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Abstract: The simulation of fabrics physics and its interaction with the human body has been
largely studied in recent years to provide realistic-looking garments and wears specifically in the
entertainment business. When the purpose of the simulation is to obtain scientific measures and
detailed mechanical properties of the interaction, the underlying physical models should be enhanced
to obtain better simulation accuracy increasing the modeling complexity and relaxing the simulation
timing constraints to properly solve the set of equations under analysis. However, in the specific
field of haptic interaction, the desiderata are to have both physical consistency and high frame rate to
display stable and coherent stimuli as feedback to the user requiring a tradeoff between accuracy
and real-time interaction. This work introduces a haptic system for the evaluation of the fabric
hand of specific garments either existing or yet to be produced in a virtual reality simulation. The
modeling is based on the co-rotational Finite Element approach that allows for large displacements
but the small deformation of the elements. The proposed system can be beneficial for the fabrics
industry both in the design phase or in the presentation phase, where a virtual fabric portfolio can
be shown to customers around the world. Results exhibit the feasibility of high-frequency real-time
simulation for haptic interaction with virtual garments employing realistic mechanical properties of
the fabric materials.

Keywords: interactive systems; human–computer interaction; haptic interfaces; numerical simulation

1. Introduction

Many robotics applications of deformable objects manipulations have spread out in the
last years [1] in diverse fields such as the manufacturing industry [2], service robotics [3],
and others. However, it is a fact that the robotic manipulation of deformable objects has
not been studied as its rigid counterpart due to the complexity in modeling, perception,
and control. The recent advances in machine learning techniques and computer graphics
helped to give effective modeling techniques and data-driven paradigms for solving some
of the issues in traditional methods [4–6]. However, it is a common opinion [7] that the
interaction with deformable objects is a critical open problem in robotics. It also has
relevant consequences in the industrial sector, where it focuses mainly on the manipulation
of ropes [8] and clothing items. A great part of the works on deformable objects in robotics
is application specific: for example, industrial applications concern problems such as the
insertion of electric cables into switchgear [9]. The proposed work presents a soft tissue
simulator framework that accurately models the interaction of the soft object during haptic
interaction. The main contribution of the essay is the accuracy in the touch sensation of
tissues through the haptic interaction, thanks to the underlying physics.

All the mechanical properties of textiles of a specific fabric taken as a whole are
known as the “fabric hand” [10]. During the haptic sensation process, the brain combines
several data coming from the mechanoreceptors of the skin, the kinesthetic sensors, and
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the muscles stimuli in a complex elaboration signal. Such a process allows the appreciating
and distinguishing of the different fabric properties of tissues by the haptic sensation. In
the textile industry, the evaluation of fabric materials for commerce or production is usually
performed manually by stroking the index and thumb fingertips of the hand on small fabric
samples of the fabric surface to stimulate the sensing inputs on the evaluator. Thanks to the
haptic system [11] and the tissues simulator presented in the manuscript, the fabric hand of
specific garments, either existing or yet to be produced, can be perceived virtually with a
high degree of fidelity. The potentiality of the system is twofold: it can be used to present
and render the fabric hand to customers around the world without the need to carry a
heavy set of fabric samples; and, it can be used in the design stage to test new fabrics before
production. The main interest of the proposed method resides in the haptic fidelity during
the interaction of the cloth simulation through the haptic feedback. Therefore, one crucial
part is the high rate and the low latency of the computation, which is an added value with
respect to many other software simulations that concentrate only on the graphic part of
the problem.

The document is organized as follows: in Section 2, a brief introduction of existing
projects on the topic is presented; Section 3 discusses in detail possible modeling approaches
and the implemented techniques; Section 4 presents the implemented system for the
simulation of and interaction with virtual clothes; Section 5 presents the experimental tests
to validate the system; and, Section 6 draws the conclusions of the work.

