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Abstract: This paper presents a computational model and design optimization strategy for
shape memory alloy (SMA) flexural actuators. These actuators consist of curved SMA wires
embedded within elastic structures; one potential application is positioning microcatheters inside
blood vessels during clinical treatments. Each SMA wire is shape-set to an initial curvature and
inserted along the neutral axis of a straight elastic member (cast polydimethylsiloxane, PDMS).
The elastic structure preloads the SMA, reducing the equilibrium curvature of the composite actuator.
Temperature-induced phase transformations in the SMA are achieved via Joule heating, enabling
strain recovery and increased bending (increased curvature) in the actuator. Actuator behavior is
modeled using the homogenized energy framework, and the effects of two critical design parameters
(initial SMA curvature and flexural rigidity of the elastic sleeve) on activation curvature are
investigated. Finally, a multi-objective genetic algorithm is utilized to optimize actuator performance
and generate a Pareto frontier, which is subsequently experimentally validated.

Keywords: shape memory alloy; microscale actuation; design optimization; genetic algorithm

1. Introduction

Liver cancer is the second leading cause of cancer-related death worldwide [1]. Surgical resection
is the preferred, and most effective, treatment approach for primary and metastatic liver malignancies.
Despite the large number of patients affected by these diseases, current treatment options are less than
ideal, as 80–90% of patients are not good candidates for surgery [2], 50% of patients with solid tumors
have full resistance to chemotherapy [2], and liver tissue is more sensitive to external radiation than
the tumor itself [3].

Selective internal radiation therapy (SIRT) is an emerging treatment for liver cancer during which
the blood vessels supplying tumors are embolized with radioactive microspheres. These microspheres
contain the radioactive isotope yttrium-90 (90Y) which delivers high-energy, low-penetrating radiation
that destroys tumor tissue while limiting adverse effects to surrounding healthy liver tissue [4].
Currently, SIRT uses a single-lumen microcatheter (1.0 mm diameter) and a manually operated syringe
to deliver the 90Y microspheres into the hepatic artery. Recent studies have documented significant
increases in patient survival (29.4 months with SIRT and systemic chemotherapy vs. 12.8 months
with chemotherapy alone [5]). Despite the documented advantages of SIRT, the inability to directly
target tumor sites has limited its widespread adoption. The tortuous and patient-variable arterial
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anatomy limits the direct targeting of tumors, causing damage to healthy liver tissue and other organs
via ischemia or radiation [6].

Computational fluid dynamic (CFD) simulations have shown that precise tumor targeting can
be achieved by controlling the catheter tip location within the cross-section of the common hepatic
artery (CHA) (mean diameter 6.3 ± 0.9 mm) [7], as shown in Figure 1. This finding has been validated
experimentally by Richards et al. [6], who concluded that the development of an actuated microcatheter
is necessary for direct tumor targeting to be realized. Therefore, to position a microcatheter anywhere
within the cross section of the CHA, a miniature actuator needs to be developed that can produce
a stroke of at least 7 mm with minimal disruption to the blood flow around the catheter.
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Figure 1. Computational fluid dynamic (CFD) simulation results: microsphere trajectories in the
common hepatic artery (CHA) are dependent on release location [7].

Because shape memory alloys (SMAs) exhibit high energy densities, they are attractive options
for microscale actuation [8]. One actuator option consists of shape-set SMA tendons embedded within
an elastic structure to generate large bending moments. The elastic structure of this “flexural actuator”
produces a stress-induced martensitic phase transformation in the SMA, which can be recovered by
Joule heating. While flexural actuators can also be designed by offsetting the SMA from the neutral axis,
this offset increases the diameter of the actuator, making it less suitable for size-critical applications.
One proposed active catheter concept, shown in Figure 2, uses eight shape-set flexural actuators
arranged radially. With this configuration, the microcatheter’s release point within the cross section
of the CHA could be precisely regulated while keeping the catheter parallel with the surrounding
blood flow.
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In this paper, we build on our previous research [9] to present a design optimization strategy for
shape-set flexural actuators based on the homogenized energy framework [10,11]. Previous research
on flexural actuators has focused on modeling and understanding the influences of flexible beam
composition. Lagoudas, et al. successfully modeled a flexible rod with a single embedded off-neutral
axis SMA fiber [12]. Wang, et al. presented numerical simulations and an experimental validation of
a similar actuator composed of a flexible inner cylindrical beam, a SMA tendon, and an outer elastic
cylindrical beam [12]. These designs, however, are difficult to miniaturize because the offset SMA
increases the diameter of the actuator and introduces complexity into the manufacturing process.

