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Abstract: Semantic segmentation plays a very important role in image processing, and has been widely
used in intelligent driving, medicine, and other fields. With the development of semantic segmentation,
the model has become more and more complex and the resolution of training pictures is higher and
higher, so the requirements for required hardware facilities have become higher and higher. Many
high-precision networks are difficult to apply in intelligent driving vehicles with limited hardware
conditions, and will bring delay to recognition, which is not allowed in practical application. Based on
the Dual Super-Resolution Learning (DSRL) network, this paper proposes a network model for training
high-resolution pictures, adding a high-resolution convolution module which improves segmentation
accuracy and speed while reducing computation. In a CamVid dataset, taking the road category as
an example, IOU is 95.23%, which is 4% higher than DSRL, the real-time segmentation time of the same
video is reduced by 46% from 120 s to 65 s, and the segmentation effect is better and faster, which greatly
alleviates the recognition delay caused by high-resolution input.

Keywords: semantic segmentation; high-resolution atlas training; super-resolution

1. Introduction

Semantic segmentation is a basic computer vision task. Its purpose is to classify
each pixel in the picture. It is widely used in the fields of intelligent driving, medical
imaging, and pose analysis. According to research [1], when traditional cars are replaced
by private autonomous vehicles, the number of cars owned by each family can be reduced,
the maintenance cost will be less than traditional cars, and the mileage of family vehicles
will increase by 57%. According to a survey, consumers are willing to pay the premium
related to the purchase of vehicles equipped with automatic equipment. Research [2] shows
that cumulative energy and greenhouse gas can be reduced by 60% in the basic case after
a series of strategic deployments, and can be further reduced by 87% through accelerated
grid decarburization, dynamic performance sharing, vehicle life extension, the improved
efficiency of computer systems, the improved fuel efficiency of new vehicles, etc. Therefore,
intelligent driving vehicles will be widely used. However, in the field of intelligent driving,
semantic segmentation needs to maintain real-time detection while maintaining high
accuracy. However, in an application with limited hardware facilities, a high-precision
network cannot be put into use, and the recognition delay is also very large. The following
are some classic networks for semantic segmentation: UNet [3], Deeplabs [4–6], PSPNet [7],
SegNet [8], etc. These semantic segmentation networks usually need to use high-resolution
atlas training to achieve high accuracy. High-resolution pictures can effectively transfer
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the features in pictures and facilitate network learning. Therefore, high-resolution features
are very important in high-precision networks. At present, there are two main ways to
maintain high-resolution performance. One is to use void convolution to maintain high-
resolution features, and the other is to combine top-down paths and horizontal connections,
such as with UNet. Both methods can effectively prevent feature disappearance due to
too much convolution, but these methods themselves consume very many computing
resources. On this basis, taking high-resolution images as input will further increase
the amount of network computing and image segmentation time. In order to reduce
the cost of automatic driving, some studies [9] have improved the hardware by using
a fisheye camera instead of a vision and LiDAR odometer system. In recent years, the
compressed network used in devices with limited hardware resources has attracted people′s
attention, but there is still a certain gap between the prediction accuracy of the current
network and the network model trained by high-resolution atlas. In order to reduce the gap
between the two networks above, some compressed networks also choose high-resolution
pictures as input (for example, 1024 × 2048 or 512 × 1024). In order to reduce the burden
on the network when high-resolution pictures are used as input, ESPNets [10,11] have
been proposed to accelerate convolution calculation by using split merge or reducing the
expand principle. Others use efficient classification networks (such as MobileNet [12]
and ShuffleNet [13]) or some compression technologies (such as pruning [14] and vector
quantization) to accelerate segmentation, but the effect is not ideal. The existing convolution
kernel has two main disadvantages: one is that the receptive field is small and difficult to
capture in long-distance dependence; the other is that the information between channels is
redundant. On this basis, D Li [15] et al. proposed involution; that is, the convolution kernel
is multiplexed in space and independent in the channel, which can be used to accelerate
the speed of convolution. Li Wang [16] et al. proposed a dual super-resolution learning
network (DSRL): a compressed network for high-resolution atlas training that has a certain
improvement compared with the previous methods, but the DSRL network is still poor
at detecting the details of objects. Therefore, in this paper, a new network framework is
designed based on DSRL to alleviate this problem. More specifically, the network in this
paper consists of two parts: one part is the super-resolution network, and the other is the
high-resolution picture convolution network. The internal convolution is used to replace
the partial convolution, which not only reduces the network parameters, but also improves
the segmentation accuracy.