2. Related Works

The study of textile behavior during hand manipulation is dated back to 1975, with
a seminal study on the mechanical properties of the fabric performed by Kawabata [12].
The evaluation system presented in [12] is a standard method employed for measuring the
properties of textile fabrics and for predicting the aesthetic qualities perceived by human
touch. It includes five instrumental measurements to evaluate fabric bending, shearing,
tensile, and compressive stiffness, as well as the smoothness and frictional properties
of a fabric surface. Such an evaluation is also useful to analyze how fiber, yarn, fabric
construction, and finishing contribute to the perception of softness. The results obtained
from [12] allowed the modeling of the elasticity, plasticity, and viscosity of deformable
surfaces. Starting from that point, many researchers developed computer models able to
reproduce and simulate the correct behavior of several fabric materials. From the early work
of Terzopoulos [13], the problem has been approached as a physically based simulation of
deformable surfaces applying Lagrange equations of motion and finite element analysis
(FEA) [14]. Later other research groups tried different approaches, for instance, using
d’Alembert’s principle and elasticity properties [15], and in the last years, a new trend
has been to exploit particle systems connected by springs. Such an approach discretizes
the material itself as a set of point masses, reducing the number of equations and the
complexity of the continuum mechanics solution. In the following, starting from the
general equation, a brief discussion of the most relevant modeling approaches is presented.
The principal methods can be categorized into two main approaches: physically based and
data-driven simulations.

The physically based modeling approach of deformable objects exploits the geometric
representations of the item employing meshes or particles [16]. The motion of the particles
or the vertex is expressed by the time derivative of Newton’s second law: Mẍ = F, where
M is the mass, x is the state vector, and F represents all forces acting on it. In the discrete
case, the state x is a finite number of points, while in the continuous case, it is treated as a
displacement function. Therefore, the motion of the body is obtained integrating starting
from an initial state x0. For each particle, the motion is:

xt+1
i = xt

i + vt
i ∆t

vt+1
i = vt

i +
∆t
mi

( f int
i + f ext

i ),
(1)
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where f ext
i is the sum of all the external forces such as gravity, input forces, or external

constraint forces, and f int
i represents internal constraints forces that are subject to deforma-

tion parameters such as configuration x, ẋ, and the material properties. Several integration
techniques can be used such as explicit Euler, implicit integration and Runge–Kutta method,
backward Euler, and others. It is worth noticing that to guarantee a stable simulation, a
small time step is required.

Three categories of physically based models can be individuated in the literature: mass-
spring systems (MSSs), position-based dynamics (PBD), and continuum mechanics (FEMs).
In MSSs, each vertex has a mass, and vertices are connected through spring edges, forming
a network. The internal force f int

i-j between the pair i-j is expressed by a spring-damping
relation along the displacement direction. MSS has been used for diverse objects such as
rope [17] or cloth [18] because it is easy to implement and fast to simulations. However, it
is not suitable for complex elastic effects, and, therefore, increasing the mesh resolution, the
quality of the fidelity decreases. In addition, since the model does not have any physical
meaning related to the parameters, it needs a huge tuning effort to obtain the desired
performance. PBD models materials as discrete particles without meshes. The simulation
is based on an implicit integration deriving the internal forces from holonomic constraints.
The peculiarity of such an approach is that it assigns a stiffness level k j to each constraints
and derives vt+1

i from (xt+1
i − xt

i )/∆t, where xt+1
i is obtained as an optimization problem,

projecting iteratively candidate position to the constraint manifolds with a Gauss–Siedel
method. Position-based dynamic approaches are fast with high stability and can models
several constraints. They have been used to simulate many objects [19]. However, they are
not effective for highly stiff systems. In particular, the stiffness of the system relies on the
integration step size, and it does not simulate force effects accurately. In conclusion, PBD
gives simulations that are visually plausible but not always physically realistic. In addition,
it does not allow for a physical interpretation for some of the parameters. FEM can model
material deformation with a physically accurate description for a continuous domain. The
state xt is a displacement function over the coordinates of the material relative to an initial
configuration x0, also known as rest shape. The gradient of such displacement reveals the
distortion of the original geometry. Equation (1) holds for each element and becomes:

ρẍ = f int + f ext = ∇ · σ + f ext (2)

where ρ is the density, σ represents the stress and is a symmetric matrix, and the last
term of the equation expresses the internal elastic effects. Often, the Hookean materials
assumption, which is a linear dependency between the stress and the measurement of
the material deformation, is used for modeling small deformation around the rest shape
configuration. The linear coefficient matrix for isotropic materials is derived from the
Young modulus (stiffness) and the Poisson ratio (lateral and longitudinal strain). For
more complex modeling, usually, an energy term is introduced to penalize the amount
of deformation, defining hyperelastic relations that are nonlinear, i.e., the Neo-Hookean
model [20]. It is worth noticing that the mathematical differential Equation (2) can only be
solved for 1D string problems. In the other cases, FEM is used. Such modeling has high
physical fidelity and is fast in the linear case, and model parameters have a clear physical
interpretation. However, it is computation expensive in nonlinear cases, where it cannot
reach real-time performances.

