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Abstract: In this paper, an AGV path planning method fusing multiple heuristics rapidly exploring
random tree (MH-RRT) with an improved two-step Timed Elastic Band (TEB) is proposed. The
modified RRT integrating multiple heuristics can search a safer, optimal and faster converge global
path within a short time, and the improved TEB can optimize both path smoothness and path
length. The method is composed of a global path planning procedure and a local path planning
procedure, and the Receding Horizon Planning (RHP) strategy is adopted to fuse these two modules.
Firstly, the MH-RRT is utilized to generate a state tree structure as prior knowledge, as well as the
global path. Then, a receding horizon window is established to select the local goal point. On this
basis, an improved two-step TEB is designed to optimize the local path if the current global path is
feasible. Various simulations both on static and dynamic environments are conducted to clarify the
performance of the proposed MH-RRT and the improved two-step TEB. Furthermore, real applicative
experiments verified the effectiveness of the proposed approach.

Keywords: AGV; path planning; RRT; TEB; RHP

1. Introduction

With the merits of high automation and safe and reliable operation, automatic guided
vehicles (AGVs) play a significant role in various fields [1], especially in transportation, the
logistics industry [2] and autonomous driving [3]. AGV is an intelligent system integrating
environment perception, planning, decision and control, and belongs to the category of
wheeled mobile robot [4]. As a fundamental research topic in robotics, path planning
has been received considerable attention. Generally speaking, the global path planning
problem can be defined by determining a collision-free trajectory between the robot’s start
position and its destination. In addition, local trajectory optimization is also important
because of the time optimal and energy optimal requirement. In closed environments such
as factories, fixed guided lines are adopted in order to improve reliability [5]. However,
open scenarios need a safer and more real-time path planning method, so as to deal with
uncertain obstacles. To achieve full autonomy in increasingly complex and highly dynamic
environments, the efficiency and robustness of the trajectory generation are essential.

Due to its comprehensive applications, many researchers focus on the study of different
path planning algorithms. The artificial potential field algorithms (ARFs) find the feasible
trajectory by following the direction of the steepest descent of the potential [6,7]. However,
they often end up in a local minimum. The graph searching algorithms, such as the
Dijkstra [8] and A* [9], can always find the optimal trajectory if it exists. However, the time
cost and memory usage increase exponentially as the problem scale increases. Sampling-
based algorithms, such as the probabilistic roadmap algorithm (PRM) [10] and rapidly
exploring random tree (RRT) [11], have been proven effective in solving many tough
planning problems, particularly with real-time nonlinear systems. The sampling-based path
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planners incrementally construct the set of paths by iteratively adding random samples. It
is noted that the sampling-based algorithms provide a probabilistic completeness. As the
number of iterations goes to infinity, the probability of finding a solution path approaches 1
if it exits. Both sampling-based and graph search algorithms can be used to perform as global
planners. Limited by global prior map, the latter are usually used in static environment.

In a dynamic environment, the planned trajectory may become invalid. The path
should be optimized to respond to the dynamic environment in real time for AG. Incremen-
tal search algorithms are preferable over the traditional methods in dynamic environments
due to serveral additional candidate paths. The tree structure of the RRT makes it useful
for incremental path planning [12]. However, the tree structure of the original RRT focuses
on the speed in finding planning solutions and generating trajectories, with less regard to
the solution optimality and stability [13]. Following the original RRT, many variants of
the RRT algorithms appeared inspired concerning heuristic elements. RRT-connect works
by incrementally building two RRTs rooted at the start and the goal configurations [14].
The trees each explore space around them and also advance towards each other through
the use of a simple greedy heuristic. Apart from the above-mentioned types of methods,
EB-RRT combine time-based RRT with elastic band (EB), and achieve the optimal heuristic
trajectory in the homology class of the heuristic trajectory [15]. While the above methods
reduced the path-searching time, Karaman et al. [16] proved that the RRT converges surely
to non-optimal values and developed an asymptotically optimal RRT-based path plan-
ning scheme called optimal rapidly exploring random tree (RRT*), which makes use of
a new step to rewire the neighboring vertices of the newly inserted node. The dual tree
RRT* (DT-RRT*) separates the extension and optimization procedure using a double-tree
structure [17]. One is original RRT, another is modified RRT*. In addition, Wang et al. [18]
proposed KB-RRT* algorithm, which added kinematic constraints and used branch pruning
for further optimization. As a significant extension of the RRT*, Informed RRT* establishes
oval shaped sampling space to reduce the path length of the RRT* [19].

