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Abstract: The turbofan engine is a pivotal component of the aircraft. Engine components are
susceptible to degradation over the life of their operation, which affects the reliability and performance
of an engine. In order to direct the necessary maintenance behavior, remaining useful life prediction
is the key. This research uses machine learning to provide a prediction framework for an aircraft’s
remaining useful life (RUL) based on the entire life cycle data and deterioration parameter data (ML).
For the engine’s lifetime assessment, a Deep Layer Recurrent Neural Network (DL-RNN) model
is presented. The suggested method is compared to Multilayer Perceptron (MLP), Nonlinear Auto
Regressive Network with Exogenous Inputs (NARX), and Cascade Forward Neural Network (CFNN),
as well as the Prognostics and Health Management (PHM) conference Challenge dataset and NASA’s
C-MAPSS dataset. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are calculated
for both the datasets, and the values are in the range of 0.15% to 0.203% for DL-RNN, whereas for
the other three topologies, they are in the range of 0.2% to 4.8%. Comparative results show a better
predictive accuracy with respect to other ML algorithms.

Keywords: neural networks; prognostics and health management; remaining useful life; deep layer
recurrent neural network; health indicator; aircraft engine

1. Introduction

The engine is a heart of an airplane. With the emergence of action cycles, system
faults and the deterioration process would inevitably occur. To improve the system’s
performance and dependability, it is also important to determine how frequently such
breakdowns will occur. Prognostics and Health Management (PHM) is a framework for
health system management that provides integrated yet individualized approaches. The
most complex and technically demanding comprehensive technique in prognosis and
health management is aircraft engine prognostics, as it determines an engine’s actual
health [1]. The length from the current time to the failure of a system is characterized
as remaining useful life (RUL), and its forecast methodologies are classed as follows:
the model-based technique (also known as the physics of failure technique), data-driven
technique, and hybrid technique are all examples of model-based techniques [2]. The model-
based method uses an accurate physical model that represents the system’s dynamics and
combines it with calculated data to determine model parameters and predict potential
behavior. The Corrosion Model, Abrasion Model, Taylor Tool Wear Model, and Hidden
Markov Models (HMMs) are examples of model-based techniques [3,4]. The model-based
approach is simple to implement and maintain, and the model may be reused. Model
development, on the other hand, necessitates a detailed understanding of the system,
and high-fidelity models are computationally demanding [5]. The data-driven method
analyzes the characteristics of the current damage condition and models the future trend
using a portion of the previously gathered data (training data). Regression analysis, neural
networks, fuzzy logic, Bayesian, Random Forest (RF), Gradient Boosting (GB), Support
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Vector Machine (SVM), Genetic Algorithm (GA), and Relevance Vector Machine (RVM)
are examples of data-driven methodologies [6]. The data-driven technique is simple
and quick to deploy, and it can uncover relationships that were previously overlooked.
However, it necessitates a balanced approach, and there is a risk of overlearning and
overgeneralization [7,8]. For Li-ion battery health management, a capacity estimation
study based on the class of Support Vector Regressors (SVR) models is proposed in [9]. To
build the capacity estimate framework, NASA’s publicly accessible battery information,
which has limited data, is used to extract the multi-channel profile of voltage, current,
and temperature. To detect abnormalities in the wind turbine gearbox, a technique based
on adaptive threshold and Twin Support Vector Machine (TWSVM) is used. Data from
Supervisory Control and Data Acquisition (SCADA) are sampled every 10 min and checked
for abnormalities [10]. The significance of feature selection for wind turbine condition
monitoring is discussed in [11]. There are a lot of variations in today’s SCADA data;
therefore, it is important to eliminate any unnecessary information. SVR, neural networks,
decision trees, and logistic regression are among the approaches being tested for regression
analysis [11]. A hybrid technique combines model and data-driven approaches. The data
are used to train the model parameters, and knowledge about the physical process is used
to choose which type of regression analysis to utilize (linear, polynomial, exponential, etc.).
Particle filters, Kalman filters, and other hybrid techniques are examples [12]. The hybrid
technique takes the best of both approaches, relying on data when system understanding is
inadequate and physics where data are scarce. On the other hand, it necessitates a thorough
understanding of the system as well as the collection of relevant data [13]. For structural
health monitoring, a novel technique based on convolutional neural networks and deep
transfer learning has been suggested to recognize distinct types of acoustic emissions
sources [14]. Damage detection is handled using Convolutional Neural Network (CNN)
and deep learning classifiers that are entirely trained by numerically generated structural
responses, resulting in a revolutionary structural health monitoring technique [15]. The
lack of suitable data labels, i.e., fault categories, in experimental data obtained provides
a significant obstacle for practical gear malfunction diagnosis. To address this issue, one
study develops a novel fuzzy classification algorithm for diagnosing gear faults with few
data labels [16]. An unsupervised deep learning network (UDLN) technique for fault
diagnostics of rotating machinery is presented in [17]. The suggested technique takes full
advantage of the benefits of unsupervised learning to increase fault diagnostic accuracy
and automatic diagnosis capacity.