Data-driven methods are quite recent approaches and employ machine learning
algorithms to simulate the deformations of soft tissues. They are faster than their physically
based counterpart, but even though they are highly realistic, they cannot generate dynamic
deformation. Data-driven methods are widely used for face [21] and body [22] animations
but are not interactive.

Many simulations based on the aforementioned theoretical models exist and are
employed in graphics, robotics, and computer vision. SOFA (Simulation Open-Framework
Architecture) [23] models tissue and surgical interaction. It gives built-in mass-spring
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models and diverse FEM models, i.e., Neo-Hookean, linear, and corotational linear models.
It has been used for vision-based tip force estimation [24,25]. NVIDIA PhysX models cloth
using PBD and has been used for haptics and force prediction [26,27] in human dressing
tasks. MuJoCo [28] uses a constraint-based method for solving interaction forces that
is similar to PBD. It has been applied in learning rope manipulation planning [6] and
folding primitives [29]. Several works have investigated the usage of many simulators for
deformable objects [28,30]. However, none of such simulators were selected as a benchmark
for textile object manipulation, as Mujoco is for rigid objects.

The solutions presented in the literature are usually conceived for usage in a graphical
simulation; thus, they need an update rate of just 30–60 Hz to generate a smooth visual
transition. All recent advancements focus on realism but are not tailored for haptic interac-
tion or high update rates. Indeed, whenever the main goal is to develop a simulation that
involves a haptic interactive system, it is a rule of thumb to adopt a feedback rate above
1 kHz to maintain good stability properties of the system for rigid body contact. For a
collision with a deformable surface, this requirement can be lowered, continuing to yield
good stability issues and correct perception of touch but still needing an update rate of
an order of magnitude greater than the one used in graphical simulations. The finite ele-
ment implementation, even being computationally expensive, can be accelerated using an
implicit numerical integration method to solve the well-known partial differential equation

ẍ = M−1
(
−∂E

∂x
+ Fext

)
(3)

where the vector x is the geometrical state of the cloth, M its mass distribution, E the cloth’s
internal energy, and Fext represents all external forces acting on the cloth surface.

The computational time for such an implementation can be even lowered, reducing
the number of calculations steps taking into consideration that the linear system is in sparse
form and adopting a modified conjugate gradient (CG) iterative method [31]. However,
the time needed to solve a CG step increases with the number of finite elements considered.
The preconditioning of the system matrix and multidomain approaches can be introduced
to obtain an extra speedup in the computation time.

The proposed work employs FEM in simulation and addresses the aspect of the
sliding of the textile between the fingers. The target device used for the experimentation is
a wearable haptic interface for the fingertips.

3. Discrete Modeling

Starting in a one-dimensional domain (1D), the simplest deformable element to model
is a string. The continuous (distributed) system that represents the string is given by the
following wave partial differential equation:

ρ
∂2U
∂t2 = E

∂2U
∂x2 + Fext, (4)

where ρ is the material density, E is the elastic module, Fext is the contribution of external
forces to the system, and U is the surface domain. Equation (4) is a hyperbolic equation
and needs both the initial and boundary conditions to be solved. By starting from a
calculus problem, there is the need to derive a simpler representation and finally obtain an
algebraic solution to treat the problem with numerical algorithms. This final step involves
discretization and allows the use of the computer for the solution of the initial problem.

A large number of publications on the topic employ the so-called ’particle’ model
in which a mass-spring representation is used to model the deformable characteristics of
objects. In order to obtain this simplified representation, there is the need to substitute the
complete and exact continuous system with a lumped description of the string mechanical
system, thus passing from a partial differential equation (PDE) to an ordinary differential
equation (ODE) system. In fact, from one side, the distributed system gives exact results
and is the ideal system to be used in scientific simulations; on the other side, its computation
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is expensive and sometimes even impossible because there is no closed solution to the
problem. Given these premises, the goal of the modeling is to preserve the accuracy of the
system by adopting a discrete and tractable algebraic approximation to the original calculus
problem. Finite difference (FD) methods involve the substitution of spatial derivatives with
polynomial approximations. In the case of uniform spaced mesh, it is possible to obtain the
lumped equation of the string given by:

Mi
d2Ui
dt2 = Ki+1(Ui+1 −Ui)− Ki(Ui −Ui−1) + Fext (5)

where Mi is the mass of the i-th particle, Ki, Ki+1 are elastic coefficients (spring constants),
and Ui is the value of the function at the sampling point i.