In contrast to sample-based methods, a richer space of trajectory options are output by
the optimization. The initial trajectories generated by RRTs mostly need to be optimized,
not only concerning path length but also path smoothness. Therefore, the Bezier curve
is incorporated in RRT algorithms to achieve path smoothing, where a novel local path
planner is proposed to generate a smooth path. Besides, the timed elastic band (TEB), first
introduced in [20], one of the value-optimal based methods, can be used to quickly adjust
the current trajectory and is good at local optimization. Its principle is similar to rubber
band deformation, connecting the starting point and the target point, solving by imposing
a series of constraints and designing the objective function, which is essentially a multi-
objective function optimization problem. As a result, TEB is suitable for incorporating with
RRT to jointly plan the optimal path.

Considering transport logistics applications and constraints of AGVs, optimal criteria
could be based on one or more conditions such as shortest physical distance, smoothness,
low risk, less fuel requirements, maximum area coverage, and low energy consumption. So
far, few works consider both dynamics and kinematics, and most of them prefer improving
convergence speed while ignoring the path optimality. For differential wheeled AGVs in
traffic and logistics industry, planning path should satisfy at least three basic requirements,
high safety, stability, and real-time. Hence, in the perspective of path planning for differ-
ential wheeled AGVs optimal path refers to finding a feasible and smooth solution with
optimized performance according to the above criteria.

Inspired by the above methods, an AGV path planning approach is proposed to meet
the above demands. Firstly, five heuristic functions are introduced in MH-RRT to generate
an optimal and safe global path. Secondly, an improved TEB is presented as the local path
optimizing scheme. Besides, the rolling horizon planning strategy is employed to improve
the flexibility and follow the global path stably. The main contributions of this paper can
be summarized as follows:
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• A multiple heuristic strategy is designed for the RRT to solve the problems of non-
optimality, including collision detection, goal-biased guidance, bidirectional extension,
goal-point attempt and branch pruning.

• An improved multiobjective local path topology optimization method based on the
TEB is put forward to reduce the run time with better path smoothness simultaneously,
which divides the process into path decision-making and speed decision-making.

The remainder of the paper is organized as follows. Section 2 presents the problem
statements of path planning, RRT and TEB. Section 3 states the proposed path planning
system to provide the details of MH-RRT and the improved two-step TEB. The validity
simulations and real applicative experiments are explained in Section 4, as well as the
comparisons with other traditional or state-art-of-work methods. Section 5 gives the
conclusion and future work.

2. Preliminaries

In this section, we introduce the preliminaries about path planning problem and
design criteria in Section 2.1, basic RRT algorithm in Section 2.2, and basic TEB algorithm
in Section 2.3, respectively.

2.1. Path Planning Problem

In this paper, we take AGV as a differential drive mobile robot and address the
path planning problem based on combining sampling-based with value-optimal based
algorithms. Let x be the state, then xinit and xgoal present initial state and goal state.
Obviously, xstart ∈ Ω and xgoal ∈ Ω. Let Ω be the state space, Ωobs the obstacle space,
and Ω f ree = Ω−Ωobs the free space. Thus, the goal of path planning of AGV is to compute
a feasible and safe trajectory σ : [0, T]→ Ω f ree such that σ(0) = xstart, and σ(T) = xgoal .

The common path quality metrics are described below. Safety metric means minimum
safe distance must be maintained. The length of path is defined as the sum of distances
between all adjacent path points, and the shorter, the better. Besides, smoothness with
smaller steering angles and real time with efficient computation are both essential quality
metrics. We pay attention to these five metrics and evaluate our proposed method.

2.2. Rapidly Exploring Random Tree (RRT)

The RRT is devised to efficiently search the whole state space with a sampling scheme.
We use x to denote the state information of a node, and use edge linked two nodes to
denote the transition from one state to another. An illustration of the basic RRT algorithm
is given in Figure 1. Given an initial position xstart as the root of random tree T, the RRT
planner iteratively samples a random sample node xrand from the state space. Then, it
explores and selects the nearest node xnearest already in the tree to connect the sampled
node xrand with a fixed incremental distance4step. If the distance between xnearest and xrand
is larger than ε, xrand evolves as xnew. Next, a CollisionFree function detects whether there
is any obstacle lying between xnearest and xnew. If the collision detection succeeds, xnew will
be added as a vertex to the state tree T. An edge from xnear to xnew is also added. This loop
lasts until the goal state xgoal is found or the number of iteration reaches the threshold.

