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Abstract: Axial magnetic bearing actuators often lack the bandwidth necessary to achieve the desired
closed loop performance due to their nonlaminated construction. Since bandwidth can be directly
related to actuator material and geometric properties, an opportunity exists to improve closed loop
performance through the optimization of these properties. This prospect is exploited herein, both to
demonstrate the improvements that can be obtained and to illustrate the relationship between various
parameters and dynamic performance. For the latter, Pareto-optimal curves are generated exploring
the influence that disk outer radius, peak force, axial gap, and magnetic permeability have upon
actuator bandwidth.
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1. Introduction

Interest in the use of active magnetic bearings (AMBs) for the support of rotors in turbomachinery
and machine tools has increased over the last two decades. Such machines typically use two radial
AMBs to control transverse motions of the rotor and a single thrust magnetic bearing to control axial
motion. Both the rotating component (journal) and the stationary component (stator) of radial AMBs
are constructed from soft magnetic laminations to reduce eddy currents within the ferromagnetic
material (referred to as the ‘iron’) induced by changing electromagnetic fields. This manufacture is
quite similar to the construction of induction motors. The rotating and stationary components of the
thrust actuator (thrust disk and stator, respectively), however, are rarely composed of laminations
due to the great difficulty and cost of such construction and the poor resulting mechanical strength,
particularly problematic for high rotational speed machines. Instead, these components are made of
solid ferromagnetic materials (i.e., nonlaminated), with little attempt made to reduce eddy currents.
Since the electromagnetic field for the thrust components does not change due to rotation of the shaft,
eddy currents are due only to changing coil currents. For most applications, eddy currents within the
thrust bearing are inconsequential from a thermal or rotating loss viewpoint. However, they are very
important in determining the dynamic performance of the axial magnetic suspension since they result
in a much lower actuator bandwidth (<50 Hz) than that enjoyed by radial AMBs (>1000 Hz).

Because of the importance of eddy currents to thrust AMB dynamic performance, significant
efforts have been made to develop useful, analytic models that predict actuator frequency response
from geometry and material properties. Zmood et al. [1] first proposed a dynamic model for a
nonlaminated actuator, a C-core electromagnet. Feeley [2] also analyzed a C-core actuator and proposed
a fractional-order transfer function model. The dynamics of a nonlaminated cylindrical magnetic
actuator were first examined by Kucera and Ahrens [3]. All of these works assumed that the air
gap flux density was uniformly distributed and was independent of the frequency of the harmonic
field. In Zhu et al. [4] this assumption was shown to be the source of significant modeling errors.
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Zhu developed a high-fidelity analytic model of axisymmetric cylindrical electromagnetic actuators
by dividing the actuator into six parts and finding the frequency-dependent reluctance of each part.
From this model, a simple fractional order model was derived, which was explicitly dependent on
actuator material and geometric properties. The accuracy of this model was demonstrated via extensive
comparison to the frequency response obtained from finite-element analysis. Later, Zhu et al. [5]
examined how to extend this model to incorporate time-varying rotor axial position and voltage-mode
operation of the magnetic suspension. Experimental results were also presented that demonstrate the
accuracy of this modeling approach. In [6], Knospe and Zhu examined the limits to the performance
of nonlaminated magnetic suspension systems. The sensitivity integral constraint condition was
formulated for the fractional order closed loop system. Expressions were obtained that relate achievable
closed loop performance to actuator model parameters. Sun et al. [7] examined the modeling of
conventional thrust AMBs. The reluctance of the gap elements was treated as frequency independent.
More recently, Whitlow [8] extended the work of Zhu to the conventional geometry and treated the
gap elements as dynamic. Whitlow also examined the dynamics of segmented thrust stator designs [9].

From a mechatronic viewpoint, the task of developing an axial magnetic suspension system for
a rotating machine consists of (I) designing the AMB thrust actuator and (II) designing the feedback
controller. Since the thrust actuator transfer function has significant phase lag in the frequency band
of interest, the feedback controller design cannot proceed until actuator design has been completed.
The actuator design strongly impacts the ultimate performance of the magnetic suspension. It is
critical to take this impact into account when designing the actuator. That is, actuator design both
depends upon the feedback control objectives and dictates the feedback control design. The theory of
performance limitations for nonlaminated magnetic suspension [6] provides an approach for resolving
this design interdependence.

In contrast to finite element models, which might require hours or days of computation to find
the actuator bandwidth, analytic models can be readily employed within optimization algorithms so
as to tailor actuator geometry to maximize bandwidth. Furthermore, such optimization can take into
account constraints imposed by the application (e.g., maximum thrust disk radius, shaft diameter, etc.).

