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Abstract: A solution of the vibration attention problem on a flexible structure from a dynamic
vibration absorption perspective is experimentally and numerically studied in this article. Linear and
nonlinear dynamic vibration absorbers are properly implemented on a primary structure of n degrees
of freedom through a modal decomposition analysis and using the tuning condition when the
primary system has one single degree of freedom. A time-domain algebraic identification scheme for
on-line modal parameter estimation of flexible structures is presented. A fast frequency estimation of
harmonic excitation force is also obtained. A Hilbert transform analysis of the frequency response
function for the case of nonlinear dynamic vibration absorption is introduced. In this way, influence of
this particular passive nonlinear control device on system dynamic response can be determined.
The proposed approach is validated on an harmonically perturbed building-like structure, which is
discretized in a finite number of degrees of freedom. The flexible structure is subjected to resonant
operational conditions, and coupled to a pendulum vibration absorber configured as a tuned mass
damper as well as an autoparametric system.

Keywords: tuned mass damper; autoparametric system; modal analysis; on-line estimation;
vibration experiments

1. Introduction

It is well known that excessive vibrations represent a destructive dynamic condition.
Repetitive operation or external forces cause simultaneous movement that can resonate through
the machine, building or bridge to a dangerous magnitude. One common method to address the
vibration control issue on flexible mechanical structures is through linear or nonlinear passive devices,
taking advantage of the physical properties of the system itself. In order to prevent undesirable
consequences of vibrations, this method modifies, mostly, mass, damping and stiffness properties with
regard to initial configuration of the principal structure. Passive control techniques are characterized
by implementation of devices in structures that do not require any external energy source to reduce
mechanical vibrations [1,2].

Within the approach of linear passive vibration control, one of the widely used devices is the
tuned mass damper (TMD), which consists of a mass, a spring and a viscous damper. This device
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is frequently implemented because of its properties such as effectiveness, reliability and low costs,
with applications such as machinery and civil structures [3].

TMD was initially used at the beginning of the past century since its conceptualization was
applied for the first time by Frahm to reduce movement of ships as well as vibrations of the ships
hull [4]. After a major development on its dynamic behavior, TMD was designed to control the
structural dynamic response on different topics. Ormondroyd and Den Hartog [5] came upon that a
TMD, with a damping element, can suppress the amplitude of the primary system in a wider frequency
range, followed by a detailed discussion of the optimization that adjusts the damping parameters.
Application of a passive vibration control scheme in flexible structures, using a TMD, is not just for
controlling the dynamic response on lateral loads but also to mitigate torsional displacements in
buildings with significant torsional coupling [6].

Simplicity of tuned mass dampers makes them the most used devices for vibration control in
buildings with great height. Guo and Chen [7] proposed an innovative technique for using multiple
TMDs to control partial loads on the ground in a limited number of floors. They indicated using
numerical results that the use of multiple TMDs can effectively alter the distribution of natural
frequencies as well as reduce the frequency/transient responses of the structure. Nowadays, research
related to the study and implementation of a TMD remains a current topic, for example, for vibration
control of adjacent twin buildings or using it in combination with the tapering method in order to
control the dynamic response of super-tall buildings [8,9].

However, the use of nonlinear devices for passive vibration control is a relevant issue due to
dynamic behaviors that may occur and do not happen in linear vibration systems [10]. Usually,
a nonlinear vibration absorber is implemented in order to overcome possible drawbacks due to the
use of a TMD [11]. There is a classification of nonlinear vibration absorbers called autoparametric
absorbers. This type of nonlinear systems differ from the traditional TMD, mainly because these have
nonlinear coupling between at least two vibration modes, satisfying the so-called autoparametric
condition (external and internal resonance condition), which are certainly related with parametric
excitation. Autoparametric absorbers are specifically used where a primary system is being excited
close to one of its principal parametric resonances—that is, the worst case situation in a physical
structure. When the autoparametric interaction occurs between two subsystems, there is a great energy
transfer to the autoparametric absorber.

Autoparametric absorbers have been designed to mitigate resonant oscillations due to the
advantages that this type of systems present in their frequency response function in comparison
with the classic vibration absorber (TMD). Ibrahim and Heo [12] and Dahlberg [13] described how a
continuous cantilever beam absorber with tip mass, oriented in the same direction with the motion
of the primary system, can be implemented with better attenuation properties than those obtained
with classical TMD. Cuvalci et al. [14] defined an absorption region for an autoparametric vibration
absorber for a single degree of freedom primary system under sinusoidal and random excitations.
They experimentally determined the parameters that influence the effectiveness of a nonlinear vibration
absorber. Hui and Ng [15] presented the implementation of autoparametric phenomena to reduce
symmetrical vibration of a curved beam/panel under external harmonic excitation showing that
internal energy transfer of a first symmetric mode into first anti-symmetric mode in a curved panel
is one example of autoparametric vibration absorber effect. Abundis-Fong et al. [16] developed
an optimum design of an autoparametric absorber (cantilever beam configuration) coupled to a
resonant oscillator where the implementation of the nonlinear absorber was obtained by using an
approximation of the nonlinear frequency response function, computed via a perturbation method.
Recently, Ting Tan et al. [17] used the nonlinear saturation principle and 1:2 internal resonance
in the design of the piezoelectric autoparametric vibration absorber for vibration suppression
and energy harvesting. Moreover, active vibration absorbers can be implemented to suppress
undesirable vibrations and simultaneous tracking of reference trajectories by implementing on-line
algebraic parameter identification methods [18]. In this paper, the theoretical framework for
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algebraic parametrical identification of linear dynamical systems introduced in [19] is extended to the
on-line modal parameter estimation problem of a class of harmonically perturbed flexible structures.
It has been theoretically proved that algebraic identification is robust against noise and polynomial
disturbances. On-line algebraic identification has been also applied for synthesis of model-free control
strategies [20] and numerical differentiation techniques of noisy measurement signals [21].