Figure 1. Illustration of the sample and extension mechanism of the RRT algorithm.
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2.3. Timed Elastic Band (TEB)

The TEB is a local planner for on-line trajectory optimization. Building upon the
work of Elastic Band (EB), the TEB approach incorporates temporal information directly
into the optimization problem and thus accounts for the minimization of transition time
under kinodynamic constraints. Let Q = {si}i=1,...,n denote a sequence of n poses si =
[xi, yi, βi] ∈ R2 × S1 linking together an initial and a final configuration, with s0 fixed at
the origin. The time interval required to transit from the current pose to the next pose
is described as ∆T. Let τ = {∆Ti}i=1,...,n−1 denote a sequence of strictly positive time
intervals. So TEB is defined by a tuple of parameters subject to optimization:

B := (Q, τ) (1)

with the constraints such as initial s1 and final configurations sn, kinematics hi between
two consecutive poses si and si+1, limited translational velocity vi and acceleration ai and
minimum clearance from obstacles oi, the TEB optimization problem is formulated as a
nonlinear program:

min
B

n−1

∑
i=1

∆T2
i (2)

subject to 

s1 = ss, sn = sg, 0 ≤ ∆Ti ≤ ∆Tmax

hi(si+1, si) = 0,
oi(si) ≥ 0,
vi(si+1, si, ∆Ti) ≥ 0, (i = 1, 2, ..., n− 1)
ai(si+2, si+1, si, ∆Ti+1, ∆Ti) ≥ 0, (i = 2, 3, ..., n− 2)
a1(s2, s1, ∆Ti) ≥ 0, an(sn, sn−1, ∆Tn−1) ≥ 0

(3)

In Equation (3), ss is the current AGV state obtained from localization and sg denotes
the goal state. ∆T is bounded from above to ∆Tmax to accomplish an appropriate discretiza-
tion of the continuous time motion, described in more detail in the following paragraphs.
The TEB is illustrated in Figure 2.

Figure 2. Illustration of the TEB algorithm. The TEB is a sequence of AGV poses forming a trajectory.
Consecutive poses are tied to one another by a time interval.

The TEB approach further investigates the application of unconstrained optimization
techniques. It utilizes Levenberg–Marquardt for solving this nonlinear least-squares prob-
lems due to its proper balance between robustness and efficiency. We adopt the optimized
TEB with the g2o-framework based on hyper-graph. What is more, the TEB approach
defines a closed-loop predictive control strategy in order to account for disturbances, map,
and model uncertainties and dynamic environments that guides the AGV from its current
state ss towards a goal state sg. Since the resulting set of feasible poses is non-convex, the
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presence of obstacles introduces multiple local minima. Therefore, finding local minima
coincides with the extraction of distinctive topologies. After obtaining many feasible can-
didate trajectories, homologous trajectories defined in [21] are removed by filtering. The
non-homologous trajectories left are optimized in parallel, from which the local optimal
path is selected.

While the trajectory is optimal, optimizing multiple paths at the same time requires
high computing resources in practice. Sometimes the planning interval is much longer
than the vehicle control interval, which cannot meet the real-time requirements of AGV.
To deal with above issues, an improved two-step TEB is proposed. It is described in more
details in the following section.

3. Methodology
3.1. System Overview

In this section, a novel fusion method based on a global planner (MH-RRT) and a
local planner (the improved TEB) is proposed for dynamic path planning. As is shown in
Figure 3, the path planning system is composed of two main parts. At first, a modified
RRT algorithm focuses on planning a feasible heuristic trajectory on the basis of the known
global map. Then the improved TEB is responsible for optimizing the global trajectory
after perceiving the local environment. The key point is utilizing the Receding Horizon
Planning (RHP) to continuously generate local goal points until the AGV reaches the final
goal. However, global planner will explore a new global trajectory when the local goal
point is blocked by obstacles. Otherwise, the local path in sliding windows is optimized by
the improved TEB and followed by control system in turn until arriving at the goal point.
The proposed method is described as follows in detail.

Figure 3. Illustration of the system overview. The path planning system is composed of two main
parts: The global path planning and the local path optimization.

3.2. Mutiple-Heuristics-RRT

In this section, the MH-RRT is proposed for dynamic path planning. The global path
searching module is originated from RRT widely used for mobile robot. Yet, non-optimal,
strong random and node redundancy are still unsolved. Aiming at above issues, we discuss
a multiple-heuristics-RRT deployed five admissible and informative heuristics to speed
up the searching in RRT. The main idea includes collision detection, goal-biased guidance,
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bidirectional extension, goal-point attempt and branch pruning strategy. The framework of
the improved MH-RRT algorithm is presented in Algorithm 1.