2. Thrust Magnetic Bearing Model and Performance

2.1. Axial Actuator Model

Most magnetic bearing applications rely upon two opposing stators to control rotor axial motion
with each stator providing an equal and opposite force to the rotor when no external force is to be
applied. Thus, coils in both stators are energized with a bias current in the absence of any applied
external force. In response to any measured displacement the feedback controller alters the coil currents
in the two stators, decreasing that on the same side as the displacement and increasing that in the
opposing coil. Often, the decrease and increase in the coil currents are the same and this quantity is
referred to as the perturbation current. While the relationship between the force produced by a stator
electromagnet and the coil current that induced it is quadratic, the relationship between the net force
( fnet) applied to the rotor (from the opposing pair of electromagnets) and the perturbation current (ip)
is quite linear. Furthermore, the relationship between axial displacement (x) and the magnetic force
induced by the rotor displacement alone (i.e., with coil currents fixed) may also be treated as linear if
the displacement is significantly smaller than the nominal gap (lg) between rotor and stator. Hence,
for laminated actuators (without the dynamics produced by eddy currents) the relationship between
force, perturbation current, and displacement is commonly written as

fnet(t) = Kiip(t) + Kxx(t) (1)

(We assume throughout this presentation that the active magnetic bearing is operated with
transconductance amplifiers—i.e., “current-mode”. We plan to address “voltage-mode” operation in a
sequel to this paper.) For nonlaminated AMBs this relationship is modified because of the presence
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of actuator dynamics. Because the relationship between signals is no longer memoryless, it is best
to express it after taking the Laplace transform of the signals involved. Let Fnet(s), Ip(s), and X(s)
denote the Laplace transforms of fnet(t), ip(t), and x(t), respectively. The relationships between these
variables may then be modeled as

Fnet(s) = Ga(s)
{

Ki Ip(s) + KxX(s)
}

(2)

Here, Ga(s) is the actuator’s transfer function

Ga(s) =
R(0)
R(s)

(3)

where R(s) is the frequency-dependent effective reluctance of the magnetic flux path, as derived by
Whitlow [8] and summarized in Appendix A. This effective reluctance is explicitly dependent on the
actuator’s geometric parameters (r0, r1, r2, r3, d1, d2, d3), shown in Figure 1, and the conductivity (σ)
and relative permeability (µr) of its ferromagnetic material.

Actuators 2018, 7, x 3 of 14 

 

a sequel to this paper.) For nonlaminated AMBs this relationship is modified because of the presence 
of actuator dynamics. Because the relationship between signals is no longer memoryless, it is best to 
express it after taking the Laplace transform of the signals involved. Let 𝐹௧(𝑠), 𝐼(𝑠), and 𝑋(𝑠) 
denote the Laplace transforms of 𝑓௧(𝑡), 𝑖(𝑡), and 𝑥(𝑡), respectively. The relationships between 
these variables may then be modeled as 𝐹௧(𝑠) = 𝐺(𝑠)൛𝐾𝐼(𝑠) + 𝐾௫𝑋(𝑠)ൟ (2) 

Here, 𝐺(𝑠) is the actuator’s transfer function 𝐺(𝑠) = 𝑅(0)𝑅(𝑠) (3) 

where 𝑅(𝑠) is the frequency-dependent effective reluctance of the magnetic flux path, as derived by 
Whitlow [8] and summarized in Appendix A. This effective reluctance is explicitly dependent on the 
actuator’s geometric parameters (𝑟, 𝑟ଵ, 𝑟ଶ, 𝑟ଷ, 𝑑ଵ, 𝑑ଶ, 𝑑ଷ), shown in Figure 1, and the conductivity (𝜎) 
and relative permeability (𝜇) of its ferromagnetic material. 

 

Figure 1. Axisymmetric geometry of thrust disk and stator electromagnet of an axial magnetic bearing. 
Only one electromagnet of the opposing pair shown (flux-carrying path in iron cross hatched). 

2.2. The Importance of Magnetic Actuator Bandwidth 

Here we review and expand upon the relevant previous results on performance limitations of 
magnetic suspension systems presented by Zhu et al. [5]. These results rigorously demonstrate that 
magnetic actuator bandwidth is a critical parameter in the performance of magnetic suspension 
systems. This theory is based upon an approximate fractional-order transfer function model of the 
magnetic actuator: 𝐺෨(𝑠) = 𝑅𝑐√𝑠 + 𝑅 (4) 

where 𝑅 is the static reluctance of the electromagnet (i.e., at zero frequency) and c is a parameter that 
governs the importance of eddy currents (𝑐 = 0 corresponds to no eddy currents). Such approximate 
models have been shown to well represent the actual transfer function of magnetic suspension 
actuators [4,5]. 