In this article, we are interested in implementing an on-line modal parameters identification
technique to two different passive vibration control schemes for a flexible structure, justifying its
tuning by means of a modal decomposition, in order to make an experimental comparison from a
dynamic, frequency and energy approach. The work is structured as follows. In Section 2, the tuning
conditions of the passive control schemes implemented are required. The dynamic representation
and modal decomposition of a flexible structure with n degrees of freedom are presented in Section 3.
In Section 4 an on-line algebraic identification scheme for estimating the amplitude and frequency
of a harmonic excitation is detailed. Experiments using linear (TMD) and nonlinear (autoparametric
system) vibration absorber for a flexible structure discretized in a finite number of degrees of freedom
are presented in Section 5. Finally, conclusions are given in Section 6.

2. Preliminaries

This section briefly reviews, in a general way, the tuning conditions of a linear absorber (TMD)
and a nonlinear one (autoparametric type) for the case of a primary system with a single degree
of freedom.

2.1. Linear Vibration Absorber: Tuned Mass Damper

A TMD is a mechanical device to be added to another mechanical system, often called the
primary system, with the purpose of attenuating unwanted vibrations by introducing equal and
opposite dynamics forces or by damping devices to dissipate energy. Its effectiveness depends on the
closeness of absorber’s natural frequency to the excitation frequency. Basically, a conventional TMD
consists of a single mass connected to the main structure by a linear spring and a viscous damper.
Therefore, the most representative model for a structure with a TMD is a two degrees of freedom
system, whose vibratory dynamics is described by the two coupled ordinary differential equations

m1 ẍ1 + c1 ẋ1 + (k1 + ka)x1 − kax2 = F(t) (1)

ma ẍ2 + ca ẋ2 − ka (x1 − x2) = 0 (2)

where m1, c1 and k1 represent mass, damping and stiffness parameters of the primary system.
TMD parameters are denoted by ma, ca and ka. The harmonic force is described by F(t) = F0 sin Ωt
with amplitude F0 and excitation frequency Ω. For a primary system with a single degree of freedom,
it is possible to tune a TMD in order to passively control the first resonant vibration mode [22].
In general, design parameters of the vibration absorber (ma and ka) should be selected such as its
uncoupled natural frequency ωn2 is close to the excitation force frequency Ω; this is,

ωn2 = Ω =

√
ka

ma
(3)

In this way, passive suppression of the harmonic excitation force can be performed as depicted in
Figure 1. Moreover, for a realistic primary system we have that c1 > 0, global asymptotic stability can
be hence achieved by the passive vibration control device [18]. Additional viscous damping ca can be
properly added into a passive vibration absorber to increase the attenuation band around its tuning
frequency [23]. Robustness against variations on the excitation frequency Ω can be thus improved.
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Figure 1. Frequency response functions of the flexible mechanical system with a passive dynamic
vibration absorber. Primary system (top), Tuned Mass Damper (bottom).

2.2. Nonlinear Vibration Absorber: Autoparametric System

A functional passive vibration absorber extracts oscillatory energy from the primary system.
This type of energy transfer is well established in autoparametric vibration. In the simplest case,
an autoparametric system can be thought in two parts, the first being an externally excited forced
oscillator and the second comprising an oscillator parametrically (a term appears as a time varying
modification of a system parameter) excited by the response of the forced element.

The coupling between vibration modes (either two or more) is the fundamental requirement of
an autoparametric system in such a way that response relationships can be made to apply between
the natural frequencies and also the frequency of external excitation [24]. An autoparametric system
can be modelled in a general sense (considering two degrees of freedom) by the following normalized
equations of motion

ẍ + 2ζ1ω1 ẋ + ω2
1x− εµ(ẏ2 + yÿ) = F0 sin Ωt (4)

ÿ + 2ζ2ω2ẏ + ω2
2y− εẍy = 0 (5)

where x and y are the degrees of freedom associated with the primary system and the autoparametric
absorber, respectively. The coupling between Equations (4) and (5) is apparent in the terms εµ(ẏ2 + yÿ)
and εẍy where εµ and ε are constants related to the properties of the nonlinear absorber to be considered
as well as the equivalent mass present in the complete system [24,25]. It is important to note that (5) is
clearly a parametric type equation where ẍ acts as a coefficient of the coordinate y.

