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Abstract: Owing to their compliance with most shapes, soft actuators are regarded as cost-effective
solutions for grasping irregular objects. The material properties of nonlinear elastic polymers are
considered necessary for the correct implementation of these actuators. The analysis tends to be
complex even for simple movements defined by theoretically infinite degrees of freedom. This study
offers a mathematical model that outlines a relationship between the energy provided by a pressure
source and the expected behavior of multi-chamber pneumatic soft actuators through hyper-elastic
material deformation interpretation, geometric approximations, and the vectorial representations of
their segments. Digitally analyzed empirical results measured through lateral pictures of an actuator
were taken at different pressure references. Direct comparisons between the average value of the
tested angles and those calculated through the tuned mathematical model provide a maximum error
of 0.647° for small deformations and an improved accuracy at higher pressure inputs. This study
offers a valid tool applicable to the design of soft actuators and their further analysis without the
need for overly complex methods.

Keywords: soft actuator; pneumatics; mathematical model; soft robotic system; hyper-elastic material

1. Introduction

As an innovative outlook on the nature of the material properties of robotic com-
ponents, the field of soft robotics offers beneficial attributes through its compliance for
irregular surfaces and delicate yet effective grip of fragile objects. Throughout the course
of its development, diverse control and actuation methods have been devised, ranging
from the use of thermally manipulated materials to engineered geometric designs for the
deformation of soft bodies [1]. Having established a system determined by an objective task,
the study of soft actuators coursed into defining mechanisms for movements such as radial
expansion, longitudinal elongation, rotation and flexion [2,3]. When faced specifically
with a pneumatically controlled system, the parameters of importance stand primarily
in the geometry of both internal and external elements. Thus, a systematic response can
be expected using a set shape, material, width, and air pressure source for a soft robotic
device [4,5]. Stating a flexion-type actuator, the principle of its movement is primarily given
by one or more internal chambers shifted from the center of inertia given by the transverse
area of the body [6,7].

The differentiation between actuation types presents different applications for me-
chanical projects. The use of soft robotics can range from a simple one-degree-of-freedom
mechanism to multiple-degrees-of-freedom robots. Complex soft robots tend to be inspired
by biological mechanisms and their objectives can be applied toward engineering design [8].
Further complexity allows their functionality in various mediums.

For the control of a pneumatic soft actuator, the core components will be a pressure source,
an enabling mechanism, a pressure-regulating piece and distribution channels [9–11]. Most of
the components tend to be discreet in nature but the air flow rate, given by the energy source,
determines the dynamic responses of the body and correlates directly to variables such as the
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manometric pressure [12]. Although closed-loop systems are generally superior in most cases,
they are considerably demanding for implementation in soft actuators owing to their fast change
of state and low measurable differences in common variables [13]. Closed-control systems are
usually implemented as tools of analysis whereas the determination of specific inputs and their
relation to the output through testing or modelling is the predetermined method of practical
execution [9].

A general consensus for the manufacturing of pneumatic soft robotics is the use of
hyper-elastic materials, owing to their high range of deformation and tendency to return
to their original state after a force has acted upon them; thus, it is necessary to implement
a soft gripper and ensure its longevity [14]. Although their properties are useful, the
analysis of hyper-elastic materials is troublesome, because they do not obey Hooke’s law
for linear elasticity [15,16]. Various models with different degrees of approximation were
formulated to create a relationship between the induced external energy and a nonlinear
elastic material, most notoriously the Neo-Hookean and Mooney–Rivlin models [17]. These
nonlinear elastic models prove to be a useful tool for soft robotics even with different
methods of actuation. Methods such as the inclusion of ECF (electro-conjugate fluid) or
other fluidic inputs create a new method for energy inputting, but the deformation of
overall elastic mechanics is constantly defined [18,19].

The study of composite systems tends to yield complex equations regarding a con-
tinuous form of analysis through the entire body that is rendered inefficient for a discrete
approximation and can be used [1]. Defining the elements of a soft body through mathe-
matical means proves challenging in any design, and its implementation in a high-degree
model of actuation increases the difficulty [20]. Resorting to the use of several, simpler
models for the individual parts of a structure is prioritized in control systems and non-
focused research efforts whereby accuracy is sacrificed for the sake of practicality. By
contrast, in-depth research can highlight material properties, even when applying statistical
methods to convey the behavior of an isolated unique body [21].

The representation of entire, three-dimensional bodies through concrete mathematical
equations that are not dependent on numerical tools are not easily obtained. The use of
a “Backbone Curve” defining the longest dimension of a soft body is advised [22]. The
method for defining this trajectory can be devised in various ways as its consistency lies in
the fact that any vector tangential to the curve will always be orthogonal to the transverse
area of the body [23]. In the case of defined, geometrically restricted actuators, the practical
representation is given by the use of linear vectors describing regions separated by critical
points of interest that may be due to a particular interaction between a force and the
material or because of geometric limitations [24,25].