In comparison to model-based approaches, the impression that most initiatives are
centered on data-driven approaches appears to reflect the need to extract low-hanging
targets, despite the difficulty of obtaining statistically significant quantities of run-to-failure
data and common metrics that allow different approaches to be compared. Neural networks
are one of the most widely utilized data-driven methodologies for prognostics. Artificial
Neural Networks (ANN) have become increasingly popular in recent years because of their
superior capacity to approximate functions [18]. ANN is based on data from continuous
monitoring programs, which include preparation samples [18]. The most widely used
method for calculating the useful life of turbofan engines is Artificial Neural Networks
(ANN) [19]. In certain literature, related work has been conducted. Long Short-Term
Memory (LSTM) is one of the methods used to estimate the RUL of turbofan engines; it
can figure out how long old data should be remembered, when it should be forgotten, and
when new data should be used. In order to increase estimation accuracy, an initial RUL of
97 was chosen, and it performed better than an initial RUL of 130 [20]. LSTM outperformed
other methods such as Multilayer Perceptron (MLP), Support Vector Regression (SVR),
Relevance Vector Regression (RVR), and Convolutional Neural Network (CNN). With time-
series data, LSTM performs well, but it takes a long time to converge [21]. Convolution
Neural Networks (CNN) were developed to forecast the RUL of the same engine [22]. It
uses a time window technique for sample processing, which may yield more deterioration
detail. As a result, the number of model inputs grows, making the building of a neural
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network model a difficult task: how to set up network nodes and network layers to avoid
overfitting. Recurrent Neural Network based on Statistical Recurrent Unit (SRU) was
proposed for the RUL prediction of the C-MAPSS dataset of a turbofan engine [23]. It can
find hidden partners from multivariate time-series sensor data with varied operating state
faults and defects, and it outperforms other dynamic deep learning algorithms because it
uses linear combinations of few averages to obtain a plurality of historical perspectives.
RUL prediction of turbofan engines using Recurrent Neural Network (RNN) has been
proposed, in which the recurrent neural network is trained with back-propagation by
time gradient calculations, an Expanded Kalman Filter training process, and evolutionary
algorithms to create an accurate and compact algorithm [24]. When compared to MLP, the
results reveal a higher level of accuracy. Various topologies, such as MLP, SVR, RVR, CNN,
and LSTM, have been employed for RUL prediction of the turbofan engine, as previously
noted.

Unlike these methods, this paper presents Deep Layer-Recurrent Neural Network
(DL-RNN) as a novel topology to predict the RUL of the turbofan engine. To the best of
the authors’ knowledge, this is one of the few, if not the only, attempts to use DL-RNN
to estimate RUL for a turbofan engine. A thorough comparison is also made against
three topologies: MLP, NARX, and CFNN. The performance of our proposed method
and the current method are compared. Comparative results reveal that the proposed
strategy is superior in terms of accurately predicting RUL. The turbofan engine failure
experimental data collection from the US National Aeronautics and Space Administration
(NASA) Prognostics Center of Excellence is the subject of this article’s data analysis. Firstly,
this paper illustrates the pre-processing steps performed on raw sensor data of run-to-
failure engines, followed by the health indicator construction, and then, it matches test
data based on data from the model library. Analysis of similarity enables having the RUL
according to the outcome that fits.