However, according to the tuning condition between an autoparametric vibration absorber and a
mechanical oscillator, the following expressions must be satisfied (for more details see [16])

Ω = ω1 (6)

ω1 = 2ω2 (7)
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where Ω is the excitation frequency, ω1 is the natural frequency of the main system and ω2 corresponds
to the natural frequency of the secondary system. Equations (6) and (7) are known as the external and
internal resonance conditions, respectively [26].

Basically, the main feature of autoparametric resonance is the energy transfer when the lower
mode frequency is equal to one-half of the higher mode frequency (see (6) and (7)). Because of
energy transfer, the lower mode could result in exponential energy growth and may act as a nonlinear
vibration absorber to the higher mode.

3. A Flexible Structure with n Degrees of Freedom

Real flexible structures are continuous elastic systems which have an infinite number of degrees
of freedom. Therefore, their dynamical analysis commonly entails an approximation. This consists
of describing their dynamical behaviour through the use of a finite number of degrees of freedom,
as many as necessary to ensure enough accuracy. Flexible structures are usually described as discretized
multiple degree-of-freedom systems.

In this work, the primary or main system is composed of a flexible structure which simulates a
building-like structure with n degrees of freedom as depicted in Figure 2. Dynamical system behavior
can be described by [27]

Mẍ + Cẋ + Kx = f (t) (8)

where x ∈ Rn represents the relative displacement vector with respect to a main frame reference.
M, C, and K are n× n matrices of mass, damping and stiffness of the primary system. f ∈ Rn is the
input force vector such that f = [Fn(t), Fn−1(t), · · · , F1(t)]T . It is possible to transform the effect of the
ground acceleration, z̈(t) ∈ R, as a force acting on each mass by using the vector e = [1, 1, . . . , 1]T ∈ Rn.
In order to express the forces acting on the system in a compact way, let us define:

f (t) = −Mez̈(t) (9)

Substitution of (9) into (8) leads to the linear model of a vibrating mechanical system with n
degrees of freedom with base excitation

Mẍ + Cẋ + Kx = −Mez̈(t) (10)

Figure 2. Model of the main system to be passively controlled.
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A linear or nonlinear dynamic vibration absorber can be then connected over the nth floor of the
primary system for passive vibration control purposes. The main objective is to decrease harmonic
oscillations disturbing a specific vibration mode, near some natural frequency of the main system.

Primary system (10) can be then expressed in terms of modal or principal coordinates
qi(t), i = 1, 2 . . . , n as follows [28,29]

q̈i + 2ζiωni q̇i + ω2
niqi = ΨT f (11)

with
x(t) = Ψq(t) (12)

where q(t) ∈ Rn stands for a vector of modal or principal coordinates. f ∈ Rn represents an external
force vector. Parameters ζi and ωni are the equivalent modal damping and the natural frequency. Ψ is
the n× n modal matrix given by

Ψ =

 ψ11 . . . ψ1n
...

. . .
...

ψn1 . . . ψnn

 (13)

The mathematical model of the flexible structure (10) can be hence described as

q̈i + 2ζiωni q̇i + ω2
niqi = ψ1i f1 + · · ·+ ψni fn (14)

Using notation of operational calculus of Mikusiński [28,30], modal model (14) can be also
written as (

s2 + 2ζiωnis + ω2
ni

)
qi(s) = ψ1i f1(s) + · · ·+ ψni fn(s) + c0,i + c1,is (15)

with s = jω, j =
√
−1. Modal coordinates qi(s) can be then expressed as

qi(s) =
ψ1i f1(s) + · · ·+ ψni fn(s) + c0,i + c1,is(

s2 + 2ζiωnis + ω2
ni
) (16)

where constants c0,i and c1,i depend on unknown initial conditions of the system at t = t0 ≥ 0.
From Equations (11) and (12), displacements xi can be also expressed in notation of operational
calculus as

xi(s) =
n

∑
j=1

ψijψji f j(s) + ψij(c1,is + c0,i)

(s2 + 2ζ jωnjs + ω2
nj)

(17)

This representation leads to the expression

pc(s)xi(s) =
n

∑
j=1

βi(s)
[
ψijψji f j(s) + ψij(c1,is + c0,i)

]
(18)

with
βi(s) = s2n−1 + b(2n−2)is

2n−2 + . . . + b1is + b0i (19)

pc(s) = s2n + a2n−1s2n−1 + · · · a2s2 + a1s + a0 (20)

where pc(s) is an unique polynomial independent of the output variable xi available for parametrical
estimation. Furthermore, pc(s) is known as the characteristic polynomial of the dynamical system.
Here, bji are constants that depend on the roots of pc(s). Roots of the characteristic polynomial (20)
provide the natural frequencies and damping ratios of the flexible structure.

