
decompressing the spring (Figure 4(b)), for the maximum motor force to be applied in the opposite
direction of the load movement, the maximum force should be applied towards the left (Figure 4(b)),
and hence the differential equation of the system would be Equation (24). If the motor can remove
sufficient energy to prevent the load from bouncing away, the catch is successful. By following this
strategy, the largest possible initial velocity can be caught by the actuator given its physical limitations.

mez̈2 (t) +Beż2 (t) + kez2 (t) = mLg + µFlimit when ż2 < 0 (23)

mez̈2 (t) +Beż2 (t) + kez2 (t) = mLg − µFlimit when ż2 > 0 (24)

Figure 4. The first two phases of the controller. After these two phases, the load has
been caught and simple position control can move the load to the desired position. The
gray drawings show the past status and the moving direction of the mass is shown by
the velocity vector underneath the mass. (a) First stage of the controller. The equivalent
mass initially moves toward the right with the controller pushing into the mass (spring is
being compressed); (b) Second stage of the controller. When the equivalent mass begins to
move back toward the initial position, the controller pulls on the mass to the right (spring is
being decompressed).
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Figure 5 shows an example of the input force produced by the controller. The upper and lower
boundaries of this force profile depict the ultimate capacity of the system to catch the load mass and the
intervals can be obtained using Equations (9, 10, 21). For our real system this is interpreted as applying
the maximum force in the direction of gravity initially then applying the maximum force upward. The
mass will not bounce if the actuator and damper are able to dissipate the whole initial velocity before the
mass crosses the zero position.

Figure 5. An example of the input force profile generated by the controller. In this case, the
motor limit, Flimit, is 500 N and the motor mass and load mass are mm = mL = 10 kg.

0 0.2 0.4 0.6 0.8 1
−500

0

500

Time       [s]

F
 (

t)
  [

N
]

m

6. Undamped Actuator: Analytical Derivation

For a special case of a system without damping, the relation between the maximum possible initial
velocity and maximum motor force as well as other mechanical properties of the system can be found
by dissipating all of the kinetic energy of the system with the motor force:

1

2
mL

(
v0

1 + µ

)2

= 2
µ

1 + µ
Flimit z2limit (25)

where z2limit is the maximum spring deflection. Solving Equation (22) for the maximum z2 with zero
damping yields:

z2limit =
1

1 + µ

(
Feq

k (1 + µ)
(26)

+

√(v0
ω

)2
+

(
Feq

k (1 + µ)

)2


where ω is the frequency of the equivalent SDOF system and Feq is the equivalent force from Figure 3b:

ω =

√
k (1 + µ)

mL

(27)

Feq = mLg − µFlimit (28)
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After some simplification of Equation (25) with Equation (27) and Equation (28), the maximum velocity
that can be caught by a non-damped system can be obtained as:

v0 =

√√√√8Flimit

(
mLg +

mL

mm
Flimit

)
k (mL +mm)

(29)

Solving Equation (29) for Flimit, we can find the minimum motor force limit required to catch a mass
with initial velocity v0:

Flimit =

√
(8mLg)

2 + 32kmL (1 + µ) v20 − 8mLg

16µ
(30)

If the above force (Flimit) cannot be provided, at least some damping will be required to catch the load.
This can be observed in Figure 6(a) where, if the system design requires v0 of at most 20 m

s
then for

k = 2000 N
m

we at least need damping greater than about 40 N ·s
m

to stop the load without bouncing.

Figure 6. Performance of the series elastic/damped actuator while successfully stopping
the load without bouncing. In each case, increasing the damping has a larger effect on the
performance for softer springs. Overall performance decreasing as stiffness increases. For
each figure, mm = mL = 10 kg and Flimit = ±500N . (a) shows that increasing the stiffness
decreases the maximum incoming velocity that the actuator can catch. In (b), the maximum
peak force applied to a load with initial v0 is depicted. (a) Maximum v0 vs. series elasticity,
k; (b) Maximum peak force.