2. The Turbofan Engine

A jet engine, commonly known as a gas turbine engine, is a type of turbine engine that
spins pressurized gas to create power or supply kinetic energy to an airplane [25]. Turbojet,
turbofan, turboprop, turboshaft, and ramjet engines are the five most common kinds of gas
turbine engines [25]. The turbofan engine, often known as a fanjet, is a contemporary gas
turbine engine that is commonly employed in aviation propulsion. The net force generated
by the thrust that propels the item forward is referred to as propulsion. As a result of
their tremendous thrust and efficiency, turbofan engines power practically all commercial
aircraft. The engine is the device that converts the energy of the fuel into shaft power
and uses that shaft power to propel the automobile. The engine consists of an air intake,
a low and high-pressure compressor, a combustor or combustion chamber, a high and
low-pressure turbine, and an outlet or exhaust nozzle. The air enters the compressor and
then travels through the compressor to the air intake, where it is compressed to a high
pressure. Then, it increases the temperature of the high-pressure air that is burned (mixed)
with the gasoline in the combustor. The combustion produces high-velocity gases that pass
through the turbines, generating energy to power the turbines through a compressor. The
compressor exhausts such elevated hot gases to the turbine. The turbine’s high-velocity gas
is drained out via the jet nozzle, creating push to propel the engine ahead outside through
the outlet. Turbofan engines have the benefit of being more fuel efficient and producing
less noise than turbojet engines. The two downsides are that it is larger than a turbojet and
that it is inefficient at very high altitudes.

2.1. Components of Gas Turbine Engine

The operation of a turbofan engine is described in depth below. There are five major
elements of a gas turbine engine, each of which plays a critical function in the engine’s
operation.
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2.1.1. Air Inlet

The air passes through the fan as it goes from left to right through the engine. The fan
is in charge of producing the majority of the thrust generated by the turbofan engine. The
shaft connects the fan to the low-pressure compressor and the low-pressure turbine. The
majority of air traveling through the fan travels past the engine’s core, which is known as
bypass air, and never interacts with other engine components. It is propelled straight from
the back of an engine [26]. The leftover air reaches the heart of an engine before entering
the low-pressure compressor.

2.1.2. Compressor

The compressor’s main job is to add energy to the air in the form of pressure and
heat, preparing it for combustion. The temperature of the air rises as the pressure rises.
Low-pressure compressors (LPC) and high-pressure compressors (HPC) are the two main
types of compressors (HPC). The low-pressure shaft connects the low-pressure compressor,
the fan, and the low-pressure turbine. The high-pressure compressor is placed directly
downstream of the LPC and diagonally upstream of the combustor, and it is linked to the
high-pressure turbine via a high-pressure shaft [26].

2.1.3. Combustor

The fuel is mixed with the hot pressure air that travels through the compressor and
burnt in the combustion chamber. This is where the reaction occurs, resulting in extremely
high-temperature, high-velocity gases that are utilized to power the turbine [26]. The
combustion chamber is located immediately behind the compressor and is composed of
materials that can endure high temperatures caused by combustion. It may be located in
the heart of an engine.

2.1.4. Turbine

Turbines are made up of a row of spinning blades. The turbine takes energy from the
high-temperature, high-velocity gas from the combustor and delivers it to the compressor
and fan through the connecting shaft. This energy assists in the rotation of the compressor
and fan. As a result of the energy extracted by the turbine, the temperature and pressure of
the air exiting the turbine are comparatively low. There are two types of turbines: high-
pressure turbines (HPT) and low-pressure turbines (LPT). The high-pressure turbine is
placed upstream of the low-pressure turbine and downstream of the combustor or burner.
The low-pressure turbine, on the other hand, is placed downstream of the high-pressure
turbine and upstream of the exhaust nozzle [26].

2.1.5. Exhaust Nozzle

The exhaust nozzle is positioned on the engine’s right side, just after the turbine.
It is also the final component through which air goes before exiting the engine. It is a
tube-shaped part that helps the engine go ahead by producing more thrust [26]. It also aids
in pressure regulation within the engine, which aids in the appropriate operation of other
components.

2.2. Failure of Turbofan Engine

Human life is influenced by health, and all systems deteriorate as a result of time,
usage, and environmental factors. If a run-to-failure approach is being used, gas-turbine
engines may be subjected to harsh environmental and operational conditions such as
corrosion, wear, buckling, erosion, and so on, which can lead to costly and catastrophic
breakdowns [27]. As a result, each gas turbine engine has over two hundred sensors
attached to check its condition. Over time, the health of an engine deteriorates significantly.
Engine health is influenced by several engine characteristics, sometimes known as health
parameters. The health parameters of various engines vary. As a result, it is critical to
monitor and assess these health metrics to optimize the engine’s life, performance, and
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dependability, among other things. However, due to the complexity of aircraft and some-
times the lack of instruments to assess certain characteristics, direct measurements of health
parameters are not possible [27]. As a result, having problem diagnostics, Prognostics, and
Health Management (PHM) on the engine is critical. The most complex and challenging
aspect of PHM is prognostics on an engine’s remaining usable life (RUL).