Equation (11) describes the dynamic characteristics of the ith vibration mode and it constitutes
what is known as the modal model, i.e., this describes the system through its modal properties
(mode shapes, natural frequencies, and damping ratios), as opposed to the spatial model (10), where the
system is described by its spatial properties (M, C, and K) [3,29].
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Once the original system (10) has been decoupled by (11) and (12), it is possible to focus on
the vibration mode to be attenuated or damped. Therefore, passive vibration control on the flexible
mechanical structure converges to the primary system configuration of a single degree of freedom
with a secondary system (vibration absorber). The vibration absorption device can be tuned to the
original system either using (3), for the linear case, or (6) and (7) for the nonlinear case (autoparametric
absorber). It is important to mention that although the vibration absorber is tuned to attenuate a single
vibration mode, in fact, it is capable of attenuating the dynamic response of all degrees of freedom
of the primary flexible structure. This situation is shown in the experimental results section of the
present study.

4. Time-Domain and On-Line Algebraic Identification of the Harmonic Excitation

Consider the mechanical system shown in Figure 2 with a dynamic behavior described by the
mathematical model (10). It is possible to use measurements of a single position variable xi in the
synthesis of a modal model based on coefficients ak of the characteristic polynomial (20) [30,31].
When the ground acceleration produces the excitation force f (t) as described in (8), individual
component forces Fi are harmonic. We can then express those forces in notation of operational
calculus as follows

Fi(s) = miΩ2
0 A

Ω2
0

s2 + Ω2
0

(21)

where the frequency Ω0 and the amplitude A is the same for each component of the input force vector
fk. Hence, by substituting (21) in (18) we have:

pc(s)xi(s) =
n

∑
j=1

βi(s)

[
ψijψjimiΩ2

0 A
Ω2

0
s2 + Ω2

0
+ ψij(c1,is + c0,i)

]
(22)

where pc(s) is the polynomial defined by (20). Multiplying (22) by
(
s2 + Ω2

0
)

we obtain:

(
s2 + Ω2

0

)
pc(s)xi(s) =

(
s2 + Ω2

0

) n

∑
j=1

βi(s)

[
ψijψjimiΩ2

0 A
Ω2

0
s2 + Ω2

0
+ ψij(c1,is + c0,i)

]
(23)

(
s2n+2 + a2n−1s(2n+2)−1 + a2n−2s(2n+2)−2 + · · ·+ a1s3 + a0s2

)
xi(s) = −Ω2

0 pc(s) + R(s) (24)

with R(s) = γ0 + γ1s2 + · · ·+ γ2ns2n+1. Constants γk, k = 0, 1, . . . , 2n, depend on the modal matrix
entries ψij, the mass mi of each floor and the initial conditions. Then, we derive 2n + 2 times
Equation (24) with respect to the variable s in order to annihilate the polynomial disturbance R(s).
Next, the result is multiplied by s−(2n+2) and transformed back to the time domain to yield

ν(t) = Ω2
0κ(t) (25)

where
ν(t) = v2n(t) + a2n−1v2n−1(t) + · · ·+ a1v1(t) + a0v0(t) (26)

κ(t) = k2n(t) + a2n−1k2n−1(t) + · · ·+ a1k1(t) + a0k0(t) (27)
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with

v2n(t) =
N
∑
k=0

(−1)N−k N !2

k! (N − k)!2

∫ (k)

t0

∆tN−kxi(t)

v2n−1(t) =
N−1

∑
k=0

(−1)N−k N ! (N − 1)!
k! (N − k)! (N − 1− k)!

∫ (k+1)

t0

∆tN−kxi(t)

...
...

v1(t) =
1

∑
k=0

(−1)N−k N !
k! (N − k)!(1− k)!

∫ (k)

t0

∆tN−kxi(t)

v0(t) =
∫ N

t0

∆tN xi(t)

k2n(t) =
2n

∑
k=0

(−1)2n−k N !(2n)!
k! (N − k)! (N − 2− k)!

∫ (k)

t0

∆t2n−kxi(t)

k2n−1(t) =
2n−1

∑
k=0

(−1)2n−k N !(2n− 1)!
k! (N − k)! (N − 1− k)!

∫ (k+1)

t0

∆t2n−kxi(t)

... =
...

k1(t) =
1

∑
k=0

(−1)2n−k N !
k! (N − k)!2

∫ (k)

t0

∆t2n−kxi(t)

k0(t) =
∫ N

t0

∆t2nxi(t)

Here, N = 2n + 2, ∆t = t− t0, and notation
∫ (m)

t0
Φ(t) is employed to represent iterated integrals

of the form ∫ t

t0

∫ σ1

t0

· · ·
∫ σm−1

t0

Φ (σm) dσm · · · dσ1 (28)

where m is a positive integer. By considering that Ω2
0 is a positive number, we have that

|ν(t)|Ω2
0 = |κ(t)| (29)

Then, we get an expression for on-line and time-domain estimation of the excitation frequency Ω0.
It is possible to avoid singularities and, at the same time, to get a considerably smoother estimation by
integrating Equation (25) two times respect to time as follows

Ω̂0 =

√
νI(t)
κI(t)

, t > t0 (30)

with

νI(t) = e−α∆t
∫ (2)

t0

|ν(t)| , κI(t) = e−α∆t
∫ (2)

t0

|κ(t)| (31)

where e−α∆t is used like a low pass filter with cut frequency defined by the parameter α > 0. In this way,
the numerical estimation process implementation of the frequency of the excitation force is smoothed.