By giving a cross-section A of the string, it can be obtained that the Ki spring constant
has a physical meaning, and it is given by A E

h2 . Usually, this physical property is not taken
into consideration, and the Ki parameter is chosen through a minimization procedure or
empirically for stability issues.

Considering a bidimensional (2D) domain for the nodal points Uij and choosing the FD
approach, the simplest idea is to use several 1D string elements and connect each particle
on each string with the corresponding particle of the neighboring string as in Figure 1.

Figure 1. Particles connection in a 2D grid finite difference approximation.

In this way, it is possible to obtain a simple approximation of soft tissue. The approxi-
mation introduced here is given by summing up the errors in the two principal directions
leading to perceivable errors in four neighbor modeling approaches.

However, this model is designed for equally distributed rectangular meshes. Hence,
it provides poor results if employed for simulating generic triangular meshes. A second
drawback is that it is challenging to obtain correct simulation parameters for an actual
cloth material because the model parameters have no direct relationship with the physical
parameters that are commonly employed in the industry.

For such a reason, when there is the need for accurate physical simulations, a Finite
Element dynamical model can be used by employing, for instance, 2D triangular elements
organized in an unstructured mesh for the modeling of a garment. In this case, the material
parameters are considered by the FEM formulation itself that is obtained from the elasticity
theory. The FEM model considers the material as a continuous geometry that is decomposed
on discrete elements and solves for a finite set of points associated with them. The solution
is finally obtained interpolating on the whole domain. A triangle mesh can be used to
represent the surface of the cloth in a discrete domain. FEM elements are the mesh triangles
themselves, and FEM nodes are their vertices. Thus, the quality of the simulation strongly
depends on the resolution of the triangulation.
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3.1. Corotational FEM Modeling

Among the possible Lagrangian kinematic descriptions, the Corotational (CR) [32]
one is based on the assumption that displacements and rotations can be arbitrarily large,
but deformations must be small [33]. The CR description introduces a decomposition of
the motion tracking into two components (Figure 2). Starting from a base configuration
that represents the origin of displacements, the final configuration is decomposed into
a corotated configuration given by a rigid body motion of the base configuration and a
deformed configuration where element deformations are obtained concerning the corotated
configuration. Assuming that only small deformations occur between the corotated and
deformed configuration, the CR approach allows using a linear formulation to compute
the internal forces. Under this assumption, it is possible to represent stiffness by using a
symmetric matrix K.

Figure 2. Corotational description of mesh deformation.

Calling e1 and e2 two adjacent edges of a triangular element in base configuration, it is
possible to compute ē2 = e2 − (e1e2)e1 and e3 = ē2 × e1 and obtain a base of the 3D space
with the matrix N = [e1, ē2, e3]. Computing in the same way a basis N̄ for the deformed
configuration, the rotational part is obtained as in [34]:

R = NN̄

The rotation R is used to transform the deformed triangle in the plane of the base
configuration, compute the elastic force linearly in that configuration, and then rotate back
the obtained forces in the 3D space.

3.2. Fabric Modeling

In work proposed in [14], the formulation of a linearized stiffness matrix directly
characterized by physical elastic parameters taken from Kawabata measurements can be
found. In particular, in this implementation, the behavior of the simulated fabric takes into
account membrane, bend, and viscosity forces.