Algorithm 1: Multiple-Heuristics-RRT
Input: xstart, xgoal
Output: Ppath

1 T1.Init(xstart); T2.Init(xgoal);
2 for i = 1→ N do
3 xrand ← GoalSample();
4 if not Extend(T1, xrand)= Collided then
5 GoalAttempt();
6 if Connect(T2, xnew)= Reached then
7 Pseg ← GetPath();
8 Ppath ←Prune();
9 return Ppath

10 end
11 end
12 Swap(T1,T2);
13 end
14 return False;

In the MH-RRT, the global path planning problem is formulated using the start state
xstart, the goal state xgoal . Firstly, two trees, T1, T2 are initialized with the start state xstart
and the goal state xgoal , respectively. Secondly, a new state xrand is sampled randomly
guided by goal point. Thirdly, the Extend function taking into account the collision is used
to guide the tree growth. What is more, a novel GoalAttempt function is proposed to help
the generated state try to link the final state with a certain probability. In each iteration,
one tree is extended towards xrand followed by GoalAttempt and the other tree makes
attempt to connect the new state xnew. The roles are reversed by using the Swap function.
If the Connect function finds that T2 can reach the new state xnew (e.g., there is no obstacle
lying between the state xnew and the state x2 from T2), the GetPath function will find a
broken line Pseg connecting T2 and xnew. That means two trees become connected and
Prune function is used to delete the edges with redundant turning point. Finally, a feasible
path Ppath connecting xstart and xgoal is found. Otherwise, it reports False when the global
planner runs for the specified N iterations. Five heuristics are described as follows in detail.

3.2.1. Collision Detection

In order to speed up the detection speed, we divide collision detection into two steps:
rough detection and fine detection. Rough detection distinguish obstacles whether away
from current state. And then it runs for further fine detection. Here, we adopt bounding
boxes to present obstacles, the gaps between the bounding boxes and the obstacles can
guarantee a safe distance. Thus, less computation time improves detection efficiency via
two steps.

3.2.2. Goal-Biased Guidance

Aiming to reduce the exploration of invalid states, we combine RRT with the idea of
goal-bias, which contributes to search efficiency [22]. With the goal-biased strategy, the im-
proved RRT firstly presets a goal-biased probability named p0 and a random probability
based on uniformly samples named p. If p > p0, it obtains a random state by uniformly
sampling in configuration space, otherwise it sets the goal point xgoal to next state xrand.
It is noted that p0 usually less than 0.1 (0.1 in this paper), or state tree expands totally
towards the target, leading to incomplete searching. The goal-biased strategy not only
keeps the random property of the RRT algorithm, but also speeds up the convergence to
the goal state.
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3.2.3. Bi-Direction Extension

Bi-directional search method is a simple and effective idea to overcome the limi-
tation that the number of states increases exponentially in large scale or complex envi-
ronments [23]. The bi-directional RRT algorithm simultaneously expands two RRT trees
towards each other from the start state xstart and goal state xgoal , respectively. In each
iteration, an attempt is made to connect the nearest vertex of the other tree to the new
vertex after extending one tree. Then, the roles are reversed by swapping the two trees.
When the distance between the nearest vertices of the two trees is less than the connection
threshold, the two trees are considered to be close enough to be connected. The two trees
are maintained all the time until they become connected and a solution path is found.
With greedy heuristic, the idea of bi-direction extension not only benefits searching process
but also keeps rapid and uniform exploration properties.

3.2.4. Goal-Point Attempt

Goal-point attempt is a novel heuristic rule which is proposed for solve issues as
follows. Firstly, when current state is closed to the goal point as shown in Figure 4, it may
take much more time to connect to the goal state due to random expansion. In addition,
it is difficult to have a primitive end exactly in the goal state because of the discretized
control input. Whenever a trajectory passes the collision and dynamic feasibility check,
the searching is terminated in advance. The trajectory connects the current state xc to the
goal state xg computed using the same approach in RRT. While it is uncertain, this strategy
is effective especially in sparse environments. Since once it attempts successfully, it will
terminate earlier and prevent the nodes hesitating to converge to the goal point.

(a) The extension of RRT without
goal attempt.

(b) Illustration of the searching process with goal attempt.

Figure 4. Illustration of the searching process without/with goal attempt. In (a), states in red circle
are very closed to the goal point. However it takes much more time to expand randomly, like
redundant expansion in yellow circles. In (b), dotted lines in red mean failed attempts, while the
green means it succeeds in connecting to the goal point.

As illustrated in Figure 4, black edges mean present exiting tree branches. The two
red lines indicate that both state A and state B make goal attempt without success, owing
to the rectangular obstacle. However, the green trajectory attempted from point C succeeds
connecting to the goal point and the searching finished. What is more, the gray edges
suggest next expansion branches if we continue searching without successful goal attempt.
Thus, it can be seen a third of searching process is left out. Theoretically, attempting
to connect to the goal costs extra computation to detect collision every time it searches.
Besides, nodes far away from the destination are less likely to reach the goal point directly.
Consequently, we investigate the goal-point attempt probability function as shown in
Equation (4).