The proposed identification scheme is capable to identify the frequency of the excitation force,
by using measurements of some of the outputs xi with a similar performance. In addition, estimation
of the parameter Ω̂0 does not depend, neither on the amplitude A of the ground acceleration nor the
unknown system initial conditions. Moreover, since measurement noise could be considered as fast
external fluctuations corrupting output signals xi, iterated integrals operate like low pass filters [19,32].
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In this sense, on-line algebraic identification is, at some extent, robust against noise [19–21]. However,
measurement signals should be suitably conditioned and pre-filtered to reduce harmful noise levels.
Otherwise, for operational scenarios where highly large noise is manifested, a considerable degradation
on the estimation performance could occur.

Analysis Based on the Hilbert Transformation

The time-domain and on-line identification scheme is based on the assumption of an approximate
linear behavior of the main structure around its nominal operating conditions. Since the on-line
identification of the excitation frequency of the structure depends on the validity or precision of the
characteristic polynomial (20), it is necessary to have a method or index that indicates the presence
of nonlinearities in the vibrational response of the structure and its effect on its dynamic behavior.
For nonlinearity analysis purposes, we propose to apply the Hilbert transformation HT to the frequency
response function (FRF) of the system. The Hilbert transformation of a particular FRF is given by [33]

HT {FRF(jω)} = − 1
π

pv
∫ ∞

−∞

FRF(jω)

jω− jωc
djω (32)

where the term pv is the Cauchy principal value of the integral. This principal value is necessary since
there is a singularity at jω = jωc in the integrand. Consider that when applying the Hilbert transform
to a FRF(jω), which is complex valued, the real part and the imaginary part of FRF(jω) are related by
the expressions:

Real (FRF(jω)) = HT {Real (FRF (jω))} (33)

Im (FRF(jω)) = −HT {Imag (FRF (jω))} (34)

Relations (33) and (34) are known as the Hilbert transformation pairs [33]. This is only valid
for linear systems. As a consequence, for nonlinear systems the Hilbert transform will return a
distorted version of the original FRF. Therefore, by using these properties of the Hilbert transform
we have a nonlinearity indicator determined by quantifying the distortion on the original FRF under
the action of the Hilbert transformation operator. For this particular purpose, we calculate the cross
correlation coefficient:

ηHi =
∥∥RHT F(0)

∥∥2 (35)

where
∥∥RHT F(0)

∥∥ is the normalized cross correlation coefficient. The numerical value of ηHi is used as
a nonlinearity index. The complex valued function FRF(jω) is the original FRF of the system and HT
is the Hilbert transformation of FRF(jω), hence, the cross correlation coefficient RHT G is given by

RHT F (∆jω) =
∫ ∞

−∞
HT(jω)FRF (jω + ∆jω) djω (36)

The index (35) acts as an indicator of the presence and effects of nonlinearity in a particular
vibrating mechanical system at some specific operation condition. In this work, we use this index to
determine the level of nonlinear dynamic behavior present in the building-like structure. Since the
Hilbert transformation, in an experimental context, is inherently numerical, we need to specify a
concrete linearity criteria. Hence, as reported in [28], it is recommended to consider a value of
0.9 ≤ ηHi ≤ 1.0 for an assumption of approximate linear dynamic behavior of the system.

5. Experimental Results

A series of experiments were performed considering two different case studies. A six-story
building-like structure discretized in six degrees of freedom with a linear vibration absorber is first
implemented. The other case is a different structure discretized in three degrees of freedom on which a
nonlinear vibration absorber is implemented. Both of the structures are made of aluminum alloy and
supported by columns of the same material.



Actuators 2020, 9, 119 10 of 20

The first primary system to be considered is the six-story building-like structure shown in
Figure 3. The sensing elements are IEPE accelerometers attached to each story of the structure
and a high resolution rotary encoder used to take angle measurements of the linear pendulum
absorber. An electromechanical shaker acts as a source of excitation in conjunction with the frictionless
slider for performing experimental modal analysis and performance tests of the vibrations absorber.
The impedance head is used to measure the force input, these measurements are needed for the
application of experimental modal analysis techniques.

Figure 3. Experimental setup of the main system with a linear pendulum vibration absorber.