In [4,5,8,9] analytic expressions for 𝑐 and 𝑅 are provided for a variety of actuator geometries. 
These expressions are functions of only material and geometric properties. Of greatest interest to this 
investigation are the expressions developed by Whitlow [8] for the conventional AMB thrust bearing 
geometry (see Figure 1): 

𝑅 = 𝑙𝑛(𝑟ଶ 𝑟ଵ⁄ )2𝜋𝜇𝜇 ൬𝑑ଵ + 𝑑ଷ𝑑ଵ𝑑ଷ ൰ + 𝑙 + 𝑑ଶ𝜇𝜋𝜇 ቆ 𝑟ଷଶ − 𝑟ଶଶ + 𝑟ଵଶ − 𝑟ଶ(𝑟ଷଶ − 𝑟ଶଶ)(𝑟ଵଶ − 𝑟ଶ)ቇ (5a) 

Figure 1. Axisymmetric geometry of thrust disk and stator electromagnet of an axial magnetic bearing.
Only one electromagnet of the opposing pair shown (flux-carrying path in iron cross hatched).

2.2. The Importance of Magnetic Actuator Bandwidth

Here we review and expand upon the relevant previous results on performance limitations
of magnetic suspension systems presented by Zhu et al. [5]. These results rigorously demonstrate
that magnetic actuator bandwidth is a critical parameter in the performance of magnetic suspension
systems. This theory is based upon an approximate fractional-order transfer function model of the
magnetic actuator:

G̃a(s) =
R0

c
√

s + R0 (4)

where R0 is the static reluctance of the electromagnet (i.e., at zero frequency) and c is a parameter that
governs the importance of eddy currents (c = 0 corresponds to no eddy currents). Such approximate
models have been shown to well represent the actual transfer function of magnetic suspension
actuators [4,5].

In [4,5,8,9] analytic expressions for c and R0 are provided for a variety of actuator geometries.
These expressions are functions of only material and geometric properties. Of greatest interest to this
investigation are the expressions developed by Whitlow [8] for the conventional AMB thrust bearing
geometry (see Figure 1):

R0 =
ln(r2/r1)

2πµrµ0

(
d1 + d3

d1d3

)
+

lg +
d2
µr

πµ0

(
r2

3 − r2
2 + r2

1 − r2
0(

r2
3 − r2

2
)(

r2
1 − r2

0
)) (5a)
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c =
1

2π

√
σ

µrµ0


2ln(r2/r1) + d2

(
r1+r2
r1r2

)
+

2r4
0 ln(r1/r0)+

3
2 r4

0−2r2
1r2
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1
2 r4

1

(r2
1−r2

0)
2 +

2r4
3 ln(r3/r2)− 3

2 r4
3+2r2

2r2
3+

1
2 r4

2

(r2
3−r2

2)
2

 (5b)

where σ is the iron’s conductivity, µr is its relative permeability, µ0 is the permeability of free space.
The bandwidth of a low pass filter is typically specified as the frequency at which the filter’s gain is√

2
2 that of the DC value (i.e., −3 dB). This corresponds to−45◦ for a first order system. For the actuator

transfer function G̃a (Equation (4)) the bandwidth is related to the transfer function coefficients via

ω−3dB = Γ2
(

R0

c

)2

(6)

where Γ =
√

6−
√

2
2 . This frequency corresponds to that where the phase lag is −15◦.

It is assumed now that axial motion of the rotor may be described via a 2nd order rigid body
model. Then, the transfer function of the rotor/actuator system (i.e., plant) is

P(s) =
X(s)
Ip(s)

=

(
ki
m

)
(

c
R0

)
s5/2 + s2 +

(
kx
m

) (7)

where m is the rotor mass [5].
The first limitation we examine is the feedback controller gain that may be employed.

The allowable controller gain for an application is dependent on many factors such as sensor noise,
the power amplifiers used, and the accuracy of the model used in controller synthesis. A constraint on
the gain of the controller’s transfer function, C(s), may be written as

ki|C(jω)| < γ, ω � 1 (8)

where the units are those of force/displacement, hence γ may be interpreted as the maximum dynamic
stiffness at a high frequency. (Note that there is no bound imposed on low-frequency gain and the
controller may, thus, contain an integrator.) The parameter γ will be referred to as the control effort.
Define the magnetic suspension loop gain transfer function as L(s) = C(s)P(s). We will introduce a
constraint on this transfer function in a similar fashion to that of Freudenberg and Looze [10]:

|L(jω)| ≤ ε
(ωc

ω

)k+1
(9)

where ωc is an upper bound on the loop crossover frequency, and ε and k are constants describing
the rate of attenuation (“roll-off”) of the loop gain with frequency (ε < 1

2 and k is a positive fraction).
This is essentially a constraint upon the gain–bandwidth product of the loop transfer function since
the crossover frequency will be near to the closed loop bandwidth of the magnetic suspension system.
This specification ensures that any closed loop design considered in evaluating achievable performance
would not demand unreasonable performance from the sensor or power amplifier hardware.