Membrane forces are due to stretch, compression, and shear contributions. Using the
CR formulation, any deformation occurs in the z axis, and the analysis can be carried out
on a two-dimensional domain. The force acting on the triangle t can be determined by
considering, for each vertex, a contribution produced by the deformation of the connected
edges. For a vertex a and edge ab, the force component results as:

F = RtKt
ab

(
(Rt)Txa − x̄a

)
where xa is the position of the vertex a in the deformed state, x̄a is its position in the base
configuration, and Rt is composed by the first two columns of the corotational matrix R.
The stiffness matrix is computed as follows:

[Kt
ab]ij =

(
2

∑
k,l=1

∂Na

∂ui
Cikjl

∂Nb
∂uj

)
Ωt
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where C is the elastic tensor containing the material properties, Ωt is the area of the triangle
in the rest state, and ∂Nx

∂uy
are partial derivatives that can be easily computed for a 2D

triangle as: [
∂N1
∂u1

∂N2
∂u1

∂N3
∂u1

∂N1
∂u2

∂N2
∂u2

∂N3
∂u2

]
=

1
2Ω

[
y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1

]
The global stiffness matrices can be obtained as:

[Km]ab =

 ∑
t∈Γ(a,b)

RtKt
ab(Rt)T


where Γ(a, b) is the set of all triangles containing the vertices a and b. The final membrane
force is computed as:

Fm(X) = KmX− K̄mX̄

where X is the coordinate vector of the deformed vertices and X̄ is the coordinate vector of
the base vertices.

In order to consider bending forces, it is necessary to drop the two-dimensional
approach and employ finite elements of a higher order. Such contributions can be generated
by projecting the Laplacian operator onto the normal surface direction. By calling P = nnt,
the projection operator relative to the normal n, it is possible to proceed to calculate the
Laplacian operator as:

Kt
ab =

(
∂Na
∂u1

B1
∂Nb
∂u1

0

0 ∂Na
∂u2

B2
∂Nb
∂u2

)
Ωt

where B1 and B2 are the bending moduli in the weft and warp directions. To estimate the
surface curvature, the Laplacian is projected onto all vertex normals nt

a, nt
b, and nt

c of the a,
b, and c triangle vertices. A local stiffness matrix can then be calculated as:

Qt
ab =

1
3 ∑

i∈{a,b,c}
Pt

i RtKt
ab(Rt)T Pt

i

From the local stiffness matrices, a global matrix Kb can be assembled and proceed to
solve for the bending forces:

Fb(x) = KbX

Internal friction and viscosity by contributions are obtained calculating the viscous
matrix Kv in the same way as the elastic matrix, this time inserting the viscosity tensor in
replacement of the elastic tensor. The viscosity forces can then be computed as:

Fv(v) = Kvv

Given the above formulation and time discretization with the backward Euler step, a
linear system that results in a sparse symmetric linear problem is obtained, and it can be
solved with the iterative conjugate gradient algorithm [35] through preconditioning of the
system matrix (PCG).

3.3. Implemented Algorithm

The system proposed in the following section implements the fabric model thanks
to the CR formulation introducing a preconditioned sparse symmetric linear problem to
be solved by the iterative conjugate gradient algorithm. The fabric mesh is composed of
discrete elements, each constituted by nodes (vertices). The number of nodes depends on
the representation topology (3 for triangles, 4 for tetrahedra, etc.). The simulation data
elements can be static/precomputed or dynamic. In particular, starting from a rest position,
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the simulation computes xi for all the mesh nodes in the subsequent time steps according
to the dynamical and mechanical properties of the fabric. Figure 3 shows the dependency
graph in the computation. For each triangle, the area, the surface normal, and its rotation
matrix are calculated. The stiffness matrices (Km, Kvm, and Kbm) are computed starting from
the elastic, bending, and viscous tensors (C, B, D). Such elements are employed together to
obtain the stiffness contributions at the local level (Q∗). Gathering the contribution of each
triangle into sparse matrices A∗ and considering the mass of the fabric associated with each
node, the forces accumulated by each element over adjacent nodes and node accumulated
forces can be obtained. The external forces Fi and the nodes velocities vi contribute to the
set of equations of the linear system. Finally, the PCG algorithm computes the change
in the velocity of the nodes that enables the update of the position of the nodes for the
next iteration.