P(d) =
α

1 + ed + λ (4)

Here we limit the probability less than 0.1 to reduce the online computational burden and
ensure sufficient trials. d denotes the distance from new state to goal point, and Lm denotes
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total distance from start point to destination, and P(d) shows the different probability.
When d is small, new point and the goal point are only a short distance away which could
employ a larger probability for successful attempt, while for points far away from the goal
point, it is not necessary to try it frequently.

3.2.5. Branch Pruning

Too much redundant nodes cause longer and rough trajectory. Thus branch pruning
strategy is introduced in our method as a heuristic for better global planning solution.
After finding out a feasible path, all states have been generated by taking into account the
above four heuristics. And then, the Prune function will implement the branch pruning
strategy. We take the start state as xA and check if collides from the goal point xgoal as xB.
If the whole path from xA to xB does not intersect with any collision, those nodes are all
deleted which locate between xA and xB. Therefore, path with branch pruning has fewer
nodes and curves. Furthermore, it is considered that pruning path is shorter and optimal
from the trigonometric inequality. To summarize, collision detection guarantees the safety
and feasibility of the path, while goal-biased guidance improves computation efficiency.
Bi-direction extension mechanism guarantees that the connection between two adjacent
states is optimal. Once goal attempt succeeds, the running time will be greatly reduced.
Last but not the least, branch pruning brings smoother path. Improving the navie RRT
with multiple heuristics will avoid redundant states and circuitous paths, contributing to
high quality solution.

3.3. The Improved Two-Step TEB

Local path optimization is essential since the rough global path generated by the
improved MH-RRT is hard for AGVs to track directly. TEB adopts topology optimization
to all non-homologous paths at the same time after filtering homologous paths, which
consumes much more computation resources. As a result, it sometimes cannot meet the real-
time control requirements. On the basis of above problems, an improved two-step topology
optimization strategy is proposed: path decision and speed decision. The pseudocode of
two-step TEB local path planner is described in Algotithm 2.

Algorithm 2: Two-step Optimization

1 Ps ← Sample();
2 Pnh ← HomotopyFilter(Ps);
3 SortPath(Ps);
4 Pn ← ChooseCandinate(Pnh);
5 for i = 1→ n do
6 xrand ← Teb_Optimization(Pi);
7 end
8 return Ptraj;

Similar to the original topology optimization, two-step topology optimization firstly
selects non-homologous paths Pnh from all sampled paths Ps. In contrast, we firstly sort
all sampled paths Ps and adopt the path decision to select only the first n paths. Sorting
rules include both path length and distance to obstacles. Next, optimizing fewer rough
trajectories instead of all non-homologous paths thus cost less computation.which have
not been constrained by kinodynamic, thus cost less computation. The second step, speed
decision, is optimizing the selected n paths considering TEB objective function including
kinodynamic constrains. It seems like adding poses and time to these rough trajectories
and deciding the AGV’s speed. Finally, compare these paths after optimization and choose
the optimal one. In Figure 5, three chosen paths in different colors are better than others
for AGVs to track. Aborting terrible paths and optimizing the good reduces unnecessary
computation, and gets the optimal path as the naive topology optimization strategy does.
To sum up, decision followed by optimization is superior to original optimization firstly.
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Rough paths decision provides initial solutions to speed decision, leading to computation
efficiency and real-time control.

(a) The original topology
optimization.

(b) The improved topology
optimization.

Figure 5. The topology optimization of the improved two-step TEB. A denotes the start point, and B
denotes the goal point.The original TEB in (a) selects the top n; there are three paths from all sampled
paths. The improved two-step TEB in (b) chooses the only optimal path after speed decision.

3.4. Receding Horizon Planning

When the AGV drives in an unknown environment, it has to follow the global path
and optimize its local trajectory frequently due to the limited sensing range. To improve
efficiency, a receding-horizon planning scheme is introduced. As illustrated in Figure 6,
the five-point star denotes global goal point, while red intersection point means local goal
point. Obviously, the local goal point is mostly not the goal point in global. The black curve
connecting AGV to goal point is the global path generated by MH-RRT. dm presents the
local planning distance limited by sensors, and here we use a square in a red dotted line to
indicate the whole sensing range. Therefore, the local planner only optimizes trajectory in
the square window, denoted as a red curve. Once AGV arrives at one local point and drives
outside this range by control system, it drives into the next receding horizon window. If
there is any obstacle lying on the path from AGV to the local goal point, it has to re-plan a
global path by MH-RRT and repeat the above steps. In the square window, AGV can only
follow part of local planning trajectory in fixed intervals, as the green curve in Figure 6. It
indicates the start state of next local planning. Guided by the global path, the local planner
does not stop running by horizon optimization recedes until AGV reaches the goal point.
Then, the planning is successful and terminated. In our work, the re-planning is triggered
in two situations. Firstly, it is called at fixed intervals of time to update the trajectory
periodically using the most up-to-date environmental information. Secondly, it is triggered
if the current trajectory collides with newly emergent obstacles, which ensures that a new
safe global trajectory is available as soon as any collision is detected.
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Figure 6. The combination planning strategy for a limited sensing range. The black curve and the
red curve are the trajectories before and after the optimization. Circular obstacles are known.