Modal parameters of the structure are obtained using experimental modal analysis, by averaging
two of the most popular excitation techniques: impact hammer and sine sweep [28,29]. We then process
the corresponding acceleration measurements by applying a FRF-based multiple degrees-of-freedom
method (MDoF) [29]. In particular, we apply the well founded RFP curve fitting method described
in [34], that is, we express the experimental FRF in terms of rational fraction polynomials so the
coefficients ak of the characteristic polynomial (20) can be determined. The transfer function or
estimated FRF for one measurable degree of freedom of the structure can be expressed as a function of
the complex variable s, so that:

αi(s) =
sm + b̂msm−1 + · · ·+ b̂2s2 + b̂1s + b̂0

s2n + â2n−1s2n−1 + · · ·+ â2s2 + â1s + â0
(37)

where m = 2n− 2. Then, the curve fitting method RFP leads to an estimated or fitted FRF (37) such that:

ei(s) = xi(s)− αi(s) ≈ 0 (38)

where ei(s) is the difference or error between the measured FRF and the estimated FRF, which is
constructed by using the coefficients âk and b̂k, xi(s) is defined by Equations (17) and (18).
The description of the technical details of the curve fitting method are explained in [35].
The experimental and fitted frequency response functions for the primary system is described in
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Figure 4, where the peaks shown correspond only to transverse vibration modes. We use only
measurements of the sixth floor of the structure to apply the curve fitting method. Notice the close
relation between the experimental FRF (in solid blue line) and the estimated FRF (in dotted black
line) especially near the peaks or resonances. The modal parameters, frequency and damping ratios,
obtained by solving the roots of the estimated characteristic polynomial or the denominator of (37) are
reported in Table 1.

Table 1. Modal parameters of the six-story building-like structure.

Mode Frequency [Hz] Damping Ratio %

1 1.148 0.15
2 3.39 0.39
3 5.44 0.18
4 7.16 0.19
5 8.53 0.18
6 9.34 0.17

Figure 4. Experimental frequency response function (FRF) of the main system discretized in six dof.

The coefficients of the characteristic polynomial are reported in Table 2. Those coefficients are
used for synthesis of an on-line algebraic identifier (30) for the harmonic excitation force.

Table 2. Estimated coefficients of the characteristic polynomial.

Coefficient Value

â11 1.736
â10 254.8
â9 345
â8 2.408× 104

â7 2.417× 104

â6 1.03534× 106

â5 7.1273× 105

â4 1.97956× 107

â3 8.331231× 106

â2 1.357123× 108

â1 2.72123× 107

â0 1.45834× 108

Then, the characteristic polynomial of the system is

pc(s) = s12 + â11s11 + · · ·+ â2s2 + â1s + â0 (39)

where the constants âk are those reported in Table 2.
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5.1. Non-Linearity Analysis

In order to determine the presence of nonlinearities in the dynamic behavior of the six-story
building-like structure, we apply an analysis of the frequency response shown in Figure 4. Thus,
the non-linearity index defined by (35) is determined. The Nyquist diagram in Figure 5 shows the
comparison between the original FRF in solid blue line and the corresponding Hilbert transformation
in dotted lines. The numerical value of the calculated no-linearity index is

ηHi =
∥∥RHT F(0)

∥∥2
= 0.97 (40)

Figure 5. Experimental FRF of the six-story building-like structure in blue line and its corresponding
Hilbert transformation in dotted black line.

Therefore, it is assumed that the dynamic behavior of the six-story building structure is dominantly
linear and the experimental determination of the coefficients âk of the characteristic polynomial are
valid and reliable for the synthesis of the algebraic identifier for the excitation frequency. Moreover,
this linear behavior adds a foundation to the reliability of the estimated modal parameters.

5.2. Application of a Linear Absorber

The primary system mentioned above is coupled to a pendulum vibration absorber (configured to
work as a TMD) on the top floor. In order to excite the complete system, an electromechanical shaker
is used as shown in Figure 3.

Equations of motions related to the system depicted in Figure 3 which is discretized in seven
degrees of freedom, considering small angular displacements in the secondary system and submitted
to an harmonic forced excitation, are given by

Mẍ + Cẋ + Kx + φ
(
θ, θ̇, θ̈

)
= BF(t) (41)

ma θ̈ + ca θ̇ + kaθ + ψ(ẍ, θ) = 0 (42)

where x = [x1, x2, x3, x4, x5, x6]
T is a vector containing the lateral displacements of each floor, θ is

the angular displacement of the pendulum absorber. The mass, damping and stiffness matrices are
represented by M, C and K, respectively. The input vector is B = [1, · · · , 1]T ∈ R6. According to (9),
the input force F(t) is given by:

F(t) = −z̈(t) [m1, m2, m3, m4, m5, m6]
T (43)

where z̈(t) is the second derivative of ground motion with respect to time. The functions φ
(
θ, θ̇, θ̈

)
and ψ(ẍ, θ) are:
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φ
(
θ, θ̇, θ̈

)
=


0
0
...