2000 4000 6000 8000 10000
0

10

20

30

40

50

60

k (N/m)

v 0 (
m

/s
)

 

 

B=1
B=21
B=41
B=61
B=81
B=101

(a)

2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

k (N/m)

F
pe

a
k
(N

)

B=1
B=21
B=41
B=61
B=81
B=101

m

(b)

7. Results

Our research shows that by using a softer spring coupled with a large damper, the system greatly
outperforms a rigid system at catching a high velocity load without bouncing. Figure 6(a) shows how
damping and stiffness affect the maximum velocity that can be caught. We can conclude that the softer
the spring, the larger the maximum initial velocity the system can catch without hitting the maximum
allowable peak force. However, it is often not plausible to use a very soft spring because of inherent
physical limitations like the spring deflection and actuator displacement. An interesting note is that the
effect of damping on softer springs is much more significant than on stiffer springs.
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To create the required design graphs (presented in Figures 6 and 7) for a general damped system,
the two independent differential Equations (9) and (10) should be solved based on the discussion about
the maximum motor force we had in Section 5. The moment that the dynamic force in Equation (21)
becomes positive is the time that the mass loses the contact with the actuator, and it means the actuator
cannot catch the load with that initial velocity. Therefore, the maximum initial velocity that the actuator
is able to catch without bouncing (Figure 6(a)) is the maximum initial velocity (v0) in Equations (15)-(19)
that keeps the dynamic force always negative. All other desired values can be obtained from z1 and z2.
For example, the distance that the motor travelled is z1 and the spring length is the same as z2. For the
maximum force applied to the actuator from the mass (or vice versa) Equation (21) (the dynamic force)
can be used.

Figure 7. Performance of the series elastic/damped actuator while successfully stopping
the load without bouncing. For each figure, mm = mL = 10 kg and Flimit = ±500N .
(a) shows the minimum spring length required to catch the load with the maximum possible
velocity. As the stiffness increases, the required length decreases. In (b) the minimum motor
travel required to catch the load is depicted. It shows that to stop the maximum velocity,
the system should be very soft and the motor must be allowed to travel very far. (a) The
minimum required spring length; (b) The minimum required motor distance.
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An important issue is the peak force that can be safely applied to the load by the actuator. One way
to use this design constraint is to begin by looking at Figure 6(b). For the maximum force that can be
applied, the sets of k and B values that keep the force below the threshold should be considered. Using
these values for k and B, the maximum velocity that can be caught can be found using Figure 6(a).

In Figure 7(a), the effect of stiffness and damping on the maximum deflection of the spring is
demonstrated. For stiff systems, adding damping has little effect on the maximum displacement of the
spring. Because the spring deflection is one of the inherent physical properties of the mechanism, this
constraint is a useful starting point for beginning the design process. For example, for a spring deflection
limit around 20 cm, no stiffness less than 3000 N

m
can be considered for catching the largest possible

velocity shown in Figure 6a. If both stiffness and displacement are fixed then the motor force limit must
increase or the motor mass/inertia must change.
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Maximum actuator motion is another physical limitation. The graph in Figure 7(b) shows the peak
motor displacement with respect to damping and stiffness of the system. For a maximum motor
translation of around 50 cm, the spring should be at least as stiff as 4700 N

m
to catch the largest

possible velocity.

8. Conclusions and Future Work

In this paper, we separated the two degrees of freedom of a series impedance actuator catching a
mass into two single-DOF systems that could be more easily analyzed and controlled. The results
describing the influence of stiffness, damping, and motor limitations on performance in catching an
object of unknown mass and speed are intuitive; the contribution of this paper is the analytical treatment.
By following the procedure outlined in this paper, engineers can determine whether an actuator will be
able to catch a particular object, such as a spacecraft docking, a ball being caught, or a legged robot
landing from a jump. In future work, we plan to apply this work to our legged robot ATRIAS (shown
in Figure 8), a new legged robot, with the mechanical design detailed in [9]. When the robot takes an
unexpected step down, its foot bounces, which is not a desired behavior and the robot should absorb this
impact energy to stabilize the gait. We wish to know if it is possible for ATRIAS, or any legged robot that
utilizes passive elements, to handle the unexpected drop-steps without bouncing, or if it is not physically
possible given the actuator limitations. Using the methods described in this paper, the roboticists should
be able to calculate the height of unexpected step-down that any legged robot that utilizes spring and/or
damper is physically capable of handling. This will provide guidance for the researchers designing
controllers, so they will know if it is possible to improve the behavior through software control.

Figure 8. Robot ATRIAS.

This same approach can be used to calculate the possible performance for a range of highly dynamic
machines, providing insight and guidance for machine designers and control engineers alike.
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