Given the initial parameters of the body of a soft actuator, we can determine the
movement and positioning of its vectorial components, thus providing a tool to determine
the utility of certain designs [26]. To tie all individual segments together, recursive equations
can serve as a means of creating a graphically represented finalized model [27]. This is a
simple way of analyzing a system that will be as accurate as many inflexion points and
critical areas there are [28].

The lack of a simple deterministic model with easily analyzed variables prevents ease
of study in the field of soft robotics for researchers focusing on design and manufacturing.
Design parameter choices are only set as estimations or require the use of numeric methods
through complex software to determine the correct behavior intended. This article presents
a simple model to define how the geometric design of multi-chamber soft actuators affects
their positioning in relation to air flow input.

The rest of the article is ordered as follows: Section 2 describes the materials and
methodology used throughout the process of obtaining results, Section 3 outlines the
process behind the formulation of the complete mathematical model as well as numerical
results, Section 4 offers a discussion comparing previous studies and their application and
Section 5 renders the conclusions and interpretation of results.
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2. Materials and Methods

This study is divided into subdomains for individual analysis. As a research frame
of reference, the methodology used was hierarchical, where each section is interpreted
separately and general relations between each governing group are established to finalize
its congruence as a whole. Its main objective aims to satisfy the functionality requirements
stated by the initially stated design parameters [29].

The mathematical model depicting a soft actuator’s trajectory and position was broken
into three main categories: analysis of pressure and deformation, calculation of displace-
ment caused by geometrical changes and angular representation using linear vectors as
illustrated in Figure 1. Additionally, the auxiliary sections such as reference design, param-
eters, manufacturing and calculated test data comparison are used in the validation and
practical use of the model. While each section was studied independently, their inputs and
outputs are strongly related.

Figure 1. Research and Analysis Domain Divisions.

Taking the study of pressure as the main source of energy, a method to predict its effect
on the body must be presented. A traditional physics approach is used towards calculating
the energy produced by the system’s pressure, but its outcome is defined by means of the
Neo-Hookean model for nonlinear elastic materials.

Once the energy of the system is stated, its effect presents geometrical alterations to
specific parts of the body which creates movement. Although considered as an estimation,
the use of geometry based on ellipses is the representation employed for deformation in the
inner pneumatic chambers within the actuator. Furthermore, the use of a previous study
introduced by J. Wang provided a clear relationship between the lateral measurement of
deformation and the effect of a single chamber upon the flexion of the body of the actuator.

Using the information from previous calculations, the representation of a backbone
curve depicting the actuator’s movement was fabricated using linear vectors. The half
angles are relative only to their specific segments; thus, a series of recursive equations are
used to define the global angle that dictates the direction of each component. A similar
method was utilized to obtain the coordinates of their respective origins. Using the design
parameters as their magnitudes, a complete representation is achieved.
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Defining a discrete model where only geometric parameters and tangential behavior
of adjacent ellipses are considered, derived from energetic and material studies, some
assumptions must be stated. Upper, front and rear chamber walls will not be significantly
deformed due to their width. Longitudinal deformation will not occur due to a lack in
effective contact and the restriction layer usually introduced at its base. An actuator’s body
is completely homogeneous on its elastomer distribution. Air flow input is controllable
and constant. The actuator’s body is symmetric. The base is not wide enough to restrict
movement. Most assumptions are addressed on the manufacturing and design process for
conventional multi-chamber pneumatic soft actuators.

3. Results
3.1. Reference Design, Parameters and Manufacturing

To define a mathematical model, the physical phenomenon must be clearly defined as
a grounding reference. The specific type of soft actuator analyzed in this study was a multi-
chamber pneumatic soft actuator, meaning that its source of motion is entirely powered
by air pressure. Its body is divided into multiple segments that are almost independent
from one another. Even though they are powered by the same energy source, the effects
of each chamber are determined only by the geometrical design with which they were
manufactured. This leads to an individual study of each chamber, later to be interpreted as
their effects on the system.

By minimizing the spacing between each chamber and resorting to a design containing
seven active segments, pronounced flexion is ensured even at small relative pressures and
perceivable chamber deformations. This proves beneficial from an informative point of
view since results will be defined in a way that is easily distinguishable, providing ease in
the formulation of eventual conclusions.

The design that was tested and validated throughout this study is presented in Figure 2,
portraying its external and internal composition.

Figure 2. Diagram of multi-chamber pneumatic soft actuator’s inner and outer geometry.