2. Materials and Methods
2.1. Dual Super-Resolution Learning

The Dual Super-Resolution Learning (DSRL) network is a dual super-resolution learn-
ing network based on image super-resolution in order to maintain a high-resolution display.
The DSRL network aims to reconstruct high-resolution images with low-resolution input.
The network model has two main modules: one is Semantic Segmentation Super-Resolution
(SSSR) and the other is Single Image Super-Resolution (SISR). In addition, there is a Feature
Affinity (FA) module. SSSR integrates the idea of super-resolution into the existing semantic
segmentation, and the fine-grained structure based on the FA module further enhances
the high-resolution features of SSSR streams. In addition, the two streams share the same
feature extractor and optimize SISR branches during training.

The structure of DSRL is shown in Figure 1. The decoding module of DSRL consists
of two parts. One is the SSSR module and the other is SISR, which shares the same feature
extraction module. SSSR is the process of generating the final segmentation result only through
upsampling; SISR is the process of image recovery from low resolution to high resolution.



Actuators 2022, 11, 69 3 of 14
Actuators 2022, 11, x FOR PEER REVIEW 3 of 14 
 

 

 
(a) 

  
(b) (c) 

Figure 1. Dual Super-Resolution Learning (DSRL) network structure: (a) DSRL network structure; 

(b) Semantic Segmentation Super-Resolution (SSSR) realizes image segmentation only by upsam-

pling; (c) SSSR + Single Image Super-Resolution (SISR) restore from low-resolution feature layer to 

high resolution of original image. 

2.2. You Only Look One-Level Feature 

The Feature Pyramid Network [17] (FPN) is a basic component in the recognition 

system used to detect objects with different scales. The FPN framework is shown in Figure 2. 

The main core benefits of FPN are two: on the one hand, FPN can fuse multi-scale feature 

maps to obtain better representation; on the other hand, it is a divide-and-conquer strat-

egy, which detects targets on different levels of feature maps according to different scales 

of targets. Qian Chen [18] et al. proposed You Only Look One-level Feature. This paper 

studies the influence of two gain fittings of FPN on a single-stage detector. In this paper, 

FPN is regarded as a Multiple-in-Multiple-out (MiMo) encoder. Four types of encoders 

are studied: Multiple-in-Multiple-out (MiMo), Multiple-in-Single-out (MiSo), Single-in-

Multiple-out (SiMo), and Single-in-Single-out (SiSo). It is found that the SiMo encoder has 

only one input feature, and the C5 feature layer can achieve the same performance as the 

MiMo encoder without feature fusion. The results are shown in Figure 3. These phenom-

ena illustrate two facts:  

(1) C5 feature provides sufficient semantic information for object detection at different 

scales, which enables the SiMo encoder to achieve the same results as the MiMo en-

coder;  

(2) The benefit of multi-scale feature fusion is far less important than the divide-and-

conquer strategy, so multi-scale feature fusion may not be the most significant benefit 

of FPN. 

Figure 1. Dual Super-Resolution Learning (DSRL) network structure: (a) DSRL network structure;
(b) Semantic Segmentation Super-Resolution (SSSR) realizes image segmentation only by upsampling;
(c) SSSR + Single Image Super-Resolution (SISR) restore from low-resolution feature layer to high
resolution of original image.