3. Data Brief Description

As part of the PHM 2008 prognostics data challenge [28], over 200 multivariant time-
series datasets were made available. With unknown beginning wear and production
variance, each dataset is unique. Three operating settings and twenty-one sensor readings
polluted by sensor noise are included in the datasets. “Training”, “testing”, and “final” are
the three datasets offered. The training trajectories, which are made up of entire run-to-
failure data, are used to train the algorithm to anticipate remaining usable life. Each time
series is from a distinct engine, implying that the data from a fleet of engines might be of the
same type. Then, the trained algorithm is used to create test trajectories, which are made
up of brief instance time series that finish a certain amount of time before deterioration.
Each column represents a different variable, and each row represents a snapshot of data
received during a single cycle of operation. Each engine is equipped with 21 different
types of sensors (e.g., pressure, temperature, and shaft speed) that collect data on various
engine parameters. C-MAPSS [29] is made up of two datasets: training and testing. The
training trajectories provide operational examples with full run-to-failure data, which will
be utilized to train the algorithms. Test trajectories, on the other hand, can only be made up
using smaller amounts of data until the approach fails. A set of trajectories is used to model
four distinct operation circumstances. Only the first sub-dataset, FD001, is considered
in this paper. The first two columns provide the unit number and operating duration in
cycles, while the third, fourth, and fifth columns contain operational parameters. As seen
in Table 1, the rest of the columns are sensor measurements. Table 2 lists the sensors used
for the C-MAPSS and PHM08 datasets

Table 1. Specifications of dataset.

Index Data Description

1 Unit number
2 Time (in cycles)
3 Operational setting 1
4 Operational setting 2
5 Operational setting 3
6 Sensor measurement 1
7 Sensor measurement 2
8 Sensor measurements 3–20
9 Sensor measurement 21

Table 2. Selection of sensors.

Dataset Sensors Selected

C-MAPSS 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, 21
PHM08 2, 3, 4, 7, 11, 12, 15, 17, 20, 21

3.1. Data Preprocessing

A min–max normalization is used for both the training and testing trajectories of the
C-MAPSS dataset along each variable to standardize the data and prevent overfitting the
model over variables with a high order of magnitude [30]. The scaled value Xscaled of a
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vector X is evaluated using the equation. Each column function’s lowest and maximum
values are represented by Xmin and Xmax, respectively.

Xscaled =
X− Xmin

Xmax− Xmin
(1)

In addition, variables that do not alter over time and thus could affect the results are
removed. Some of the 21 sensors have consistent outputs for the engine’s life; hence, they
cannot give any helpful information for prediction. As a result, the C-MAPSS data do not
include the outputs of these sensors. In this paper, 14 useful sensors measurements—2, 3, 4,
7, 8, 9, 11, 12, 13, 14, 15, 17, 20, 21—are selected, and the irregular/unchanged sensor data
are abandoned, as shown in [31,32].

Since the real RUL values in the C-MAPSS dataset are only provided for test data, it is
critical to appropriately identify the training data. Setting the RUL to the form of (2) is a
simple and straightforward method. The health equation is as follows [33]:

h(t) = 1 + d− exp{a ∗ t̂b} (2)

where d is the non-zero initial degradation, index t is the number of cycles, a and b are the
coefficients from which b is set to 1 as a default value, and a can be written as (3) at the end
of cycle when h(t) is 0.

a = log(1 + d)/t (3)

The deterioration of an engine system, on the other hand, is negligible until the failure
arises after the engine has been operating for a while. As a result, the engine system’s RUL
should begin at a constant value and steadily decline as the failure proceeds. However,
how can you figure exactly how much the RUL is worth when you are just starting out? In
the literature, it was estimated that there were around 130 cycles [29]. On the other hand,
the justification behind picking 130 as the starting RUL is rarely explained. In this study,
we proposed a technique for determining an acceptable starting RUL. The coefficient a is
calibrated to provide an initial RUL value for that engine at zero-time cycle and zero RUL
at the end of the cycle. Figure 1 depicts the RUL of engine no.1, which demonstrates that
when the time cycle is zero, the RUL value is 112, which is the beginning RUL of engine
no.1, and it degrades as the time cycle increases until the RUL is zero at the end of the cycle
or when the maximum threshold is achieved. This approach is used to train the algorithm
for all 100 engines in FD001, and the produced health indicator is used as a target.
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The challenge dataset is approached in a similar manner. To have an HI that is
useful for prognosis, a data processing strategy that includes feature extraction, data
cleansing, and feature selection is required. NASA’s collection includes 21 sensors that
measure characteristics such as temperature, pressure, and bypass ratio. Furthermore,
the training dataset’s sensor data are contaminated with a fair amount of noise. As can
be seen in Figure 2, the raw data are directly from the engine source and have not been
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processed or cleaned in any way. In addition, each trajectory has its own initial wear
pattern and is tainted by noise. As a result, the raw data must be pre-processed, which
includes regime clustering, normalization, and sensor selection. Before switching on to the
remaining usable life, raw data were pre-processed to change it into un-understandable
data. Regime clustering, regime normalization, sensor selection, trendability analysis,
and health indicator construction are all phases in the pre-processing process [34]. The
pre-processing was carried out on both the training and test trajectories. The stages for
pre-processing are shown below.
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3.1.1. Regime Clustering