All the design parameters relevant to the mathematical model are described in Figure 3.
These specific values were used to create a comparison between a real actuator and a
prediction based on the mathematical model. Both the external part and the broken out
section cut are presented.



Actuators 2022, 11, 221 5 of 21

Figure 3. Measurements of a soft actuator’s individual component.

The methodology offers a model that can be utilized with conventional actuators; with
each measurement taken as an average from most common designs used industrially and
for research purposes.

To manufacture the actuator’s component, an elastomer with hyper-elastic properties
was selected. Given several factors, such as its elevated deformation coefficient, its cost and
availability as well as its notorious resistance towards external piercing forces, ABRO GREY
999 RTV Silicone Gasket Maker was selected as the actuators body. Due to the models used
to calculate elastic deformations, a shear modulus of only 18 GPa is required.

The entire process defines a multi-step traditional molding. Figure 4 presents both
molds used to manufacture the body, only accounting for the chamber cavities and
external separations.

Figure 4. Two-Piece Mold for Soft Actuator Component Manufacturing.

After assembling both pieces, the material is poured, taking caution to avoid air
bubbles because they affect the composition as a whole or can create air leaks which render
the actuator nonfunctional. Due to the material’s properties, it is cured at room temperature
across a period of 4 days to ensure its proper finishing. Figure 5 illustrates a fully cured
actuator body ready to be released from its mold.
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Figure 5. 3D-Printed Mold with Curated Hyper-elastic Material.

Once the body is removed from the mold, additional material is poured on a flat
surface where the body will be laid on. The first layer of the base must be thin as to
avoid clogging the main distribution channel. Curing time is 30 min for this step. A
coupling method or direct source of distribution for air pressure should be introduced
simultaneously making use of the materials own properties to create a seal. Addition at a
later time could ultimately result in air leaks.

A layer of flexible but inelastic material should be applied at the latest layer of base
material as an elongation limitation. More material poured over the inelastic layer creates
an outer homogeneous composition and ensures the layers coupling towards the rest of the
body. Multiple components can be manufactured and attached to a rigid assembly to final-
ize a proper functional actuator presented in Figure 6 in a three component configuration
over an industrial robot for a pick and place task.

3.2. Analysis of Pressure and Deformation

Defined by the specific requirements for utilizing hyper-elastic materials, methods
available to dictate its behavior apply a systems energy as a basis. Taking energy as a major
variable and considering only states of equilibrium, the theorem of virtual work serves
as an anchor point for the mathematical model where Ua defines the input work and Va
establishes the effected work.

The following equation verifies how the energy input from an external source deter-
mines every aspect of the end condition.

δUa + δVa = 0 (1)

Establishing a general input dependent on the pressure, the use of a characteristic
equation between Energy W, pressure P and volumetric dilatation dV is given.

Its clear how the systems relation between its volume and pressure is imperative for
the calculation of energy. Initial and current states in the volume serve as limits defining
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compression or expansion. Given the expansion in any conventional use of a multi-chamber
soft pneumatic actuator, the expected results always yield positive results.

W =
∫ Vo

Vf

PdV (2)

Considering air’s behavior as an ideal spring in the presence of a change in pressure,
a perfect ratio is assumed between the theoretical volumes given a constant air flow. This
characteristic provides a simple relationship between the pressure and added air volume,
granting a dependent function able to replace the general pressure term.

Figure 6. Soft Actuator Coupled to an Industrial Robot.

Solving the integral for the dependent pressure, the following equation is obtained.

W =
Po

2Vo
(V2

f −V2
o ) (3)

AS a constant volumetric air flow is assumed in this study, the formula is adapted
where the final volume of the system is equivalent to an initial volume and the volumetric
flow rate Q multiplied by the time interval.

Because the experimental results were obtained using an air compressor as a source,
volumetric flow is considered constant and can be controlled through mechanical means.
Given the interaction through diverse pneumatic components through a control system the
value to be utilized is that present directly within the actuator.

W =
Po

2Vo
((Vo + Qt)2 −V2

o ) (4)

Given the linear dependency towards volumetric change, the integral presents a
quadratic equation expressing the relation to the system’s energy. Analyzing the equation
across a temporal interval, Figure 7 is plotted. It describes a simple parabola limited to its
positive representation for the work effected, which is considered as a deformation caused
by expansion.
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Figure 7. Energy input from pressure source defined by the constant change in volume.

Having a complete method to determine the energy input depending on a pneumatic
source, its effects over the elastic body need to be interpreted. As hyper-elastic materials
do not obey the traditional law of Hooke for linear elasticity, a different method must
be employed. Several models exist with differing approximation percentages, but in this
specific analysis the Neo-Hookean model was applied.