4. Simulation and Experiment

In this section, simulations and experiments are conducted to illustrate the feasibility
and merit of the improved two algorithms. In the first simulation, the global path plan-
ning method MH-RRT is compared with other static path planning algorithms. Another
simulation is conducted to validate the effectiveness of the proposed two-step TEB local
planning algorithm in robot operating system (ROS) simulator Rviz. Specifically, each
planner was executed 100 times for three different maps and results were compiled from
these trials. What is more, the two algorithms combined by receding-horizon planning
scheme are tested 30 times both in static and dynamic simulator environments. Simulations
are conducted in Python, a computer with Intel Cure CPU i5-6500, 3.20 GHz, and 8-GB
memory is used. Furthermore, the proposed complete path planner is applied on a robot
(turtlebot2) for navigation to verify its effectiveness for challenging practical applications.

4.1. Comparison in Global Path Planning

The first simulation is conducted to validate the effectiveness of the improved MH-
RRT in static path planning. Another eight path planning algorithms except the MH-RRT
are compared in different metrics. Firstly, the naive RRT [11], RRT-Goal-biased [24], RRT-
Connect [14], RRT* [16] and Informed RRT* [19] are selected for comparison, which are all
the improvements of the RRT algorithm by inserting different heuristic functions. Besides,
PRM [10] is selected which belongs to the same category as RRT. Lastly, two graph searching
algorithms, Dijkstra [8] and A* [9], are chosen as another kind of path planning algorithm.

4.1.1. Simulation in Different Maps

As is shown in Figure 7, three maps are designed, called map S, map Dense and map
Gap, and all map sizes are 50 × 50 m. Coordinates of start position and goal position are
(2, 2) and (48, 48), respectively. The gray shadows around bounding boxes are expansion
areas of obstacles. As the AGV is usually considered as a point, expanding the obstacles
can guarantee safety to some extent. Here we adopt 0.5 m by taking AGV’s size into
consideration. Two indicators are used to evaluate the performance: Path length and
execution time. The path length shows how far AGV moves to the goal. The planning time
presents how long it takes to find out the global path.
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(a) (b) (c)

Figure 7. Three different maps. The start position is denoted as a blue point while the goal is green.
(a) Map S.; (b) Map Dense.; (c) Map Gap.

As Figures 8 and 9 show, the planning time of the MH-RRT, Dijkstra, A* and RRT-
Connect planners in these three environments is well within realtime-capable requirements,
with both less than 0.5 s, with a short advantage for RRT-Connect. For the path length
metric, MH-RRT, RRT* and Informed RRT* perform very similar. Informed RRT* has a
slightly lower value than the others but has much longer planning time. These first results
highlight that the MH-RRT gives consideration to faster convergence speed and shorter
path length. From comprehensive indications, the MH-RRT improves the quality of the
generated paths.

Figure 8. Result of planning time for the nine algorithms in three maps.

Figure 9. Results of path length for the nine algorithms in three maps.
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4.1.2. Comparison in Global Path

There are more obstacles surrounding the AGV in map Dense. Therefore, the results
in map Dense are compared in detail. The evaluation covers another three metrics except
path length and planning time. For RRT-based planners, the iteration times can effect the
planning time, too. Moreover, the number of valid nodes or states in the searching tree
indicates the smoothness of the trajectory’s curve. It is noted that Dijkstra, A* and PRM do
not evaluate the above two metrics. Besides, the success rate declares whether the planner
finds a collision-free trajectory or not. In each scenario, the execution is repeated 100 times.

Detailed results are listed in Table 1. It is obvious that the success rate of all seven
sampling-based planners is 100%, due to complete probability. Besides, another two
algorithms achieve complete success, too. However, the proposed MH-RRT executes fewer
iteration times, which slightly increases computation efficiency. Figure 10 depicts the paths
generated by the improved MH-RRT and other path planning algorithms. Observations
for the number of MH-RRT path states are similar to RRT-Connect, while other RRT-based
planners have many more branches. In addition, MH-RRT and Informed RRT* produce
paths not only smoother but less prone to causing sudden motion. Note the path length
(depicted in Figure 10) is a little shorter for MH-RRT than most of the paths, signifying
better results.

Table 1. Experiment metrics.