Figure 3. Dependency graph in the computation. Starting from a rest state xi of the shell and
employing the elastic (C), bending (B), and viscous (D) tensors, the algorithm decomposes the shell in
triangles computing the area (volume), surface normal, and rotation matrix for each triangle element.
It computes the stiffness matrices (Km, Kvm, and Kbm) and their contribution at the local level
(Qm, Qvm, and Qbm). Once the information from the triangles is gathered, the computation passes
at the vertex level formulating a sparse system with stiffness matrix A. Once integrated, the mass
contribution M of each shell node, forces are accumulated over adjacent nodes, and the internal forces
contribution can be computed. External forces Fi and nodes velocities contribute to the computation
of the updated state. A preconditioned conjugate gradient (PCG) algorithm is implemented to update
the position of the nodes by computing the velocity change and update the state for the next iteration.
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4. Interaction with the Fabric

Since the user’s interaction with the fabric happens mainly through the use of the index
and thumb fingertips, the haptic device acts exclusively on such fingers. The developed
prototype is composed of a kinesthetic haptic device and a tactile display element, each
embedded with its own controllers. The fabric simulation is run on a dedicated computer
connected with gigabit ethernet to the embedded controller. The functional components of
the system are depicted in Figure 4.

Figure 4. Diagram of the functional elements of the system annotated with the data rates. The
communication between the haptic interfaces and the haptic rendering computer makes use of
The UDP network protocol to achieve a high communication rate needed for realistic rendering of
the interaction.

The kinesthetic feedback is produced by the hand exoskeleton introduced by
Fontana et al. [36]. This device allows exerting controlled forces on the index and thumb
fingertips of the operator while assuring that the finger motion degrees of freedom are
not constrained. Concerning the original assembly, the mechanical plate that comes in
contact with the operator’s fingertips (i.e., the end-effector) is substituted with a tactile
array device to deliver to the user skin spatial and temporal patterns. The tactile transducer
is a 5 × 6 array based on a custom electromechanical minisolenoid designed and optimized
for reduced encumbrance and the weight [37]. The actuator has a diameter of 2.4 mm and is
capable of delivering a maximum force of 73 mN. Figure 5 shows the employed hardware
interfaces: the tactile array setup and the hand exoskeleton.

The simulation is run by synchronizing the actual time with the simulation time. Time
synchronization is a delicate element that must be satisfied to maintain simulation and
interaction stability. The collision detection and response modules determine if a collision
occurs between the virtual representation of the operator’s fingertips and the simulated
cloth and eventually render a force into the simulation. In the system, undeformable
spheres were chosen as the virtual representation for the operator’s fingertips. Hence, the
collision detection could be run either per vertex or triangle based. Since the sphere is
rigid, the collision response may induce shifting motion on the cloth vertices. The haptic
rendering is based on a virtual coupling between the interaction spheres and the index and
thumb end-effectors acting as a low-pass filter for the different execution rates. The tactile
rendering drives solenoids to produce specific patterns on the operator’s skin. A graphic
element is used to visualize the simulation every time a new computation is ready with
a stereographic setup (projector and projection screen or 3D monitor). The stereographic
setup allows displaying a proper depth sensation to the operator during the manual
evaluation. To further reduce the stress on the operator’s hand due to the weight of the
haptic device, the latter can be attached from the wrist on a weight-compensating device.
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Figure 5. Hardware components of the system. On the left, the design of the tactile array placed under
the operator’s fingertips. On the right, the haptic exoskeleton that renders the kinesthetic feedback.

Solving Collisions

The collision check between the cloth and the operator’s fingertips is evaluated by
computing the distance between implicit sphere surfaces and textile vertices. An alternative
option could be the one of checking the collisions between the spheres and each triangle
composing the textile. However, the computational cost of this operation is larger and
would require propagating the forces exerted on a specific point of the triangle surface
back to the triangle vertices. Given the dimension of the sphere radius (fingertip width)
compared to the distance between nodes in the simulated textile (dimension of the tri-
angles), the per vertex collision check is a sufficient approximation that gives a boost to
the computational complexity of the algorithm. The cost of this operation is linear to the
number of vertices.

For each vertex colliding with the sphere (see Figure 6) in the contact phase, a normal
vector−→n directed from the origin of the sphere to the vertex is computed. From the intersec-
tion of the normal vector with the sphere surface, a point P is selected. The corresponding
vertex is then moved instantly on the location of point P before the simulation phase, and
it is constrained to move along the tangent space of the normal vector −→n . The velocity
delta of motion along the normal direction is computed following point impact mechanics
considering the bounciness factor. By inserting into the equations a friction model between
the spheres and the cloth, a sliding relative velocity is computed considering the friction
coefficients. In the case of static friction, the vertex is constrained exactly on the contact
point P.