2.2. You Only Look One-Level Feature

The Feature Pyramid Network [17] (FPN) is a basic component in the recognition
system used to detect objects with different scales. The FPN framework is shown in Figure 2.
The main core benefits of FPN are two: on the one hand, FPN can fuse multi-scale feature
maps to obtain better representation; on the other hand, it is a divide-and-conquer strategy,
which detects targets on different levels of feature maps according to different scales of
targets. Qian Chen [18] et al. proposed You Only Look One-level Feature. This paper
studies the influence of two gain fittings of FPN on a single-stage detector. In this paper,
FPN is regarded as a Multiple-in-Multiple-out (MiMo) encoder. Four types of encoders
are studied: Multiple-in-Multiple-out (MiMo), Multiple-in-Single-out (MiSo), Single-in-
Multiple-out (SiMo), and Single-in-Single-out (SiSo). It is found that the SiMo encoder has
only one input feature, and the C5 feature layer can achieve the same performance as the
MiMo encoder without feature fusion. The results are shown in Figure 3. These phenomena
illustrate two facts:

(1) C5 feature provides sufficient semantic information for object detection at different scales,
which enables the SiMo encoder to achieve the same results as the MiMo encoder;

(2) The benefit of multi-scale feature fusion is far less important than the divide-and-conquer
strategy, so multi-scale feature fusion may not be the most significant benefit of FPN.
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Figure 3. Results of four input and output combinations of FPN. Using C3~C5 level feature layers of
the backbone and the feature layers of P3~P7 as the final output, compare the mAP (mean Average
Precision) indicators of the four decoders: (a) MiMo; (b) SiMo; (c) MiSo; (d) SiSo.

2.3. Involution

Ordinary convolution has the following two characteristics: the spatial invariance
of convolution, and channel specificity. It also has two defects: one is that the receptive
field is small and difficult to capture in long-distance dependence, and the other is the
redundancy of information between channels. On this basis, D Li et al. proposed the
concept of involution. The involution is structurally opposed to ordinary convolution. The
convolution kernel is shared in the channel dimension, and the special convolution kernel
in the spatial dimension can make the modeling more flexible. The structure of involution
is shown in Figure 4.

Figure 3. Results of four input and output combinations of FPN. Using C3~C5 level feature layers of
the backbone and the feature layers of P3~P7 as the final output, compare the mAP (mean Average
Precision) indicators of the four decoders: (a) MiMo; (b) SiMo; (c) MiSo; (d) SiSo.

2.3. Involution

Ordinary convolution has the following two characteristics: the spatial invariance
of convolution, and channel specificity. It also has two defects: one is that the receptive
field is small and difficult to capture in long-distance dependence, and the other is the
redundancy of information between channels. On this basis, D Li et al. proposed the
concept of involution. The involution is structurally opposed to ordinary convolution. The
convolution kernel is shared in the channel dimension, and the special convolution kernel
in the spatial dimension can make the modeling more flexible. The structure of involution
is shown in Figure 4.
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Figure 4. Involution structure (the involution kernelHi,j ∈ RK×K×1 (G = 1 in this example for ease
of demonstration) is yielded from the function φ conditioned on a single pixel at (i, j), followed by
a channel-to-space rearrangement. The multiply–add operation of involution is decomposed into
two steps, with ⊗ indicating multiplication broadcast across C channels and ⊕ indicating summation
aggregated within the K× K spatial neighborhood).

The convolution kernel size of involution is H ×W × K × K × G, among G << C.
This means that all channels share convolution kernels. In the involution, the fixed weight
matrix is not used as in the ordinary convolution, but the corresponding involution kernel
is generated according to the characteristic graph. Spatial specificity makes the convolution
kernel have the ability to capture multiple feature representations at different spatial
locations, and improves the problem of long-distance pixel dependence. The channel
invariance performance reduces the redundant information between channels to a certain
extent and improves the computing efficiency of the network. In essence, this design from
ordinary convolution to internal convolution redistributes the computing power at the
top level, and the essence of network design is the distribution of computing power, in
order to adjust the limited computing power to the position where it can give full play to
its performance. This involution module is easy to implement and can be easily combined
with various network models. It can easily replace conventional convolution to realize
an excellent backbone network structure.