Baz, et al. modeled shape-set SMA strips embedded on the neutral plane in a fiberglass beam [13].
The model showed good correlation with experimental data, proving that shape-setting SMA is a
viable way to control the shape of a flexural actuator. However, the model did not take into account
stress non-linearities across the cross-section of the SMA. Ryu, et al. [14] investigated the relationship
between composite beam stiffness and bending performance.

The remainder of this paper is organized as follows. The flexural actuator system model is
presented first. Next, the experimental setup is presented. The SMA model parameters are then
estimated using a single-objective genetic algorithm. A multi-objective genetic algorithm is utilized to
optimize actuator design parameters. Finally, modeled and experimental data are compared.

2. System Model

Each flexural actuator design consists of two components: a curved SMA tendon embedded
within a straight elastic sleeve. The SMA tendon (diameter a, straight length L, and connection length
x as in Figure 3a) is shape-set (or thermally trained) to a particular curvature κ0, where

κ0 =
1
R

(1)

and R is the radius of the curvature, shown in Figure 3a. The SMA tendon is embedded within
a rectangular elastic sleeve (height h, width w, and length L, as in Figure 3b) which produces
a strain-induced phase transition to detwinned martensite, resulting in a reduced deactivated
equilibrium curvature κd (Figure 3c). As the tendon is heated to temperatures above the austenitic
finish temperature Af, the material undergoes a phase transformation to austenite and recovers some
of this strain, establishing a larger activated equilibrium curvature κa, such that κd < κa < κ0.
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To accurately model the deactivated and activated displacements, the equilibrium curvature must
be found for each SMA state. Curvature is related to tip displacement by

y =
1
κ
− 1

κ
cos(κL) (2)

To enable precise catheter navigation and positioning, the deactivated displacement yd must be
minimized while the activated displacement ya must be maximized (Figure 4).
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2.1. Homogenized Energy Model of SMA Flexural Actuators

The homogenized energy model (HEM) is used to describe the nonlinear hysteretic relationships
between stress, strain, and temperature [10]. The HEM is a macroscopic model that incorporates
material inhomogeneities and interaction effects. In [10], the macroscopic strain is modeled as
a function of applied stress. Here, we invert the relationship to obtain the macroscopic stress

σ(ε, T) =
∫ ∞

−∞

∫ ∞

0
νR(σR)νI(σI)σ(ε, T)dσRdσI , (3)

where the local stress

σ(ε, T) =
ε − εT(xM+ − xM−)

xA
EA

+ xM++xM−
EM

(4)

depends on the SMA phase fractions: austenite xA, martensite plus xM+, and martensite minus xM-.
The relative stress σR and interaction stress σI are assumed to be manifestations of underlying densities
that affect the equilibrium phase fractions. In Equation (4), EA is the austenitic elastic modulus, EM is
the martensitic elastic modulus, and εT is the maximum recoverable strain.

2.2. Equilibrium Equations

At equilibrium, the composite actuator’s internal forces and moments must sum to zero.
Neglecting gravity and external forces, the actuator’s equilibrium position is solely determined
by the moment balance between the SMA tendon and the elastic sleeve (Figure 5a). The elastic moment
is given by

Me(κ) = EIκ, (5)

where E is the sleeve’s elastic (Young’s) modulus, I is its area moment of inertia, and κ is its curvature.
The SMA moment is given by

Msma(κ, T) =
∫ ∫

yσ(ε, T)dA, (6)

where dA is the differential area of the tendon cross-section, as shown in Figure 5b. Note that the stress
depends non-linearly on strain ε and temperature T.
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We assume that strain varies linearly over the cross-sectional area according to

ε = (κ0 − κ)y. (7)

Therefore, at the initial (shape-set) curvature κ0, the SMA has zero strain over its cross-sectional
area.The moment integral (6) is discretized using rectangular elements [15], as shown in Figure 6.
Assuming the stress distribution is symmetric about the neutral axis, this discretization yields

Msma = 2
Ni

∑
i=1

2
√

a2 − y2
i σ(ε, T)yi∆y, (8)

where a is the SMA tendon radius, yi is the midpoint of the ith rectangle, and 2
√

a2 − y2
i is the width of

the rectangle.
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The equilibrium deactivated curvature minimizes