With these constraints defined for open loop transfer functions, we turn our attention to
specifications on closed loop performance. These specifications may be written in terms of the
gain of the sensitivity function, S(jω) = (1 + L(jω))−1:

|S(jω)| < Sa < 1, ∀ω < ωa (10a)

|S(jω)|< Speak, ∀ω >ωa (10b)

In the first constraint, Sa is the required sensitivity attenuation and ωa is the attenuation
bandwidth—that is, the range of low frequencies where the sensitivity gain is required to be small.
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Small sensitivity is necessary to achieve good rejection of disturbance forces that act along the thrust
axis in this frequency band. It is also required if the levitated rotor’s position is to track a reference
signal that has this frequency content. The second sensitivity constraint provides a bound, Speak, on the
peak sensitivity (Speak > 1). Limiting the maximum sensitivity requires the magnetic suspension to be
robust to destabilizing, unmodeled dynamics. These sensitivity constraints are illustrated in Figure 2.Actuators 2018, 7, x 6 of 14 
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We now define a magnetic suspension performance metric:

κ = 1− log Sa + η

log Speak + η
(11)

where η = 3ε
2k . Since Sa < 1, log Sa < 0. In general, the designer seeks smaller values of Sa (hence

more negative values of log Sa) and, therefore, larger values of κ. If the value of Speak were increased
(an undesirable result) then the value of κ would be reduced (all other factors unchanged). As before,
larger values of κ are preferable.

In [6] it was shown that a necessary condition for an actuator with the transfer function G̃a(s) to
achieve a specified attenuation bandwidth (ωa), with a given control effort (γ) and magnetic suspension
performance metric (κ), is

c
R0 <

1√
2κ5/2ω5/2

a

(√
2

γ

εm
− κ2ω2

a

)
(12)

All terms on the left-hand side of the inequality are parameters of the actuator design, while those
on the right are properties of the control system requirements. Since

√
2 γ

εm − κ2ω2
a must be greater

than zero, we can define an upper bound on achievable attenuation bandwidth for any magnetic
suspension where the control effort (γ) and performance metric (κ) have been prescribed:

ωa < ωa =
4
√

2
κ

√
γ

εm
(13)

As Equation (12) indicates, when eddy currents become more significant (greater c) either the
attenuation bandwidth and/or the magnetic suspension performance metric must decrease. Using



Actuators 2018, 7, 66 6 of 15

Equation (6), this condition may be rewritten as an inequality dictating the required actuator bandwidth
necessary to achieve given magnetic suspension’s performance specifications:

ω−3dB >
Γ2κ5ω5

a(
γ

εm −
√

2
2 κ2ω2

a

)2 (14)

This result indicates that increasing either the specification on attenuation bandwidth (ωa) or
magnetic suspension performance metric (κ) would require that the actuator bandwidth (ω−3dB) be
increased as well. This could be offset if greater control effort (γ) were possible. This result shows the
critical importance of achieving higher actuator bandwidth to improving the behavior of nonlaminated
magnetic suspension systems.

3. Optimization

3.1. Design Constraints

There are five specified geometric inequality constraints that must be satisfied when optimizing a
thrust magnetic actuator design so as to maximize its bandwidth:

1. Outer radius constraint—the outer radius (r3) must not exceed a bound determined either
by the available space within the housing or the allowable hoop stress in the thrust disk at
maximum speed;

2. Inner radius constraint—the inner radius (r0) must be sufficient to accommodate the shaft and
allow for assembly;

3. Axial length constraint—the total length of the actuator must not exceed a bound determined
from the machine design and its rotordynamics;

4. Peak force constraint—adequate pole face area must be provided so as to generate the specified
maximum force. Furthermore, the cross-sectional area of all segments of the flux path must be
greater than or equal to that of the pole face, thus, ensuring that the material’s saturation flux
density can be achieved at the pole face;

5. Continuous force constraint—the cross-sectional area of the coil must be sufficiently large so as to
provide the number of ampere-turns required to generate the specified continuous force without
causing coil overheating.

In addition to these, there are several intrinsic geometric constraints that must be enforced in
optimization: r0 < r1 < r2 < r3.

Table 1 provides the mathematical expressions for these constraints. The derivation of the
continuous force constraint can be found in Appendix B.

Table 1. Constraints present in axial magnetic actuator optimization problem.

Constraint Mathematical Expression

Outer radius r3 ≤ ρ1
Inner radius r0 ≥ ρ2
Axial length d1 + 2d2 + 2d3 ≤ ρ3

Peak force

A f lux < π
(
r2

1 − r2
0
)

A f lux < π
(
r2

3 − r2
2
)

A f lux < 2πr1d1
A f lux < 2πr1d3

where A f lux =
fpeakµ0

B2
sat
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Table 1. Cont.

Constraint Mathematical Expression

Continuous force

Acoil < (r2 − r1)d2
where

Acoil =
(

1
Λ

){(
Bbias AminR0)+ µ0R0 fcont

2
(

Amin
Ai

+
Amin

Ao

)
Bbias

}
Amin = min(A0, Ai)

Ai = π
(
r2

1 − r2
0
)

Ao = π
(
r2

3 − r2
2
)

3.2. Optimization Method

The performance index for optimization was the−3 dB bandwidth as calculated from the actuator
frequency response as described by Equation (3) and Appendix A. Constrained optimization of
actuator geometry was carried out via MATLAB’s fmincon function, which uses an interior-point
algorithm to find the set of decision variables {r0, r1, r2, r3, d1, d2, d3} that maximize the performance
index, while satisfying the geometric constraints in Table 1. The optimization algorithm cannot be
guaranteed to find the global maximum of the performance index. However, repeated executions of
the algorithm were carried out with random starting points to examine the quality and uniqueness of
the solution found. In each case, the algorithm returned the same optimal set of decision variables,
suggesting that the values found do indeed represent the global maximum within the constraints.