−maLθẍ6

 , ψ(ẍ, θ) = −maLθẍ6 (44)

Parameters associated with the pendulum absorber are its mass (ma), length (L) as well as
viscous damping (ca). In the experiments, the base of the structure is directly affected by a ground
motion z(t) = A0 sin(Ωt) with amplitude A0 and excitation frequency Ω. Due to we are interested in
attenuating the first transverse vibration mode, the value of Ω is close to the first resonance frequency
ω1. According to (3), the linear pendulum vibration absorber must be tuned in such a way that

Ω = ωa =
√

gL−1 ∼= ω1 (45)

Usually, under stable operating conditions, the linear pendulum vibration absorber can be
appropriately designed to passively control any vibration mode associated to ωi (i = 1, 2, . . . , 6)
of the main system, depending on the narrow frequency bandwidth where Ω is acting.

The dynamic behavior of the six-story building-like structure when the TMD-pendulum
absorber is not tuned is described in Figure 6, where the amplitudes of vibration in stable state
are x1(t) = 10.58 mm, x2(t) = 15.85 mm, x3(t) = 20.61 mm, x4(t) = 23.86 mm, x5(t) = 25.28 mm and
x6(t) = 27.18 mm. Figure 7 shows the dynamic response of the flexible structure when experimentally
(45) is satisfied. Now, the amplitudes of vibration in stable state are x1(t) = 0.57 mm, x2(t) = 1.33 mm,
x3(t) = 1.61 mm, x4(t) = 2.04 mm, x5(t) = 2.55 mm and x6(t) = 3.34 mm, resulting in an average
absorption percentage close to 91%.

The linear absorber time history response, when the secondary system is tuned, is described in
Figure 8. The stable state amplitude is θ(t) = 0.22 rad.

Figure 9 shows the performance of the on-line estimator (31) for the excitation force frequency.
Acceptable estimations are obtained after 0.5 s. The numerical value of the estimated frequency is
Ω̂ = 1.069 Hz.

Figure 6. Dynamic response of the primary system without pendulum absorber (Tuned Mass
Damper case).
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Figure 7. Dynamic response of the primary system with pendulum absorber (Tuned Mass
Damper case).

Figure 8. Dynamic performance of the linear pendulum absorber.

Figure 9. On-line estimation of the frequency of the excitation force using displacement measurements
of the sixth floor or degree of freedom.

5.3. Application of a Nonlinear Absorber

With the intention of showing that it is also possible to use the modal decomposition for the
tuning of a nonlinear vibration absorber (independently of the number of degrees of freedom in the
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primary system), certain experiments were carried out with a pendulum type absorber, implemented
in autoparametric form.

The experiment consisted in a flexible structure discretized in three degrees of freedom where a
nonlinear vibration absorber (pendulum type) is coupled as shown in Figure 10. In this second case,
we also use a high resolution rotational encoder to take angle measurements of the autoparametric
pendulum absorber and a IEPE accelerometer, attached to the third story of the structure to take
vibrations measurements. Once again, the electromechanical shaker acts as a source of excitation in
conjunction with the frictionless slider. In this configuration, it is necessary to add a spring element
in the secondary system in order to provide the pendulum with potential energy since its rotational
dynamics occurs in a horizontal plane, so there are not gravity effects to be taken into account
(see Figure 10). It results in the following nonlinear dynamic model

Mẍ + Cẋ + Kx + φ
(
θ, θ̇, θ̈

)
= B1F(t) (46)

ma θ̈ + ca θ̇ + kaθ + ψ(ẍ, θ) = 0 (47)

where M, C and K are the 3× 3 matrices of mass, damping and stiffness. B1 = [1, 1, 1]T is an input
vector. Functions φ

(
θ, θ̇, θ̈

)
and ψ(ẍ, θ) are defined as:

φ
(
θ, θ̇, θ̈

)
=

 0
0

−m4L(θ̈θ + θ̇2)

 , ψ(ẍ, θ) = [−m4Lθẍ3] (48)

The parameter associated with the pendulum absorber is its equivalent mass ma = m4L2, where L
is the pendulum length.

Figure 10. Experimental setup of the main system with an autoparametric pendulum absorber.
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It is evident that the nonlinear coupling between both subsystems is by means of φ
(
θ, θ̇, θ̈

)
and ψ(ẍ, θ) which are defined by (48). These nonlinear functions allow the implementation of the
autoparametric pendulum absorber in one specific vibration mode of the primary system.

The frequency response function of the primary system with nonlinear pendulum absorber is
described in Figure 11. In this type of nonlinear vibration systems, the frequency response function
remains unchanged, i.e., no additional peaks are added in the aforementioned graph (which is a typical
dynamic situation using a TMD absorber). Only the natural frequencies of the flexible structure change
slightly in value due to the added mass (mass absorber).

Figure 11. Experimental FRF of the three-story building-like structure with autoparametric
pendulum absorber.