κd = arg min
κ

(Me(κ)− Msma(κ, T∞))2, (9)

where T∞ is the ambient temperature. Equation (9) can be solved using a variety of nonlinear
optimization algorithms; here, we employ the golden section search method [16]. After finding
the deactivated curvature (and associated equilibrium phase fractions), the equilibrium activated
curvature minimizes

κa = arg min
κ

(Me(κ)− Msma(κ, Tss))
2, (10)

where Tss is the SMA’s activated steady-state temperature.
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To determine the ideal number of discretization layers, simulations were conducted for a varying
initial curvature κ0 and sleeve flexural rigidity EI. The nonlinear relationship between the initial and
final curvature in Figure 7 is due to the nonlinear stress–strain characteristics of SMA, which are
included in our HEM model. At very low initial strains, the SMA is in its austenite phase, and the
stress–strain relationship is relatively linear. This characteristic is evident in Figure 7a for initial
curvatures up to approximately 100 m−1. At larger strains, the austenite to martensite transformation
causes a plateauing of the stress–strain relationship. This characteristic is evident in Figure 7a for initial
curvatures between approximately 100 and 700 m−1. When the phase transformation is complete
(to fully detwinned martensite), a linear stress–strain relationship resumes. This characteristic is
evident in Figure 7a for initial curvatures above approximately 700 m−1. As shown in Figure 7,
the accuracy of computed actuator curvature improves with the number of discretization layers (N).
However, because computational time is directly proportional to N, there exists a tradeoff between
model accuracy and computational time. Based on the simulation results, N = 8 was found to
adequately balance this tradeoff, as it produced curvature estimates within 2% of the full-order model
(N = 128) with only 6.25% of the computational burden.
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3. Experimental Setup

To constrain the SMA tendons during the shape setting process, a custom fixture (Figure 8) was
designed and fabricated from a 304 stainless steel plate (0.305 m × 0.102 m × 0.013 m). This fixture
features eight precisely machined curvature profiles ranging from 50 to 333 (m−1), with bolts and
washers used to secure the SMA tendon during shape setting (Figure 9). This range of initial curvatures
was determined from simulations to provide the largest difference in the activated and deactivated
curvature (Figure 10b). To standardize the electrical resistance of each 0.31 mm diameter SMA tendon
(Dynalloy, Inc., Irvine, CA, USA), each curvature profile was machined to provide the same arc length
and straight length. Constant tendon tension was maintained by suspending a 400 g mass vertically
from each SMA tendon during the fixture tightening process.

To shape-set the SMA tendons, a computer-controlled furnace (Thermolyne 1500) was preheated
to 500 ◦C, and the loaded fixture was placed inside for 20 min [17]. Immediately following heating,
the fixture was quenched in room-temperature water. After cooling, each SMA tendon was removed
from the fixture, resulting in stress-induced deformations. To experimentally quantify each tendon’s
initial curvature κ0, a programmable power supply (Agilent E3615A) was used to activate the
specimen (maintaining 1.4 amps of DC current for 5.0 s, resulting in thermally-induced austenitic
phase transformation). The curvature of the actuated specimen was measured by comparison to a
printed scale.
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To fabricate elastic sleeves with specific flexural rigidities (EI) in the bending plane, molds were
designed with rectangular cross-sections (Figure 11). By specifying the cross-sectional height to be
three times the width, the sleeve is 27 times more compliant in the bending plane than out-of-plane;
the effects of self-weight are thus minimized during experimental testing. The range of flexural
rigidities (6 × 10−6 to 3 × 10−4 Nm2) was determined from simulations to provide the largest change in
activated and deactivated curvature (Figure 10). The molds were fabricated using rapid prototyping in
ABSplus material (Dimension Elite, Stratasys, Eden Prairie, MN, USA). Nylon monofilament (0.31 mm
diameter) was tensioned along the neutral axis of each rectangular mold to provide space for SMA
tendon insertion. Each mold was cast with polydimethylsiloxane (PDMS, Dow Corning SYLGARD
184) and allowed to cure for two days.
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Each actuator was assembled by inserting a shape-set SMA tendon into a molded elastic sleeve.
The experimental set up consisted of a cantilevered actuator connected to a programmable power
supply (E3615A, Agilent Technologies) by 36 AWG magnet wire. Actuation was achieved by passing
1.4 A of DC current through the SMA tendon for 30 s. The actuator was then deactivated for one
minute, cooling via heat transfer to the ambient air. High-resolution photographs (Canon DS126191
EOS Rebel 10.1MP) were taken immediately before and after each actuation cycle. Digital images were
acquired and stored for subsequent evaluation of κa and κd. The process of activating, deactivating and
image acquisition was automated using a custom LabView program (National Instruments, Austin,
TX, USA).