3.3. Pareto-Optimal Curves

Optimization is not only useful for finding the best actuator for a given set of constraints. It also
may be used to determine the relationship between design specifications (e.g., peak actuator force) and
the achievable actuator bandwidth. That is, optimization may be used to define Pareto-optimal curves.
Such curves can be informative to the system designer. For example, when given a particular thrust
actuator design, it is often possible to alter the design to increase its peak force without necessarily
modifying its bandwidth. That is, the peak force does not directly dictate the bandwidth, making it
difficult to understand the relationship between these two variables. However, if a thrust actuator
design has been developed to maximize actuator bandwidth, any modification of the design to increase
its peak force must result in a change in the achievable bandwidth. Thus, the salient relationship
between the variables is revealed by the Pareto-optimal curve.

Using Pareto-optimization, the relationships between the maximum achievable bandwidth
and four design specifications were evaluated. The design specifications examined were the
maximum force, size of the gap between disk and stator, thrust disk outer radius, and actuator
magnetic permeability.

4. Results

4.1. Design Example

For all design results examined, nominal values of the parameters and constraints were based
upon the thrust magnetic actuator presented in [11]—see Table 2. The dimensions describing the
original magnetic bearing design and those of the optimized design are listed in Table 3. This table
also includes the bandwidth values before and after optimization, as calculated from the model in
Appendix A. The reader will note that the optimization has pushed the stator/thrust disk outer
diameter up to the constraint on its value. This increase in diameter has allowed the radial width
of the pole faces (i.e., r1 − r0, and r3 − r2) to be significantly decreased without sacrificing the peak
force. Their circumferences have also grown by nearly 50%. The thrust disk and back iron dimensions
(d1, d3), like the pole faces, have been made much narrower by the optimization. The coil slot radial
width (wc = r2 − r1) and depth (d2) have remained largely unchanged, thus providing the coil area
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necessary for achieving the required continuous force. The combination of geometric changes results
in a substantial increase in actuator bandwidth, from 51.8 to 206.5 Hz. To provide context, this change
in bandwidth would allow the disturbance rejection metric Sa to be more than doubled for one
example problem studied, from Sa = 0.025 before optimization to Sa = 0.01 after. (For this calculation
m = 195 kg, ωa = 20 Hz, Speak = 2, γ = 1.5× 107 N/m, and η = 0.75 were used.)

Table 2. Nominal values of parameters and constraints for design optimization.

Parameters

Gap (mm) 1.158
Saturation flux density (Tesla) 1.2

Relative permeability 1000
Iron conductivity (MS/m) 2

Maximum coil current density (A/cm2) 300

Constraints

Outer radius ρ1 (mm) 150
Inner radius ρ2 (mm) 50
Axial length ρ3 (mm) not active
Peak force fpeak (N) 6600

Continuous force fcont (N) 0.6 fpeak

Table 3. Dimensions and performance characterization variables for axial magnetic actuator designs.
Nominal (starting) values and values after optimization.

Dimension Nominal Value Optimized Value

r0 (mm) 51.7 114.7
r1 (mm) 68.3 122.5
r2 (mm) 90.9 143.8
r3 (mm) 101.3 150.0
d1 (mm) 16.5 7.5
d2 (mm) 26.3 28.0
d3 (mm) 15.2 7.5

Performance Nominal Value Optimized Value

ω−3dB (Hz) 51.8 206.5

4.2. Pareto-Optimal Results

As the previous example illustrates, increasing the constraint on outer radius allows a significant
improvement in actuator bandwidth. In Figure 3, this trend is illustrated in the Pareto-optimal curves
for this constraint. Each curve in the figure illustrates the maximum achievable actuator bandwidth as
a function of the allowable disk outer radius. Curves are presented for varying peak force, from 7000 N
to 8500 N. Bearings with larger peak force have lower bandwidth, as the required increase in pole
faces result in greater pole face radial widths and smaller circumferences. The results indicate that
substantial improvements in bandwidth (>2x) can be achieved with moderate increases in disk radius.



Actuators 2018, 7, 66 9 of 15

Actuators 2018, 7, x 9 of 14 

 

to 8500 N. Bearings with larger peak force have lower bandwidth, as the required increase in pole faces 
result in greater pole face radial widths and smaller circumferences. The results indicate that substantial 
improvements in bandwidth (>2x) can be achieved with moderate increases in disk radius. 

 
Figure 3. Pareto-optimal curves showing maximum achievable actuator bandwidth as a function of 
the maximum allowable disk outer radius for various values of maximum force. 