In the case in which both the spheres are colliding with the same vertex, the response
must take into account both the constraint directions from which the tangential space must
be computed. If the directions of the normals are orthogonal, the tangent space is a line,
and the possible direction of motion is unique.

The constrained solution is fundamental to obtain the forces exerted from the cloth
to the fingers and then back to the haptic interface. Concerning penalty-based models,
the force feedback is computed based on the penetration depth of textile vertices on the
sphere. Conversely, in the constrained solution, the force feedback is obtained from the
work performed by the constraint reaction. Following the work proposed in [31], the
constraint is inserted in the dynamic equation by projecting the problem on a subspace
where such a constraint is always satisfied. This effect can be obtained by filtering the result
of the PCG. Figure 7 shows the effect of constraint reactions on the simulation.
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Figure 6. Diagram of the collision response with single- and double-contact spheres on a single
filament of a textile. At left, during the contact phase, the normals with the colliding vertices are
computed. In the middle, the response phase result comprising both the collision and the update
step is shown. On the right, an example of a double-sphere collision is presented.

Figure 7. One finger interaction with 32× 32 vertices simulated cloth. The top row of vertices is fixed.
Green points over the sphere surface are colliding textile vertices.

5. Evaluation

In the following, some assessments of the proposed approach are presented.

5.1. Catenary Configuration

In order to prove the effectiveness of the FEM simulation, several testing configura-
tions were evaluated. In particular, the catenary configuration was assessed by placing a
rectangular fabric element perpendicular to the gravity field, fixing a row of vertices at the
two extremities of the element, and finally checking the simulation result on the free-to-
move vertices. The experimental results show negligible deviations from the exact analytic
solution, and the weight force is distributed uniformly on each node of the fabric. Such
an experiment proves that the only approximation is given by the dimension of triangular
elements. In addition, if properly chosen, the simulation renders a realistic behavior of the
cloth during the interaction with the human finger.
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5.2. Collision with the Fingertip

Figure 8 shows a snapshot of a time frame of the simulation where a 32 × 32 elements
cloth with dimensions 20 × 20 cm fixed at two adjacent extremities collides with a fingertip.
In the picture, a schematic representation of the fabric vertices, with the classification in
free-to-move, fixed, or colliding categories, is shown together with a representation of the
collision force acting on the cloth. The direction and magnitude of the collision/reaction
forces result as consistent with the fabric interaction and is well within the limits of the
rendering capabilities of the system haptic interface.
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Figure 8. One finger interaction with 32× 32 vertices simulated cloth shown as a 3D scatter plot. The
top and the right row of vertices are fixed. Green circles are the colliding vertices with the sphere
surface and the black arrows represent the collision forces.

5.3. Computational Complexity

An estimation concerning the computational complexity and the memory consumption
of the algorithm can be formulated. It is based on the number of vertices in the cloth Nv,
the number of collisions during the interaction Nc, and the number of iterations of the PCG
algorithm Ni. The memory consumption of the model is estimated as 607Nv floating-point
numbers. Assuming a 32× 32 vertices configuration and single-precision floating-point
computation, the occupied memory is about 2.3 MB, while for a 128× 128 tissue in single-
precision, a 38 MB model is obtained. For such a reason, memory consumption is not
considered an issue. The computational complexity can be obtained by the following
flops estimation that takes into account all the mathematical operations performed on the
presented algorithm:

C = 7940Nv + 36Nc + 156NvNi + 36NcNi

As such, by increasing each of the considered factors, the computational load of the
algorithm increases proportionally.

In order to improve the computation speed of the simulation steps, the algorithm was
implemented for parallel computation employing both multi-CPU and GPU development.
However, the two steps that mostly require computation time in the algorithm are related to
the update of the FEM model and the PCG. The GPU implementation requires the transfer
of data from and to the GPU memory during the update step. Therefore, the speed-up
in this operation is limited. The PCG step is mostly iterative, and as such, it cannot be
efficiently parallelized. For such a reason, the GPU implementation does not introduce
evident improvements regarding the computation speed. The multi-CPU solution instead
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performed better. A comparison of mean simulation time for different garment dimensions
and different core exploitation is shown in Figure 9. In particular, the figure shows the
whole iteration time and the contribution of the update and PCG steps. In all the tests,
the computing hardware is a Xeon E560 Quad-Core Intel CPU at 2.4 Ghz mounted on
an Intel S5520SC motherboard, and the computation uses double-precision floating-point
representation.