This is the initial phase in the data pre-processing process, and it is used to determine
operating regimes. The operational parameters in the engine data have a direct influence
on the sensors, and establishing the ideal number of clusters in these settings can lead to the
discovery of multiple regimes. It is unlikely that all operational parameters in distinct data
would respond in the same manner to a clustering technique. Some people will react more
positively than others, while others will remain unresponsive. Clustering, on the other
hand, should be approached as a generic problem to solve rather than a one-size-fits-all
approach to operational settings. Clustering is a technique for identifying and grouping
similar data points in huge datasets. By counting the number of clusters, the number
of regimes may be determined. k-means clustering, hierarchical clustering, grid-based
clustering, and more techniques of regime clustering exist. Since it is straightforward to
implement and assures convergence, the k-means method is used in this research. As
shown in Figure 3, the k-means method revealed that there are six cluster points, indicating
that there are six operational regimes with three operational settings [34].
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3.1.2. Regime Normalization

The process of converting raw data to a standard scale and normalizing it is known
as normalization. This involves computing the z-score, which is just the difference be-
tween each regime’s population average and each individual raw sensor, divided by the
population’s standard deviation. The following is the formula for calculating z-score
normalization:

Z− score=
x− µ

σ
(4)

where x is the raw data value of the regimes, µ is the population average, and σ is the
standard deviation of the population. The population mean is given by:

µ =
1
n

n

∑
i=0

x (5)

where n is the number of observations and standard deviation is given as:

σ =

√
∑n

i=1 (x− µ)2

n
. (6)

The results of normalization for the first five sensors, i.e., sensor 1 to 5, are shown in
Figure 4 [34].
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3.1.3. Sensor Selection

We can observe the trend of all 21 sensors after executing regime normalization.
Furthermore, sensors with the same deterioration trend were chosen. Trendability analysis
was used to do this. The most trendable sensors values were chosen to create the health
indicator (HI), and the deterioration pattern of each sensor was calculated [34]. As a result
of the trendability study, 10 sensors with the same deterioration pattern were chosen: 2,
3, 4, 7, 11, 12, 15, 17, 20, and 21. These eleven sensors were discovered to be beneficial
in calculating health indicators. Figure 5 depicts the deterioration pattern of five usable
sensors out of ten.
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3.1.4. Health Indicator

This section focuses on combining all 21 sensors to create a single health indicator.
The health indicator is considered to decline linearly from 1 to 0 over time. As a result, the
health status at the start is presumed to be 1, and at the end, it is assumed to be 0 [34]. In
addition, for the 10 usable sensors used as regressors, a fit linear regression model was
built. Figure 6 shows the fused health indicator for training data, which is then employed
as a neural network output. Both training and test trajectories went through this process.
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4. Neural Network Training

A model is trained using neural networks to map between raw data as an input and
health indicator (HI) as an output. Artificial intelligence includes ANN. Deep learning
approaches such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Long Short-Term Memory Networks (LSTMS), self-organizing maps (SOMs),
Radial Basis Function Networks (RBFNs), and others have outperformed classic RUL
prediction algorithms. The design specifics of MLP, NARX, CFNN, and DL-RNN are
presented in this section.