Figure 4 illustrates the effect that peak force has upon maximum achievable bandwidth. 
Pareto-optimal curves are shown for various values of the axial gap ranging from the nominal 
value of 1.158 mm to 1.758 mm. (In each case the maximum disk outer radius was set to 150 mm.) 
The reader will note that the maximum achievable bandwidth is strongly dependent on the peak 
force of the thrust bearing. A 30% increase in peak force cut the maximum bandwidth in half. 

 
Figure 4. Pareto-optimal curves showing maximum achievable actuator bandwidth as a function of 
maximum force for various values of axial gap. 

A similar Pareto-optimal investigation of peak force is shown in Figure 5. Here, curves of 
maximum achievable bandwidth are shown for three values of disk outer radius constraint: 100 mm, 
150 mm (nominal), and 200 mm. In each case, results show that the maximum achievable bandwidth 
scales as 𝑓ିଶ . 

Figure 3. Pareto-optimal curves showing maximum achievable actuator bandwidth as a function of
the maximum allowable disk outer radius for various values of maximum force.

Figure 4 illustrates the effect that peak force has upon maximum achievable bandwidth.
Pareto-optimal curves are shown for various values of the axial gap ranging from the nominal value of
1.158 mm to 1.758 mm. (In each case the maximum disk outer radius was set to 150 mm.) The reader
will note that the maximum achievable bandwidth is strongly dependent on the peak force of the
thrust bearing. A 30% increase in peak force cut the maximum bandwidth in half.

Actuators 2018, 7, x 9 of 14 

 

to 8500 N. Bearings with larger peak force have lower bandwidth, as the required increase in pole faces 
result in greater pole face radial widths and smaller circumferences. The results indicate that substantial 
improvements in bandwidth (>2x) can be achieved with moderate increases in disk radius. 

 
Figure 3. Pareto-optimal curves showing maximum achievable actuator bandwidth as a function of 
the maximum allowable disk outer radius for various values of maximum force. 

Figure 4 illustrates the effect that peak force has upon maximum achievable bandwidth. 
Pareto-optimal curves are shown for various values of the axial gap ranging from the nominal 
value of 1.158 mm to 1.758 mm. (In each case the maximum disk outer radius was set to 150 mm.) 
The reader will note that the maximum achievable bandwidth is strongly dependent on the peak 
force of the thrust bearing. A 30% increase in peak force cut the maximum bandwidth in half. 

 
Figure 4. Pareto-optimal curves showing maximum achievable actuator bandwidth as a function of 
maximum force for various values of axial gap. 

A similar Pareto-optimal investigation of peak force is shown in Figure 5. Here, curves of 
maximum achievable bandwidth are shown for three values of disk outer radius constraint: 100 mm, 
150 mm (nominal), and 200 mm. In each case, results show that the maximum achievable bandwidth 
scales as 𝑓ିଶ . 

Figure 4. Pareto-optimal curves showing maximum achievable actuator bandwidth as a function of
maximum force for various values of axial gap.

A similar Pareto-optimal investigation of peak force is shown in Figure 5. Here, curves of
maximum achievable bandwidth are shown for three values of disk outer radius constraint: 100 mm,
150 mm (nominal), and 200 mm. In each case, results show that the maximum achievable bandwidth
scales as f−2

peak.



Actuators 2018, 7, 66 10 of 15
Actuators 2018, 7, x 10 of 14 

 

 
Figure 5. Pareto-optimal curves showing maximum achievable actuator bandwidth as a function of 
maximum force for various values of the maximum allowable disk outer radius. 

An investigation of the effect of axial gap upon maximum achievable bandwidth yielded an 
unexpected result: increasing the gap between stator and disk resulted in an increase in achievable 
actuator bandwidth—see Figure 6. This trend is counterintuitive since a larger gap requires a larger 
coil area to supply the increased number of ampere-turns necessary to energize the gap. A larger coil 
area will typically result in a decrease in the circumference of the inner pole face, which will tend to 
increase eddy currents within it and thus increase the eddy current parameter 𝑐. But, as Equation (6) 
states, actuator bandwidth depends on both 𝑐  and the static reluctance 𝑅 . In the instance of 
increasing axial gap, the increase in 𝑅 is more significant than the increase in the parameter 𝑐. Thus, 
actuator bandwidth improves as gap size is increased. (The reader should note that this analysis 
assumes that the gap is small enough that flux leakage and fringing are not significant factors.) 

 
Figure 6. Pareto-optimal curve showing maximum achievable bandwidth as a function of axial gap. 

In Figure 7 the impact of iron permeability on achievable bandwidth is depicted. The Pareto-
optimal curve shows that actuator bandwidth can be significantly improved through the use of 
higher permeability materials. This might at first seem surprising as the optimized geometry of the 
actuator designed with 𝜇 = 500  is almost the same as that designed with 𝜇 = 4000 . Thus, the 

Figure 5. Pareto-optimal curves showing maximum achievable actuator bandwidth as a function of
maximum force for various values of the maximum allowable disk outer radius.