5.4. Nonlinearity Analysis

Both primary systems analyzed in this work are assumed to be linear due to the nominal operating
conditions considered, in addition to the characteristics of its construction material. Nevertheless,
the vibration absorption scheme used to mitigate undesired effects of the first vibration mode of the
structure is inherently non linear. In order to evaluate the influence of the nonlinear autoparametric
pendulum absorber, we perform a nonlinearity analysis, using the nonlinearity index defined by (36),
on the complete system (included the nonlinear vibrations absorber). The Nyquist diagram of the
corresponding FRF of the system is shown in Figure 12 with its corresponding Hilbert transformation.
The dashed black line, representing the Hilbert transformation of the FRF, does not show an
important distortion.

Figure 12. Experimental FRF of the three-story building-like structure with autoparametric absorber in
blue line and its corresponding Hilbert transformation in dotted black line.

The low distortion in the Nyquist diagram produced by the application of the Hilbert
transformation suggests a linear behavior of the system in its nominal operational conditions.
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The nonlinearity index (35) of this particular building like structure including the nonlinear vibrations
absorber is:

ηHi = ‖RHG(0)‖2 = 0.92 (49)

Thus, we can use the coefficients of the characteristic polynomial reported in Table 3 for the
synthesis of an on-line algebraic identifier (31) for the harmonic excitation force.

The modal parameters obtained from experimental modal analysis by applying the curve fitting
method for the case when a pendulum absorber (nonlinear-type) is applied are given in Table 4.

Table 3. Estimated coefficients of the characteristic polynomial.

Coefficient Value

â5 4.6
â4 4417
â3 1.4134× 104

â2 3.95435× 106

â1 6.64657× 106

â0 3.4632423× 108

Table 4. Modal parameters of the three-story building-like structure with nonlinear pendulum absorber.

Mode Frequency [Hz] Damping Ratio %

1 1.03 0.11
2 5.26 0.75
3 9.03 0.34

Coefficients of the characteristic polynomial are reported in Table 3. Those coefficients are used
for the synthesis of an on-line algebraic identifier (30) for the harmonic excitation force. Figure 13
shows the performance of the on-line estimator (31) for the excitation frequency. Estimations are stable
after only 0.5 s. The numerical value for the on-line estimation parameter is Ω = 1.039 Hz after 0.48 s.

Figure 13. On-line estimation of the frequency of the excitation force using displacement measurements
of the third floor or degree of freedom with pendulum absorber (nonlinear-type).

On the other hand, the dynamic performance in energy terms of the system shown in Figure 10,
is described in Figures 14 and 15, respectively. Once the transient response has disappeared the
autoparametric absorber shows good dynamic performance dissipating a large percentage of the
external energy supplied to the main structure.
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Figure 14. Graph of the total energy in the main system with and without nonlinear pendulum absorber.

Figure 15. Graph of the total energy in the autoparametric pendulum absorber.

6. Conclusions

In the present work, a comparison of a passive vibration control scheme applied to a flexible
structure is studied experimentally. In order to mitigate resonant excitations, associated with the
first mode of vibration, a pendulum absorber was implemented in two different configurations.
It was observed that when the passive absorber was configured to work as an autoparametric system
(nonlinear case), there were no significant changes in its frequency response function, this is because
additional resonances are not introduced when this kind of dynamic vibration absorber is used,
in contrast with the TMD configuration where this is a well known disadvantage.

Basically, the main advantage of an autoparametric vibration absorber is its property of high
energy absorption exactly in resonant excitation. That is, when the external and internal resonance
(autoresonance) conditions are tuned, the external energy affecting directly the main structure is
transferred as kinetic energy (motion) to the autoparametric absorber and this situation results
reasonable, because then the primary system can be protected from worst case dynamic conditions
(resonance). It is important to mention that in both passive vibration absorbers, the effective damping
should be small, otherwise the absorption capability would be significantly reduced. It is evident that
there is a compromise about the amount of damping existing into the primary system and absorber,
because stability and performance depend on this type of criteria. In general, small damping results in
better vibration attenuation properties but at the same time makes the complete system more sensitive
to endogenous perturbations. In addition, the performance of the on-line algebraic estimator for
frequency of the excitation force showed a good efficiency using measurements of only one degree of
freedom of the building-like structure, having the advantage of its estimation speed (it is achieved in
less than a cycle of the original signal) in contrast with the fast-Fourier-transform (FFT)-based methods
where at least one cycle of the signal is needed. Finally, the nonlinearity index tested here is easy
to program and compute. In particular, we have assumed a value of ηHi ≥ 0.9 to establish that a
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given system is dominantly linear. Subsequent investigation on passive/active dynamic vibration
absorption based on on-line algebraic identification of modal parameters and excitation forces on
nonlinear multi-delay flexible structures will be considered in future work. Future research work will
consider the implementation of multiple-frequency vibration absorption devices as well.
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Abbreviations

The following abbreviations are used in this manuscript:

FRF Frequency response function
RFP Rational fractional polynomial
PV Principal Cauchy Value
TMD Tuned mass damper
dof degree of freedom
ωi Natural frequency of the ith mode or resonance
ζi Damping ratio of the ith mode or resonance
s Complex variable s = jω
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