Planning Path Iteration Valid Success
Time (s) Length (m) Times Nodes Rate

RRT 3.00 90.09 2271.63 92.13 100%
RRT-Goalbias 0.76 86.54 848.90 87.99 100%
RRT-Connect 0.20 83.35 216.66 84.04 100%

RRT* 111.46 69.57 5000.00 29.10 100%
Informed RRT* 140.98 68.76 5000.00 27.13 100%

Dijkstra 0.32 72.29 100%
A* 0.31 72.29 - - 100%

PRM 1.17 72.86 - - 100%
MH-RRT (ours) 0.28 70.19 208.70 6.70 100%

4.2. Comparison in Local Path Planning

Without topology optimization, trajectory will be pressed down as the obstacle moves
down. To better show the improvements of the proposed two-step TEB, Rviz, a ROS 3D
robot visualizer, is used to simulate the algorithm’s optimization process. As shown in
Figure 11, the two-step TEB (Figure 11b) computes the same trajectory as the naive TEB
(Figure 11a). In contrast, the latter optimizes six paths while the former decreases to a half.
The average time of original unique topology optimization process is 58.71 ms; however,
the improved topology optimization process is 31.70 ms. Finally, two-step TEB outperforms
naive TEB for computation time with 46% reduction. These results indicate the real-time
property of the method.
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(a) Dijkstra (b) A* (c) PRM

(d) RRT (e) RRT-Goalbias (f) RRT-Connect

(g) RRT* (h) Informed RRT* (i) MH-RRT

Figure 10. Illustration of nine global path planning results in map Dense. In (a,b), the green grids
indicate that these grids have been searched. In (c), the green crosses indicate that these points have
been sampled. In (d–i), the green curves denote the state tree structure. In all subfigures, the red line
means the final path. All experiments start from the bottom left (marked in blue), and end at the top
right (marked in green).

The linear velocity and angular velocity metrics highlight the smoothness. Smoother
trajectory requires less acceleration/deceleration. To validate the smoothness performance,
experiments are conducted to compare with naive TEB. It is noted that the naive TEB
optimizes path without any topology optimization. By the way, the linear velocity and
angular velocity results shown in Figure 12b indicate the red curve in Figure 11b. Obviously,
velocity improves to the max limited speed quickly with or without topology optimization.
After that, the AGV travels keeping a constant speed and does not slow down sharply
until it almost reaches the destination. In terms of Figure 12a, there are three deceleration
points, at the moments 6.5 s, 13.1 s, and 18.9 s, respectively. It is common knowledge that
vehicles decelerate when near the obstacles, thus understandably three deceleration points
are due to three obstacles. However, only one deceleration point is proposed after adopting
the two-step topology optimization category in Figure 12b. What is more, the bending
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complexity of the trajectory has a certain influence on the angular velocity. In the naive
TEB angular velocity curve, the AGV has to turn a lot to follow the path as angular velocity
varies greatly. Nevertheless, trajectory with improved topology optimization is smoother
since angular velocity changes less.

(a) Optimization result of the original unique topology.

(b) Optimization result of the improved two-step topology.

Figure 11. The results of trajectory optimization. In both (a,b), three small gray cube obstacles are
placed in Rviz. The black circle around the obstacle indicates the minimum safe distance between
AGV and the obstacle. The red line is the optimal trajectory, including the position and attitude of
each point.

(a) Results without topology optimization. (b) Results with two-step topology
optimization.

Figure 12. Linear velocity and angular velocity results of the optimal trajectories.

Last but not the least, it is important to find solutions in a timely manner especially in
the real applications. The trajectory time shows how long it takes to reach the goal. While it
takes more time to optimize multiple paths, the two-step TEB can achieve planning within
an AGV control period with enough computation resources. To sum up, the improved
two-step TEB is, in terms of planning, more energy efficient and smoother than TEB with
smaller average acceleration.
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4.3. Results of the Proposed Fusion Algorithm
4.3.1. Simulation Results in Static Environment

The environment for static path planning simulation is a complex 2D map. There are
eight known obstacles with black marks in the map. Coordinates of start position and goal
position are blue mark (indicating the AGV) and green arrow which are chosen randomly,
as shown in Figure 13.

By adopting the proposed fusion algorithm, AGV succeeds in finding out safe and
smooth trajectories in thirty tests. Since there are similar results after 30 times, here one
sample result is analyzed in detail. In Figure 13, the green global trajectory is composed
of numerous path points. Red local trajectory includes locations and poses of the AGV.
The obstacle locations are synthesized into convex polygons, which are presented by red
mesh lines on the obstacles. Compared with taking obstacles as a set of points, it greatly
improves the collision detection speed and reduces the optimization time. In the whole
process, AGV drives smoothly and ensures a certain safe distance from the obstacles.

(a) The AGV is starting. (b) The AGV is arriving.

Figure 13. Illustration fused results of global path generating and local path planning in simulation
static environment. Initial global path and optimized local trajectory are drawn in green and red
to distinguish them. Blue mark presents the AGV, whose kinematic model has been described in
Section 2.3.