2.4. Network Structure

In the network model of Dual Super-Resolution Learning (DSRL), in order to reduce
the impact of high-resolution pictures as input on the increase of network computing, firstly,
sub-sampling the high-resolution image of 960 × 720 to 480 × 360, and the picture size
becomes half of the original. For the low-resolution feature layer, simple upsampling is
carried out through Semantic Segmentation Super-Resolution (SSSR) and Single Image
Super-Resolution (SISR) to restore to the original image size. This article compares the color
pictures of the original size, 1/2 downsampling, and 1/2 downsampling + 2x upsampling;
the pictures are not visually different, and we use the operator of [-1 -1 -1; -1 8 -1; -1 -1 -1] to
extract the edges of the above three graphs. It can be found that the edge features extracted
from the original image have more noise, but the image details are also well preserved.
The edge feature noise extracted after 1/2 downsampling is reduced, but the details of
the object also become rough; the edge feature noise and object details extracted after
1/2 downsampling + 2x upsampling are greatly reduced. In the following experiment,
parts of these three images are used as input and the segmentation effects are compared.
The experimental results show that although downsampling will reduce the noise, the
missing details are more important, and the amount of noise has little effect on accuracy.
Images and their respective extracted edge features as shown in Figure 5.
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Figure 5. Picture features: (a) Original RGB picture; (b) 1/2 downsampling RGB picture; (c) 1/2 down-
sampling + 2x upsampling RGB picture; (d) Original RGB picture’s edge features; (e) 1/2 downsampling
RGB picture′s edge features; (f) 1/2 downsampling + 2x upsampling RGB picture′s edge features.

Therefore, this paper proposes a new network model based on the Dual Super-Resolution
Learning (DSRL) network model to improve the above problems. The network is divided
into two modules. One is the low-resolution image convolution module based on the super-
resolution theory; the other is the convolution module of high-resolution pictures. In this paper,
only the C5-level feature layer is extracted with reference to You Only Look One-level Feature
(YOLOF). The C5-level feature layer has sufficient semantic information, so the low-resolution
convolution module does not carry out feature fusion, expands the receptive field range
through expansion convolution, and then recovers to high resolution through upsampling.
However, since the image is downsampled twice at the beginning, resulting in the loss of
features of the original image, a convolution module of the high-resolution image is added to
the network to make up for the loss of features caused by the reduction of resolution. In order
to avoid the proliferation of network parameters caused by the convolution of high-resolution
images, this module only performs a small amount of convolution, and partial convolution is
replaced by internal convolution to reduce the amount of calculation. The network structure
is shown in Figure 6, maintaining two branches during training and two branches during
testing. Pruning occurred during testing to remove Mean Square Error (MSE) loss branches
and to reduce the amount of calculation.
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2.5. Loss Function

The network loss function consists of three parts: one is the cross-entropy loss function
composed of the network output and the actual segmentation graph, and the other is the
binary-cross-entropy loss function composed of the network low-dimensional feature layer
and the feature graph sampled under the actual segmentation graph to the corresponding
size. The last part consists of the Mean Square Error (MSE) between the network output
and the actual picture. The real segmentation’s edge features are shown in Figure 7
(edge extraction from ground truth). The Cross-Entropy (CE) loss function is shown in
Formula (1). yi and pi refer to the segmentation predicted probability and the corresponding
category for pixel i. The Binary Cross-Entropy (BCE) loss function is shown in Formula (2).
yi and xi refer to the target value and the value of model output. The Mean Square Error
is shown in Formula (3). xi and yi refer to the target value and the value of model output.
The whole loss function is shown in Formula (4). w1 and w2 are set as 0.2 and 0.4.

LCE =
1
N

N

∑
i=1
−yi log(pi) (1)

LBCE = − 1
N

N

∑
i=1

[yi log xi + (1− yi) log(1− xi)] (2)

LMSE =
1
N

N

∑
i=1
‖xi − yi‖ (3)

L = w1LMSE + w2LBCE + LCE (4)
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3. Results
3.1. Construction of Dataset

In this paper, a CamVid (Cambridge-driving Labeled Video Database) dataset was
selected, which was composed of 960 × 720 high-resolution pictures intercepted by videos
taken during the real driving process of vehicles. It was divided into 32 categories, such as
bicycles, roads, cars, and so on. This paper divided the training set, verification set, and
test set according to the proportion of 7:2:1. In order to enhance the generalization ability
of the model, data enhancement methods such as flipping and clipping were used for the
training set data.