4.1. Multilayer Perceptron

Multilayer perceptron (MLP) is a feedforward Artificial Neural Network augmentation.
It is made up of three layers: input, hidden, and output. From the first layer on the left,
the input layer, each perceptron provides outputs to all perceptrons on the second layer,
the hidden layer, and all perceptrons on the second layer transmit outputs to the last layer
on the right, the output layer [35]. Figure 7 shows the basic construction of MLP along
with NARX and C-FNN. With 10 inputs and one target for the challenge data and fourteen
inputs and one target for the C-MAPSS dataset, the multilayer perceptron method was
implemented in MATLAB. The inputs and output (target) were all standardized using
min–max normalization between the ranges of [0, 1]. The aim was HI, and the inputs
were normalized raw sensor data from usable sensors. In the first layer, four hidden nodes
were employed, whereas in the second layer, five hidden nodes were used. The learning
rate is set to default 0.01, and batch size is set to 64. The Levenberg–Marquardt training
function was used to train the method, which takes less time than Bayesian regularization
but requires more memory to train and prevents overfitting. Min–max normalization was
used to map both the inputs and the target between the ranges of [0, 1]. For each node, a
hyperbolic tangent activation function is utilized. The mean square error was used as the
performance function (MSE). The method was trained using 18,000 epochs for 58 s to 1 min
26 s, and then, the same training raw data were put into the received network feature to
ensure that the learnt neural network accuracy was appropriate. The validation produced a
similar pattern; however, the findings were not adequate when compared to the initial aim.
When the machine was near to failure, the MLP network was quite accurate in forecasting
remaining usable life at the end of the run. During the early and middle sections of the
race, however, projecting RUL is considerably more difficult, and the performance is not as
excellent. To increase the network’s performance, many improvements were performed,
including the use of different training functions, such as Bayesian regularization, scaled
conjugate gradient backpropagation, RPROP backpropagation, and so on.
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4.2. Nonlinear Autoregressive Network with Exogenous Inputs

The nonlinear autoregressive network with exogenous inputs is a persistent hierar-
chical network with feedback relationships spanning many levels. This means that the
model relates the current value of a time series to both historical values of the same series



Actuators 2022, 11, 67 11 of 17

and current and historical values of the (exogenous) driving sequence [36]. Figure 8 de-
picts NARX’s basic construction. NARX has been employed in several dynamic systems
with complicated nonlinearities. Following the MLP neural network’s poor accuracy, the
NARX algorithm was implemented in MATLAB. A NARX network can be trained in two
ways [36]:

(a) Series-parallel mode sequence or open loop mode NARX network in which the actual
output is directly used instead of the approximate output being fed back.

(b) The parallel mode of the NARX network or the closed loop network is to feed the
expected performance back to the network.

For the Challenge data, inputs were defined as a “10*time” cell of useable raw sensor
data and a “14*time” cell for the C-MAPSS dataset, while the target series was specified as
a 1*time HI cell in the preceding segment. The input and feedback delays were both set
to two, with a total of two concealed layers. There are five nodes in the first hidden layer
and five nodes in the second hidden layer. The learning rate is set to default, 0.01, and the
batch size is set to 64. Using min–max normalization, both the inputs and the target were
mapped in the range [0, 1]. The algorithm was first trained in an open loop form before
being switched to a closed loop mode. With hyperbolic tangent sigmoid as an activation
function, the convergence time was approximately 1 min 50 s to around 1 min 4 s with
Levenberg–Marquardt as a training function. After training the algorithm, validation was
performed on the same raw inputs to ensure that the trained neural network was accurate.
The validation resulted in the network’s performance being extremely bad. Smooth data
were utilized to smooth the output and filter the noise.

4.3. Cascade Forward Neural Network

Cascade forward neural networks are similar to feedforward neural networks in that
they include a link from the input to each successive layer. Figure 7 depicts the basic
C-FNN construction [37]. The output layer of a three-layer network is directly connected
to the input layer as well as the secret layer [38]. A cascade forward neural network
can be utilized for any type of input to output mapping. This method has the benefit of
accepting nonlinear input–output relationships while maintaining the linear connection. In
this analysis, we employ a network in the field of time series. The best architecture was
calculated utilizing the incremental search procedure in both the input and hidden units.
The inputs for the Challenge data were set to a “10*time” cell of accessible raw sensor data
and a “14*time” cell for the C-MAPSS dataset, with a 1*time HI cell as the target. In all, two
inputs, feedback delays, and two hidden layers were employed. The learning rate is set to
default, 0.01, and the batch size is set to 64. The convergence duration ranged from about 1
min 8 s using hyperbolic tangent sigmoid as an activation function to around 1 min 35 s
with Levenberg–Marquardt as a training function.