An investigation of the effect of axial gap upon maximum achievable bandwidth yielded an
unexpected result: increasing the gap between stator and disk resulted in an increase in achievable
actuator bandwidth—see Figure 6. This trend is counterintuitive since a larger gap requires a larger
coil area to supply the increased number of ampere-turns necessary to energize the gap. A larger coil
area will typically result in a decrease in the circumference of the inner pole face, which will tend to
increase eddy currents within it and thus increase the eddy current parameter c. But, as Equation (6)
states, actuator bandwidth depends on both c and the static reluctance R0. In the instance of increasing
axial gap, the increase in R0 is more significant than the increase in the parameter c. Thus, actuator
bandwidth improves as gap size is increased. (The reader should note that this analysis assumes that
the gap is small enough that flux leakage and fringing are not significant factors.)
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In Figure 7 the impact of iron permeability on achievable bandwidth is depicted.
The Pareto-optimal curve shows that actuator bandwidth can be significantly improved through
the use of higher permeability materials. This might at first seem surprising as the optimized geometry
of the actuator designed with µr = 500 is almost the same as that designed with µr = 4000. Thus,
the increase in bandwidth is almost entirely due to the direct effect of µr on bandwidth as predicted by
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Equations (5) and (6), and not upon changes to geometry enabled by the use of a higher permeability
material. From Equation (5), the dependence of dynamic parameters R0 and c on relative permeability
can be captured by the relationships

R0 = χ0 + χ1µ−1
r (15)

c = χ2µ
− 1

2
r (16)

where coefficients χi are independent of µr, and therefore bandwidth scales as

ω−3dB = Γ2 (χ0µr + χ1)
2

χ2
2µr

(17)

(see Equation (6)). Thus, for sufficiently large µr the bandwidth will increase linearly in µr (and it will
never increase at a rate greater than linear). It is this linear scaling behavior that is evident in Figure 7.
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5. Discussion

One of the primary features of optimized designs is the increase of the disk and stator radius to
the outer radius constraint. This allows the pole faces to be made radially thinner, in a certain sense
approximating a (thick) circumferential lamination. In applications, the maximum diameter of the
thrust actuator is constrained both by required housing dimensions and the hoop stress that is induced
within the disk at the maximum operating speed. In optimized designs, the inner pole face radii (r0,r1),
as well as those of the outer, are increased. We note that the inner radii could be further increased if
the coil slot radial width (wc = r2 − r1) was made smaller and the coil slot depth (d2) was made larger
(so as to preserve coil slot area). This tactic, however, is not typically pursued by the optimization
algorithm for the examples studied. We posit that this is due to a bandwidth cost of high aspect ratio
(i.e., d2/wc) coils: the increased length of the iron path increases the eddy currents in the poles and,
thus, the eddy current parameter c (see Equation (5b)). It is likely that this cost offsets any benefit from
increasing the inner pole radii.

To the authors’ knowledge, the effectiveness of increasing gap length as a means to improve thrust
bearing actuator bandwidth has not been previously noted. Of course, a larger gap would result in
greater flux leakage and fringing and, thus, impact peak force. Nevertheless, this avenue for improved
performance is one that merits careful examination by practitioners when designing AMB systems for
rotating machinery.
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Increasing permeability offers another avenue for improving actuator bandwidth. In general,
strength properties of ferromagnetic materials must be compromised in order to achieve greater
permeability. As the stator is not subject to the same stress as the disk, this suggests that particular
attention be paid to the selection of ferromagnetic material for the stator so as to maximize both
µr/σ and µr (see Equations (5a) and (5b)). For example, while cobalt-iron has high strength (e.g.,
500 MPa for Carpenter Hiperco 50HS), it has a much lower permeability (µr = 2000). In contrast,
nickel-iron’s strength is much lower (e.g., 150 MPa for Carpenter HyMu 80) but its permeability is
exceptional (µr = 50, 000). Since the length of the flux path in the disk is much shorter than in the stator,
a combination of these materials should permit high bandwidth and adequate disk strength. We note
here that silicon-iron is not particularly well-suited to either the stator or the disk as its strength is
lower than cobalt-iron and its permeability is less than nickel-iron.

It is intriguing to consider whether an E-core design for the actuator stator might offer any benefit
for improving bandwidth. Since only half the flux would pass through the inner and outer pole faces,
they could be made with less radial width, enhancing bandwidth. However, the overall iron path
lengths might be longer, penalizing bandwidth. This analysis would make a worthwhile study.