3.2. Network Model Evaluation Index

Assuming that there are k classes (including k− 1 target classes and one background
class), k− 1 represents the total number of pixels belonging to the i class predicted as j class,
and specifically, pii represents TP (true positive); pij indicates FP (false positive); and pji
indicates FN (false negatives). The evaluation indicators included the following categories:

(1) PA (Pixel Accuracy): The ratio between the number of pixels correctly classified and
all pixel points is shown in Formula (5).

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(5)

The larger the value of the evaluation index, the more accurate the predicted pixel
classification is.

(2) MPA (Mean Pixel Accuracy) calculated the average value based on the proportion of
correctly classified pixel points to all pixel points, and the formula is shown in (6).

MPA =
1

k + 1
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(6)

(3) MIOU (Mean Intersection over Union): The ratio between the intersection between
the real value and the predicted value and the union between the real value and the
predicted value is averaged, and the formula is shown in (7).

MIOU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(7)
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(4) DICE: The ratio of the intersection of 2 times the predicted result and the real result to
the predicted result plus the real result is shown in Formula (8), where X represents
the real value, Y represents the predicted value.

DICE =
2|X∩ Y|
|X|+ |Y| (8)

The larger the value of the evaluation index, the more accurate the predicted pixel
classification is.

3.3. Analysis of Training Results

The framework of the neural network built in this paper was PyTorch. The model of
the graphics card used was RTX2060 8G. The size of DSRL and MY network parameters in
this paper are shown in Table 1.

Table 1. Network model parameters.

Model Estimated Total Size Params Size

DSRL 8091.60 (MB) 231.03 (MB)
MY 5438.59 (MB) 40.88 (MB)

We compared the road classes with the largest proportion in the CamVid dataset, and
the results are shown in Tables 2 and 3.

Table 2. Input of high-resolution network is original image.

Evaluating Indicator DSRL MY

IOU 91.17% 95.23%
PA 94.42% 98.99%

DICE 56.59% 60.49%

Table 3. Input of high-resolution network is original image and 1/2 downsampling + 2x upsampling.

Evaluating Indicator DSRL MY

IOU 95.23% 92.25%
PA 98.99% 97.86%

DICE 60.49% 60.25%

The experimental results show that the total network parameters in this paper were
reduced from 8091 MB to 5438 MB. Compared with the DSRL network, the network
structure in this paper improved the values of IOU, PA, and DICE:

(1) The IOU value increased from 91.17% to 95.23%;
(2) PA value increased from 94.42% to 98.99%;
(3) DICE increased from 56.59% to 60.49%.

The road segmentation diagram is shown in Figure 8 (the red part is the result of road
segmentation by the network, and the gray part is the standard value). The segmentation
results of the DSRL network were not good for the segmentation of small objects similar to
small lane lines. However, after adding the high-resolution image convolution module in
this paper, the segmentation effect of small objects was improved, which shows that the
high-resolution convolution module added in this model can effectively make up for the
loss of the input image due to 1/2 downsampling. Although the noise will be reduced after
downsampling, the priority is not as good as it is for the object details.
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(original picture) (d) Ground Truth.

VGG16, ResNet101, ResNet50, and CSPdarkNet53 were used as backbone networks to
compare the total network parameters, parameter size, and PA, IOU, and DICE. The results
are shown in Tables 4 and 5.

Table 4. Network evaluation parameters and parameter sizes of various backbone networks.

Backbone Estimated Total Size Params Size

VGG16 3751.10 (MB) 76.87 (MB)
ResNet50 6948.62 (MB) 113.41 (MB)
ResNet101 6517.05 (MB) 185.86 (MB)

CSPDarkNet53 5438.59 (MB) 40.88 (MB)

Table 5. Comparison of evaluation indexes of various backbone networks.

Backbone IOU PA DICE

VGG16 94.38% 96.51% 60.21%
ResNet50 92.25% 97.65% 60.25%
ResNet101 91.44% 96.55% 60.22%

CSPDarkNet53 95.23% 96.55% 60.49%

It can be seen from Tables 4 and 5 that the network model with VGG16 as the backbone
network could reach IOU, PA, and DICE similarly to the network model with ResNet50 and
ResNet101 as the backbone network with less parameters. Taking the original image as the
high-resolution network input, the comparison of various backbone network segmentation
images is shown in Figure 9 (the red part is the result of the segmentation of the road class
by the network).