4.4. Deep Layer-Recurrent Neural Network

Feedforward networks are similar to recurrent neural networks with layers, except that
each layer has a recurrent connection coupled with a tap delay. This allows the network to
respond to input data from the time series in an infinitely dynamic manner [39]. It is divided
into two parts: recurrent layers and feedforward. RNNs (Recurrent Neural Networks)
have shown to be a powerful tool for modeling sequential data. They have paved the
way for considerable advancement in a range of fields, including language processing and
voice recognition. Fully recurrent networks, recursive neural networks, Hopfield networks,
Elman and Jordan neural networks, continuous-time RNNs, and bidirectional RNNs are a
few examples of DL-RNNs. The fully recurrent network was established in the 1980s and is
a network of neuron-like units. Each unit is linked to the others in a guided manner. Each
connection has a real-valued weight that can be modified. The Hopfield neural network is a
form of recurrent Artificial Neural Network that was first developed in 1982. John Hopfield,
the inventor, was given the name. It has an important function in that it ensures that all its
dynamics can converge to the local minimum. However, it does often converge to a false
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local minimum. It is a unique neural network, since it does not use sequences of patterns.
Figure 8 depicts the DL-basic RNN’s construction. When stacking multiple RNN cells on
top of each other, the hidden state of the lower level is passed on as input to the next-higher
level. After testing with the MLP and NARX, the Layer-Recurrent Neural Network was
utilized to train the algorithm and forecast the RUL. The dynamic data from 14 separate
variables of raw usable sensor data are expressed in the inputs as a “14*t” cell of a matrix
for the C-MAPSS dataset, as mentioned in the preceding section. The Deep Layer-Recurrent
Neural Network is built in a triple loop with an increasing number of hidden layers in the
outer loop, a default value for layer delays, and a scaled conjugate gradient as the training
function. The learning rate is set to default, 0.01, and the batch size is set to 64. There are
two nodes in the second hidden layer and fourteen nodes in the third hidden layer. In
other words, the buried layers do not have a default value. For each node, a hyperbolic
tangent activation function is utilized. To ensure that the learnt neural network accuracy is
appropriate, the same training raw data are integrated into the received network feature. A
similar trend ended in confirmation, but it was tainted with noise, so smooth data were
used to filter it out, and the network was able to attain high accuracy for the C-MAPSS
dataset after only 57 s of training and 1 min 19 s of training for challenge dataset. With
DL-RNN, the network’s accuracy increased considerably. Since the answer matches the
initial HI used in network training, the network may now be utilized for fresh inputs. The
network’s performance is assessed using a test trajectory. While the network feature trained
with this data gives the expected results, there is a chance that if the network is trained with
other input and output values, there would be unwelcome predictions owing to differing
weight and bias values. As a result, numerous neural networks from various trajectories
are trained with inputs and outputs and saved in the network library, which can then be
tested using the test.txt untrained data.
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5. Validation and Discussion

This section discusses the suggested method’s prognostic performance. To demon-
strate the superiority of Deep Layer-Recurrent Neural Network over other ensemble meth-
ods such as Multilayer Perceptron (MLP), Nonlinear Autoregressive Network with Exoge-
nous Inputs (NARX), and Cascade Forward Neural Network (CFNN), comparisons with
other ensemble methods such as Multilayer Perceptron (MLP), Nonlinear Autoregressive
Network with Exogenous Inputs (NARX), and Cascade Forward Neural Network (CFNN)
are made (with DL-RNN). By default, MLP fails to recall patterns in sequential data, and
multi-dimensional data processing needs many parameters. When compared to MLP
and CFNN, NARX makes use of its memory capacities by utilizing the previous values
of the time series, i.e., dynamic mapping rather than static mapping, and it has a faster
convergence rate, making it more powerful in time-series prediction. Furthermore, recur-
rent neural networks with layers are similar to feedforward networks, with the exception
that each layer has a recurrent relationship connected with a tap delay. This allows the
network to respond to input data from the time series in an infinitely dynamic manner.
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When compared to the other three topologies, NARX, MLP, and CFNN, DL-RNN considers
prior values throughout the training phase, making it better. All of the tests are carried
out on a PC with an Intel Core i5 processor and 8 GB of RAM, as well as on the MATLAB
environment.