4.3.2. Simulation Results in Dynamic Environment

In this experiment, five dynamic AGVs and three static AGVs are added into the
environment (shown in Figure 14a). The path planning AGV is presented by the red mark,
while other AGVs are in blue. Red arrows indicate their running directions. When they
arrive at the boundary, they turn back at the same speed. In Figure 14b, since the AGV
can only sense specific distance ahead, there is only one gray arc obstacle in front of it.
The green arrow indicates the destination pose. Except for the dynamic environment,
other conditions such as static obstacles are designed the same as above. As depicted in
Figure 14c, the AGV succeeds in avoiding every dynamic and static obstacle and reaches
the goal point step by step.
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(a) Simulation map in Stage.

(b) Real time simulation map in Rviz. (c) Results in dynamic environment.

Figure 14. Simulation maps in dynamic environment. In (c), global trajectories and real-time local
paths are drawn in green and red colors to distinguish. Here we just draw robots driving direction in
red instead of robots shape. Blocks in black present obstacles within sensing range.

4.3.3. Real Experiment Results in Complex Dynamic Environments

The MH-RRT and two-step TEB are fused for further validation in real experiments.
The hardware platform is the Turtlebot2 robot, which is one of the AGVs driven by the two
differential driving wheels. It mainly includes a Yujin kobuki mobile base, a visual sensor
named Kinect and the mechanical structure. In general, Kinect is a depth camera which
is used to detect obstacles. Moreover, the robot operation system (ROS) is adopted as the
software platform. ROS is a set of software libraries and tools that can help users build
robot applications. The AGV is driven by a Lenovo notebook and complied with C++.
The notebook equipped with ROS is responsible for mapping, location, and navigation.
The linear velocity and angular velocity are constrained as v ∈ (0, 0.7 m/s] and ω ∈
[0, π rad/s], respectively. Fused by receding horizon planning, the MH-RRT and two-
step TEB algorithms are encapsulated as a path planner in ROS navigation package. As
illustrated in Figure 15, the AGV generates a grid map (Figure 15b), and a cost grid
map after expansion around obstacles (Figure 15c) on the basis of the initial environment
(Figure 15a). Then the cost map is stored as the known map.

(a) Initial environment. (b) Initial map. (c) Cost grid map.

Figure 15. Initial environment and its cost grid map before/after expansion.

The AGV is placed at the start position indicated by a black circle. As for known
dynamic obstacles, two kinds of walker are added to the environment sequentially. One
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is conservative, and the other is more aggressive who does not stop nearby the AGV. In
the first situation, a pedestrian walks into the experimental field and stops when the AGV
is travelling along the initial path. Figure 16 depicts the snapshots of the path planning
with a conservative walker, it can be seen that the AGV successfully detects the walker
and replans its path upgraded in map. Then it avoids the conservative walker. What is
more, in Figure 17 the AGV decelerates appropriately and replans its path to bypass the
aggressive walker. The experimental results show that the whole strategy is effective in
practical applications.

(a) Pedestrian is approaching. (b) Planned Path. (c) The pedestrian stops.

Figure 16. Snapshots of path planning in dynamic situation with a conservative walker.

(a) Pedestrian is approaching. (b) Planned Path. (c) The pedestrian goes.

Figure 17. Snapshots of path planning in dynamic situation with an aggressive walker.

5. Conclusions

In this paper, we propose a novel dynamic path planning method for AGV navigation.
We decouple the dynamic path planning into global path searching and local path optimiza-
tion. Firstly, a multiple heuristic strategy designed for the RRT can solve the problem of
non-optimality. With five heuristics, the MH-RRT can reduce the iteration times especially
by adopting the proposed goal attempt mechanism. Simulation shows that the MH-RRT
can find a global optimal path within 210 iterations. Comparing with the other eight
path planning algorithms, the MH-RRT can further find the shorter and smoother path.
With this method, a feasible global path for AGV can be obtained. Next, we significantly
improve the efficiency and converge rate of the two-step topology optimization in TEB. By
utilizing the path decision and speed decision sequentially, the two-step TEB can optimize
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the local path in the receding horizon window. Finally, by fusing the above two planners
with the receding horizon planning strategy, the effectiveness of the whole framework is
verified both in simulation and real applicative experiments. Adequate ablation simulation
experiments are also conducted for comparison. The results show the proposed fusion
algorithm can achieve dynamic path planning and fast path optimization while avoiding
obstacles. In the future, we plan to challenge the path planning system in extreme situations
such as variable speed obstacles by adding a moving objects trajectory prediction system.
Furthermore, we will combine the navigation system with a more complete autonomous
perception system.
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