To compute κa and κd, an image processing code was developed using MATLAB’s Image
Processing toolbox (Mathworks, Inc., Natick, MA, USA). The code applied golden-section optimization
to find the bending radius R (Figure 12) that minimizes the difference between predicted (Lpred) and
actual bending length (Lact) according to

Lpred = θR, (11)

Lact = R cos−1
(

2R2 − C2

2R2

)
, (12)

where C is the corresponding chord length and θ is the included angle between the linear sections of
the sleeve (Figure 12). To evaluate the curvature along the actuator’s neutral axis, half of the known
width of the elastic sleeve was added to the computed inner radius (R). This computation was repeated
for 110 consecutive actuations, averaging the last 10 cycles to eliminate variance and drift associated
with low cycle fatigue [18].
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Design optimization was conducted using multi-objective genetic algorithm (MOGA) techniques.
Genetic algorithms (GAs) are optimization methods based on the principles of natural selection.
These algorithms minimize (or maximize) one or more objective functions and are reliable and efficient
in optimizing non-linear, multi-modal and complex systems. An excellent overview of GAs can be
found in [19,20].

4. Results

4.1. HEM Parameter Optimization

A single-objective genetic algorithm was utilized to minimize

J = ∑
i
(κai − κ̂ai )

2, (13)

the sum of squared errors (SSE) between predicted (κ̂ai ) and experimentally measured (κai ) actuator
curvatures. The 11 HEM stress density coefficients (αk,m and βk) and seven SMA constitutive model
parameters (EA, EM, σL, ∆σT, εT, h and Tmax) were chosen as design variables. The design variables
and their associated bounds are listed in Table 1.

Table 1. Single-objective design variables and bounds.

Variable Description Lower Bound Upper Bound Units

αk,m Relative stress density coefficients 0 3.0 -
βk Interaction stress density coefficients 0 3.0 -
EA Austenitic elastic modulus 10 100 GPa
EM Martensitic elastic modulus 10 100 GPa
σL Martensitic transition stress at 348 K 100 400 MPa

∆σT
Hysteresis loop’s temperature

dependence 1.0 15.0 MPa/K

εT Maximum recoverable strain 1.0 7.0 %
h Convection Coefficient 0.01 1.6 W/(m2K)

Tmax Maximum SMA Temperature 353 403 K

Experimental data was obtained for actuators with a fixed flexural rigidity (EI of 3 × 10−5 Nm2)
and six different initial curvatures (κ0 = 100, 125, 167, 200, 250, and 333 m−1). Additional data was
obtained for a fixed initial curvature (κ0 of 200 m−1) and four different values of flexural rigidity
(EI = 6 × 10−6, 1.5 × 10−5, 3 × 10−5, 6 × 10−5 Nm2). The GA function in the MATLAB optimization
toolbox was employed for single-objective design optimization. The design variables were real
value encoded and 36 individuals were systematically populated within initial design variable bounds.
The bounds were chosen from knowledge of the design space to speed convergence. Heuristic crossover
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was utilized with a crossover fraction of 1.2. The convergence criteria consisted of a minimum objective
function gradient (1 × 10−6) and a generation limit (200). The initial and optimized model parameters
are shown in Table 2 and in Figure 13. The initial parameters were taken from [10].

Table 2. Comparison of initial and optimized homogenized energy model (HEM) parameters.

Variable Initial Value Optimized Value Units

EA 30.7 59.02 GPa
EM 26.0 16.83 GPa
σL 295 204.17 MPa

∆σT 9.2 9.96 MPa
εT 4.4 7 %
h 0.8 0.4279 W/(m2K)

Tmax 380 381.4 K
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GA convergence was monitored for five simulations with different initialization parameters;
all five simulations converged based on the minimum function gradient criteria and the simulation
average SSE decreased from 7263 to 514.2 with a standard deviation of 7.1. Though the designs did not
converge to the same values in the design space, all designs converged to approximately the same SSE.
The optimized model parameter set that reduced SSE by 93% (Table 3) was selected for subsequent
multi-objective optimization. Comparisons of the experimental data and initial (unoptimized)
parameters are presented in Figure 14; the dependence of the actuator curvature on sleeve flexural
rigidity is shown in Figure 14a, and its dependence on initial curvature is shown in Figure 14b.
Differences between the two are primarily attributed to material parameter uncertainties (modulus of
elasticity, etc.) and unmodeled dynamics (sliding friction between the SMA and sleeve, heat transfer
modes, etc.). Figure 15 shows similar comparisons for the optimized model. The optimized HEM
accurately characterizes the nonlinear dependence of the equilibrium curvature on sleeve flexural
rigidity (Figure 15a) and the dependence of the actuator curvature on initial curvature (Figure 15b).