For all four topologies, the Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) are employed for performance evaluation and are calculated both for training and
testing. These two functions will help us to understand the model’s performance better. The
RMSE highlights greater mistakes more, since the errors are squared before being averaged.
The lower the MAE and RMSE values, the better a network’s performance. Table 3 shows
the mean and standard deviation of many runs for each of the four topologies. Table 4
shows that the performance of the NARX network is better than that of the MLP and CFNN
networks, since the MAE and RMSE values are lower than those of the other two. Table 4
further shows that the DL-RNN model produced the greatest results when compared to
the other three topologies. Experiments were carried out utilizing Levenberg–Marquardt
(LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG) to examine the
four topologies separately. SCG requires less time to converge than the LM and BR, and
it produces better results than the other two training methods. When trained using SCG,
the Mean Square Error (MSE) and Integral Square Error (ISE) calculations, as well as the
number of iterations, are shown in Table 5.

Table 3. Mean and standard deviation of multiple runs.

Mean Standard Deviation

DL-RNN 0.971 0.764
NARX 2.531 0.559
MLP 2.81 0.328

CFNN 3.72 0.445

Table 4. Performance comparison of different methods (FD001 dataset).

Training Testing

MAE (%) RMSE (%) MAE (%) RMSE (%)

DL-RNN 0.174 0.199 0.177 0.121
NARX 0.771 1.04 0.775 1.08
MLP 1.724 2.54 1.754 2.295

CFNN 3.43 4.62 3.84 4.84

Table 5. Results of testing (SCG algorithm, FD001 dataset).

Scaled Conjugate Gradient

Iterations MSE (%) ISE (%)

DL-RNN 18,000 0.00002 0.0004
NARX 18,000 0.0002 0.0038
MLP 18,000 0.0814 0.0156

CFNN 18,000 0.0155 0.081

MAE and RMSE are evaluated for all four topologies and are presented in Table 6. As
can be seen, the RMSE and MAE values of DL-RNN are lowest compared to the other three.
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Table 6. Performance comparison of different methods (Challenge dataset).

Training Testing

MAE (%) RMSE (%) MAE (%) RMSE (%)

DL-RNN 0.159 0.203 0.127 0.135
NARX 0.293 0.455 0.514 0.597
MLP 1.459 1.625 1.516 1.772

CFNN 1.44 2.39 1.36 2.45

Table 7 shows the comparison of the SCG algorithm for all four methods. Using the
SCG algorithm, the network gives better estimation results, and it converges fast compared
to the other algorithms. The number of iterations is set to 18,000 to train the algorithm.

Table 7. Results of testing (SCG algorithm, Challenge dataset).

Scaled Conjugate Gradient

Iterations MSE (%) ISE (%)

DL-RNN 18,000 0.00008 0.0018
NARX 18,000 0.0004 0.0095
MLP 18,000 0.0036 0.0804

CFNN 18,000 0.0053 0.1187

The remaining useful life of 100 testing engines is estimated after successfully training
the model. The estimated RUL is compared with the actual RUL values, and the results are
shown in Figure 9 below where the blue line indicates the actual RUL and the red line is
the predicted RUL. As can be seen, the expected values closely match the true values.
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6. Conclusions

Over the last decade, deep learning methods have gained popularity in engineering
applications, particularly in data analysis for reliability evaluation, which was previously
inefficient due to the requirement of expert knowledge on the studied system as well as
the limitations of traditional PHM techniques. There are still many obstacles for reliability-
related, data-driven applications to maintain improving the estimate of health status metrics
that can provide an accurate diagnostic for systems and facilities. Using massive machinery
data, this research proposes a deep learning approach for predicting the health condition of
complex systems. The framework uses a unique topology layer-recurrent neural network
to train the algorithm, which has been verified using two independent datasets. Through
the training and testing of several models, the proposed framework is validated using
the C-MAPSS and Challenge datasets. The suggested approach has proven to be reliable
in predicting the remaining usable life of both datasets. The training and testing for the
C-MAPSS dataset is performed on all 100 engines in the first subset. The suggested DL-
RNN-based model beat all three topologies when the average result for both metrics, MAE
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and RMSE, was compared to the other three topologies. For the challenge dataset, training
and testing are carried out on all 218 engines, and MAE and RMSE are calculated for all four
topologies. A comparison of SCG algorithms is also shown, demonstrating the superiority
of the suggested topology.

7. Future Work

The findings shown and described above show that the framework can extract features
and sequential analysis can be performed on raw data. The method is flexible and gives
consistent outcomes in a range of settings. However, there are certain aspects that may be
improved. The training procedure is fully supervised, which is one of the major drawbacks
of the topologies utilized in this work. While the model may be directly applied to a
wide range of situations, there are still several reliability-related phenomena for which
the needed amount of labeled data to train a fully supervised model is not available. A
further step in the suggested research would be to use an unsupervised data preprocessing
approach, such as clustering, to create labels for the training data.
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