Figure 9. Processing time of the steps of the simulation algorithm. Comparison for different garment
sizes (16× 16, 32× 32, 64× 64, and 128× 128 elements) and the usage of multiple core configurations
(1–4 cores) is shown. The computational steps were grouped showing the most expensive computa-
tions: The preconditioned conjugate gradient (PCG), the update of the overall shell (updateshells)
and the rest of the operations (others).

5.4. Fabric Hand Fidelity

A qualitative sensing perception experiment was conducted to assess the fabric hand
fidelity of the simulated tissues. In the textile industry, the evaluation of fabric materials
is usually performed by stroking the index and thumb fingertips of the hand on small
fabric samples of the fabric surface. During the haptic sensation process with the hand, the
brain combines several data (coming from the mechanoreceptors of the skin, the kinesthetic
sensors, and the muscles stimuli) into a complex signal to appreciate and distinguish the
different fabric properties of the tissues.

Psychometric functions describe the relation between a physical intensity of a stimulus
and the intensity perceived by a user. The psychometric procedure involves the observation
of subjects’ responses to a sequence of stimuli. Different stimulus conditions are usually em-
ployed to obtain perception thresholds along the psychometric function stimulus axis [38].
In a forced-choice design of psychometric experiments, a pair of stimuli are presented to the
user, with one of them being the reference stimulus to be identified. In particular, this work
adopted a two-alternative forced-choice (2-AFC) design choosing, as a reference stimulus, a
wool fabric with a bending coefficient of 15× 10−6 Nm2/m on the warp and weft directions
according to the KES-F (Kawabata Evaluation System for Fabrics). The users were asked to
haptically explore two different simulated textiles through finger interaction by a circular
motion of the finger according to the bending directions and to select, on each step, the
one perceived as having a lower bending rigidity. The reference bending coefficient is
alternated with one computed at every step using the QUEST algorithm as proposed by
Watson and Pelli [39]. QUEST is a Bayesian adaptive method that evaluates thresholds of
psychometric functions through sequences of steps. The chosen psychometric function is
the Weibull function

WT(x) = 1− (1− γ)e−
β
10 (x−α),

where β represents the slope of the psychometric function depending on the conditions, α
is introduced to make zero the ideal test point, and γ expresses the probability of success
at zero intensity. In the 2-AFC, γ is assigned a value of 0.5. In particular, QUEST uses
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a probability density function representing the initial guess about the location of the
threshold, and then it uses the Bayes theorem to update the algorithm after each response,
choosing an optimal stimulus to be presented to the user. The algorithm stops based on
the confidence interval of the threshold and the number of steps (50 in our case). This
work employed the MATLAB implementation by Pelli. Six participants (one female, five
males, aged 26–40, right-handed) performed two repetitions that required approximately
40 steps of QUEST. The results of the test session show that the subjects could recognize
the presented reference stimuli with an error rate of about 30% (Figure 10).

Figure 10. The red curve shows the psychometric function of a single assessment by one of the
participants, and the shaded red area represents the confidence interval obtained from the twelve
psychometric functions of the test participants. The resulting perceived threshold is found to be equal
to 19.35× 10−6 Nm2/m (close to the initial hypotesis of 15× 10−6 Nm2/m).

Considering typical bending moments in the literature, corresponding to wool fabrics,
the range of values is large and depends on several factors such as the yarn waving
and interleave among the others. For such reasons, having obtained close thresholds in
12 different psychometric tests confirms that the system produces good fidelity of the
simulated mechanical properties and can be used to distinguish between different textiles.

6. Conclusions

A discussion on modeling strategies for deformable bodies, and in particular for fabric
simulations, is presented. A complete haptic system for the user interaction with a virtual
cloth is introduced, focusing on the simulation of clothes. In particular, a FEM approach
provides realistic material mechanics within the simulation. The haptic interaction involves
a kinesthetic feedback device and a tactile array. The simulation results prove the capability
of real-time simulation for the interaction with virtual clothes. The presented parallel
implementation may allow the simulation of large garment sizes without compromising
the accuracy and stability of the interaction.
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