As can be seen from various backbone network segmentation pictures in Figure 9 (the
red part is the result of the segmentation of the road class by the network):

(1) The network with VGG16 as the backbone can be achieved with half as few parameters
than ResNet50 and ResNet101 with a similar effect. In terms of the segmentation
accuracy of the lane line part of the road, the accuracy of VGG16 and ResNet50 is
similar. Both lane lines can be clearly segmented, which is better than ResNet101.
In terms of the segmentation accuracy of the tire shape at the bottom of the car, the
segmentation accuracy of VGG16 is slightly better than ResNet50 and ResNet101,
which can better fit the tire shape.

(2) The tire shape segmentation accuracy of the network with CSPdarkNet53 as the
backbone is better than VGG16, ResNet50, and ResNet101 on the lane line and the
bottom of the vehicle, and fits better with the lane line and tire shape.
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Figure 9. Comparison of various backbone network segmentation pictures: (a) CSPDarknet53;
(b) VGG16; (c) ResNet50; (d) ResNet101.

Comparing ordinary convolution, ResNet, and CSPdarknet (the above three convo-
lution structures are shown in Figure 10), it can be found that CSPdarknet cuts the input
feature map to the channel, and only uses half of the original feature map to input into the
residual network for processing. In forward propagation, the other half is directly spliced
by the channel with the output of the residual network at the end. The advantages of doing
this are as follows:

(1) Only half of the input is involved in the calculation, which can greatly reduce the
amount of calculation and memory consumption;

(2) In the process of back propagation, a completely independent gradient propagation
path is added, which can prevent feature loss caused by excessive convolution, and
there is no reuse of gradient information.
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Take a video shot while driving using a single RTX2060 8G graphics card as an example:
the video FPS is 25 frames, and the video resolution is 1920 × 1080, for a total of 12 s. The
DSRL network takes 120 s; our network takes 65 s, a 46% reduction in time. The comparison
of the segmentation results between the DSRL network and our network (the red part is
the actual segmentation result) is shown in Figure 11:
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red part is the actual segmentation result). (a,c,e) are the segmentation results of our network on the
video; (b,d,f) are the segmentation results of DSRL network at the same time point of the same video.

It can be seen from the above two sets of comparison charts that the fps of the DSRL
network can only reach about 2 frames (up to 2.31 frames) in the actual driving video,
whereas our network can achieve about 4 frames (up to 4.5 frames). The segmentation is
smoother. From the above pictures, we can see that our network segmentation is faster and
more accurate, and the segmentation effect is better for detailed parts such as lane lines.

Taking a single image with a resolution of 960 × 720 as input, a speed comparison
between DSRL and our network segmentation is shown in Table 6. From the comparison
in Table 6, we can see that the time used by our network is reduced compared with the
DSRL network.

Table 6. The speed comparison between DSRL and our network segmentation.

Network DSRL MY

Picture1 1.36(s) 1.11(s)
Picture2 2.05(s) 1.70(s)
Picture3 2.25(s) 1.71(s)
Picture4 2.50(s) 1.72(s)
Picture5 2.16(s) 1.73(s)

4. Conclusions

In view of the high demand for hardware equipment for training and using high-
resolution atlases, this paper proposes a new network model based on Dual Super-Resolution
Learning (DSRL), an added high-resolution convolution module, and a discarded Feature
Pyramid Network (FPN), which can effectively compensate for the downsampling of high-
resolution images while reducing the amount of computation. Features are missing, and
the study found that downsampling reduces noise as a lower priority than details in the
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picture. Our network model can segment small features better than the DSRL network, and
has lower hardware requirements and faster processing speed. In terms of the actual driving
video segmentation time, time is reduced by 46%, from 120 s to 65 s, which can be used in
actual driving. The recognition is smoother and more accurate during driving, which greatly
reduces the delay caused by high-resolution input during actual driving, thus proving the
effectiveness of our method. However, the delay still exists, the detailed segmentation of
objects is still lacking, and the network structure can continue being improved.
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