Table 3. Sum of squared errors (SSE) for initial (non-optimized) and optimized models.

SSE Deactivated SSE Activated SSE Sum

Initial Model 4792 2483 7263
Optimized Model 478.1 36.7 514.2

Percent Improvement 90% 99% 93%
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Comparing the optimized HEM parameters to the imposed parameter bounds reveals that the
maximum recoverable strain lies on the upper bound. This indicates that the equilibrium model
may need to take into account additional variables to more accurately predict equilibrium curvature:
internal friction, non-linear elastic modulus of PDMS at high strains or the effect contact has on
temperature distribution across the tendon. Despite these modeling limitations, the optimized model
can still be used for design optimization.

4.2. Multi-Objective Optimization

To optimize the performance of the actuator, the deactivated displacement needs to be minimized
while the activated displacement needs to be maximized. To accomplish this, a MOGA was utilized
with κ0 and EI as the design variables. The optimized HEM and equilibrium curvature model are used
to evaluate κa and κd, which are related to ya and yd via Equation (2). The actuator length (L = 0.011 m)
was chosen to achieve 0.007 m displacement; the actuator is θ = 90◦(Figure 12). To improve numerical
conditioning, log10 (EI) was used to normalize the individuals for reproduction. The gamultiobj
function in MATLAB was employed for the MOGA. Most of the GA settings were identical to the
single-objective optimization case, with the exceptions of population (50) and minimum objective
function gradient (1 × 10−4). Upper and lower parameter bounds were utilized for the population
initialization (UBi and LBi, respectively), and values for subsequent populations (UB and LB) are
shown in Table 4. The MOGA converged based on the minimum objective function gradient.

The Pareto frontier of Figure 16 shows the non-dominated designs from the optimization,
and clearly reveals the inherent design tradeoff between yd and ya: no design combination of
EI and κ0 perfectly minimizes yd (yd = 0 m) while simultaneously maximizing ya (ya ≥ 0.007 m).
The results of Figure 17a indicate that the Pareto-optimal displacements yd and ya have strong
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non-linear dependencies on EI (as was the case with κa and κd in Figure 15a). Furthermore, the correlation
between yd, ya and κ0 in Figure 17b resembles the quasi-linear dependence of κa and κd on κ0 in Figure 15b.
It is also clear from Figure 17 that the change in activated displacement occurs predominantly over initial
curvatures ranging from 50 to 375 (m−1) and flexural rigidities, EI, ranging from 1 × 10−5 to 5 × 10−4 Nm2.

Table 4. Upper and lower parameter bounds for the initial population (UBi and LBi, respectively) and
subsequent populations (UB and LB).

κ0 EI

UBi 600 1 × 10−5

LBi 0 1 × 10−2

UB 600 1
LB 0 0
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The interaction of Pareto-optimal EI and κ0 in Figure 18 illustrates how these design variables
relate to actuation range: generally, this range is proportional to the initial curvature and inversely
proportional to flexural rigidity. An additional performance metric, the actuation ratio (ya/yd),



Actuators 2019, 8, 13 13 of 16

helps illustrate the design tradeoff between ya and yd, as shown in Figure 19. Arguably, the “best”
design balances both performance metrics, such as the design (ya = 0.004 m, yd = 0.0019 m) indicated
in Figure 19.
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4.3. Experimental Validation of Pareto Frontier

To experimentally validate the Pareto frontier, six Pareto-optimal designs (Table 5) were selected,
fabricated, experimentally evaluated, and compared to the simulated Pareto frontier. The results of
this comparison are displayed in Figure 20.
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Table 5. Selected Pareto-optimal designs for experimental validation.