6. Conclusions

The problem of maximizing axial magnetic bearing actuator bandwidth through the choice of
geometric and material properties was mathematically formulated. Optimal designs were shown to
have significantly larger bandwidth than nominal designs. This is a previously unexploited direction
for improving the dynamic performance of rotating machinery supported by active magnetic bearings.
The use of this bandwidth optimization approach to determine Pareto-optimal curves for the axial
actuator design problem was introduced. Such curves were developed for an example problem with
several variables investigated. The Pareto-optimal curves show that bandwidth may be significantly
improved by increasing disk outer diameter, axial gap, and magnetic permeability. Actuator bandwidth
was found to have an inverse-square relationship with peak force.
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Appendix A

The frequency-dependent effective reluctance of the thrust magnetic actuator is:

R(s) =
6

∑
n=1

Rn(s) (A1)

where

R1(s) =
lgα1

2πµ0r1

{
I1(α1r0)K0(α1r1) + I0(α1r1)K1(α1r0)

I1(α1r1)K1(α1r0)− I1(α1r0)K1(α1r1)

}
R2(s) =

ln(r2/r1)

2πµ0µr

{
α

tanh(αd1)

}
R3(s) =

lgα1

2πµ0r2

{
I1(α1r3)K0(α1r2) + I0(α1r2)K1(α1r3)

I1(α1r3)K1(α1r2)− I1(α1r2)K1(α1r3)

}
(A2)

R4(s) =
d2α

2πµ0µrr2

{
I0(αr2)K1(αr3) + I1(αr3)K0(αr2)

I1(αr3)K1(αr2)− I1(αr2)K1(αr3)

}



Actuators 2018, 7, 66 13 of 15

R5(s) =
ln(r2/r1)

2πµ0µr

{
α

tanh(αd3)

}
R6(s) =

d2α

2πµ0µrr1

{
I0(αr1)K1(αr0) + I1(αr0)K0(αr1)

I1(αr1)K1(αr0)− I1(αr0)K1(αr1)

}
and

α =
√

sσµ0µr · · · · · · α1 =
√

2α/µrlg (A3)

The actuator’s geometric parameters (r0, r1, r2, r3, d1, d2) are as indicated in Figure 1. In these
equations σ and µr are the conductivity and relative permeability of the ferromagnetic material.
The constant µ0 is the permeability of free space.

Appendix B

Consider a magnetic thrust bearing consisting of opposing electromagnets, labeled “u” and “d”.
Let Ai and Ao denote the inner and outer pole face areas of each electromagnet. The attractive force
produced by “u” and “d” electromagnets are, respectively:

fu =
φ2

u
2µ0

(
1
Ai

+
1

Ao

)
(A4)

fd =
φ2

d
2µ0

(
1
Ai

+
1

Ao

)
Here, µ0 is the permeability of free space and φu, φd are the fluxes in the electromagnets. These

fluxes can be related to the coil currents in the opposing coils (iu,id) and the static reluctance of each
electromagnet, R0 = R(0), (assuming centered operation) via:

Niu = φuR0 (A5)

Nid = φdR0

The nominal reluctances are from the nonlaminated actuator model and are dependent on the
nominal value of gap. The net force ( fnet) produced by the pair of opposing electromagnets is:

fnet =
1

2µ0

(
1
Ai

+
1

Ao

)(
N
R0

)2(
i2u − i2d

)
(A6)

The bias flux is related to the bias current in the coils via:

Nibias = φbiasR0 (A7)

which can be determined from the desired bias flux density (Bbias) for operation:

φbias = Bbias Amin (A8)

where Amin = min(A0, Ai). Simplifying this:

Nibias = Bbias AminR0 (A9)

The currents in the two opposing electromagnets can be written in terms of bias and perturbation
currents:

iu = ibias + ip

id = ibias − ip (A10)
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And therefore:
i2u − i2d = 4ibiasip (A11)

and

fnet =
2

µ0

(
1
Ai

+
1

Ao

)(
1

R0

)2

(Nibias)
(

Nip
)

(A12)

Since
Nibias = Bbias AminR0 (A13)

we can simplify:

fnet =
2

µ0

(
1
Ai

+
1

Ao

)(
Bbias Amin

R0

)(
Nip

)
(A14)

Solving for the perturbation ampere-turns
(

Nip
)

such that the net force equals the desired
continuous force ( fcont) yields:

Nip =
µ0R0 fcont

2
(

Amin
Ai

+ Amin
Ao

)
Bbias

(A15)

Assuming (without loss of generality) that the continuous force acts in the “u” direction,
the ampere-turns in the “u” coil are:

Niu = (Bbias AminR0) +
µ0R0 fcont

2
(

Amin
Ai

+ Amin
Ao

)
Bbias

(A16)

To prevent overheating of the coil we require that the coil slot area satisfy:

Niu ≤ ΛAcoil (A17)

where Acoil is the coil area and Λ is the coil current density. Therefore, the coil size needed to provide
the constant force fcont is:

Acoil =

(
1
Λ

)(Bbias AminR0
)
+

µ0R0 fcont

2
(

Amin
Ai

+ Amin
Ao

)
Bbias

 (A18)

For calculations, we will assume that Bbias = 0.5 Tesla and Λ = 3× 106 A/m2.
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