Design Initial Curvature
(m−1)

Sleeve EI
(Nm2)

Deactivated Displacement
(m)

Activated Displacement
(m)

1 100 3.05 × 10−5 0.0010 0.0025
2 125 2.23 × 10−5 0.0016 0.0036
3 167 1.76 × 10−5 0.0025 0.0049
4 200 1.58 × 10−5 0.0031 0.0057
5 250 1.47 × 10−5 0.0037 0.0065
6 333 1.16 × 10−5 0.0049 0.0075Actuators 2019, 8, 13 15 of 16 

 

 
Figure 20. Pareto frontier: Comparing selected Pareto-optimal designs to their experimental 
evaluation. 

6. Conclusions 

This paper demonstrates a method for optimizing the design of shape-set SMA flexural 
actuators. Optimized HEM and bending equilibrium models reveal the non-linear dependencies of 
the actuator bending curvature on flexural rigidity and initial curvature. Experimental results 
validate the accuracy of these models as predictors of activated and deactivated curvature. A Pareto 
frontier based on these models reveals inherent design tradeoffs between activated and deactivated 
displacement. While the goal here is optimizing the performance of an SMA flexural actuator, the 
methods and results can easily be extended to other smart materials and actuator topologies. Future 
work will focus on weighting functions and “strength of preference” curves to guide the selection of 
the “best” design. The model will also be refined to include internal friction, non-linear sleeve elastic 
modulus and non-uniform temperature distribution. 

Author Contributions: Conceptualization, C.D.H., S.W. and G.D.B.; Software, C.D.H., J.H.C. and S.W.; 
Validation, C.D.H. and S.W.; Formal Analysis, C.D.H., J.H.C. and S.W.; Investigation, C.D.H., J.H.C., S.W. and 
G.D.B.; Resources, G.D.B.; Data Curation, C.D.H. and J.H.C.; Writing-Original Draft Preparation, C.D.H., J.H.C., 
S.W. and G.D.B.; Writing-Review & Editing, G.D.B.; Visualization, C.D.H., J.H.C. and S.W.; Supervision, G.D.B.; 
Project Administration, G.D.B.; Funding Acquisition, G.D.B. 

Funding: This research was supported by a North Carolina State University College of Engineering Dean’s 
Fellowship. 

Acknowledgments: The authors appreciate the medical expertise and assistance of Dr. Andrew Kennedy. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision 
to publish the results. 

References 

1. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global Cancer Statistics, 2012. Cancer 
J. Clin. 2015, 65, 87–108. 

2. Welsh, J.S.; Kennedy, A.S.; Thomadsen, B. Selective internal radiation therapy (SIRT) for liver metastases 
secondary to colorectal adenocarcinoma. Int. J. Radiat. Oncol. Biol. Phys 2006, 66, 2. 

3. Kennedy, A.S.; Nutting, C.; Coldwell, D.; Gaiser, J.; Drachenberg, C. Pathologic response and 
microdosimetry of 90Y microspheres in man: Review of four explanted whole livers. Int. J. Radiat. Oncol. 
Biol. Phys. 2004, 60, 1552–1563. 

Figure 20. Pareto frontier: Comparing selected Pareto-optimal designs to their experimental evaluation.

The error between the modeled and experimental actuator displacements was quantified
via Euclidean norms and normalized with respect to maximum actuator displacement (0.008 m).
The average error for all six selected Pareto-optimal designs was 6.4%. The average activated
displacement error (2.5%) was significantly lower than average deactivated displacement error (5.6%).
Figure 15b provides a likely explanation for this effect: the optimized HEM underestimates κd at
low κ0 and overestimates κd at high κ0. This also explains why certain experimental evaluations of
representative designs out-perform the Pareto frontier: because κd ∝ yd, the experimental evaluations
of yd at low κ0 (100, 125 m−1) were higher than predicted and high κ0 (200, 250, 333 m−1) were less
than predicted.

5. Conclusions

This paper demonstrates a method for optimizing the design of shape-set SMA flexural actuators.
Optimized HEM and bending equilibrium models reveal the non-linear dependencies of the actuator
bending curvature on flexural rigidity and initial curvature. Experimental results validate the accuracy
of these models as predictors of activated and deactivated curvature. A Pareto frontier based on these
models reveals inherent design tradeoffs between activated and deactivated displacement. While the
goal here is optimizing the performance of an SMA flexural actuator, the methods and results can easily
be extended to other smart materials and actuator topologies. Future work will focus on weighting
functions and “strength of preference” curves to guide the selection of the “best” design. The model
will also be refined to include internal friction, non-linear sleeve elastic modulus and non-uniform
temperature distribution.
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