Approaching its representation through means of linear algebra, defining forces ap-
plied in three dimensions to the three basic planes of reference, a concrete approximation is
given. The Neo-Hookean model considers material properties based on its proportion to the
shear modulus µ and leaves deformation relations in the form of a scalar representation Ic.

The secondary term of the Neo-Hookean model applies only to compressible materials.
The use of a strictly hyper-elastic material leads to a generalization of a universal incom-
pressible characteristic. In any case, the Jacobian J belonging to the gradient of deformation
will always equal to 1, reducing the term to 0.

The leading equation is presented.

ΨD =
µ

2
(IC − 3) +

λ

2
(J − 1)2 (5)

The term Ic dictates the deformation as a scalar, considering several directions and
magnitudes of forces over a specific body. To determine Ic the trace operation must be
performed over the left Cauchy-Green deformation tensor. The square matrix denoting the
Deformation Gradient, where everything is derived, is presented in a general form.

Fij =

ux uy uz
vx vy vz
0 0 λz

 (6)

The general deformation gradient matrix defines three vectors describing the Eu-
clidean planes. Each vector is associated with the directional forces. This expression is
capable of describing multiple stresses indistinctly from their respective directions. Given
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the predictable behaviour of a soft actuator’s pneumatic chamber, a generalization can be
made.

Several forces can be analyzed, but establishing a uni-axial deformation for the lateral
walls of the actuator can simplify this matrix into a single diagonal dependent only on a
single variable defining a relation of deformation λ from an original length.

F = FT =

λ 0 0
0 1√

λ
0

0 0 1√
λ

 (7)

The left Cauchy-Green deformation tensor was easily obtained by applying a matrix
multiplication operation to the deformation gradient. Because the simplified matrix is
only defined as a diagonal matrix, the result is the square of each individual component.
Applying the trace operation; Ic is the sum of the diagonal’s values.

The resolution for Ic using the uni-axial deformation consideration is given in the
following expression.

Ic = tr(FFT) = λ2 +
2
λ

(8)

Substituting the new definition for Ic, an expression for energy through a dependent
variable denoting deformation, is given. The equation can be rewritten as a cubic formula
where the most prominent variable is the relation of deformation λ. The variable for energy
was substituted by a conventional W to portray its relation to the initially calculated input
energy.

λ3 −
(

2W
µ

+ 3
)

λ + 2 = 0 (9)

The solution for this equation is obtained by applying Cardano’s method for cubic
equations. The main condition before using Cardano’s method is the existence of a de-
pressed cubic equation which is already present. For problems denoting only one or two
real answers, the main formula can be applied directly; however, when confronted with an
equation with three interception points, the discriminants of the square roots within the
method are negative. To solve this problem, the imaginary part of each segment must be
expressed directly, and each term is represented as a vector containing both imaginary and
real parts. To simplify further expressions, two transition variables are introduced.

The transitory term T portrays the section of Cardano’s method within a square
root but is multiplied by −1 as the imaginary term i is extracted from the root. This
serves as a basis to calculate the magnitudes and angles for imaginary vectors. The angle
portraying the imaginary vector φ is determined through the previously stated term T and
a constant −1 found through the parameters of the initial cubic equation and those found
in Cardano’s method. Because the arcsin function does not discern between which value
is negative, a shift of 180 degrees is necessary to calculate the true angle, which is always
expected to be in the second quadrant.

T =

√√√√
−1−

(
−
(

2W
µ + 3

))3

27
(10)

φ = 180 + tan−1
(

T
−1

)
(11)

Each vector is separated into its components through trigonometric functions mul-
tiplied by its calculated magnitude. In view of the fact that a cubic root is still applied,
the magnitude is affected directly through a radical function and the argument of the
trigonometric functions is simply divided by three.
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Owing to the composition of the initial formula, after applying a cubic root to both
vectors, their sum is in the form of conjugates; thus, all the imaginary parts are eliminated.
The remaining terms are equivalent in view of the fact that square exponents are used in the
calculation of magnitude simplifying the expression further. The resolution is presented.

λ = 2 3

√√
(−1)2 + T2

(
cos
(

φ

3

))
(12)

3.3. Calculation of Displacement Caused by Geometrical Changes

Referring to multi-chamber pneumatic soft actuators, the main principle of motion is
a physical push between the inflated chambers. Deformation of material and restriction
at base sections, creates the need for flexion between segments. Considering previous
calculations for material behavior, and the geometric composition of the actuator the
displacement of its parts is easily associated.

Having a solution for the relation of deformation from the initial measurement of
chamber height, an approximation of deformation was used. As the material elongates
owing to the inner pressure, the lateral walls form an ellipsoidal shape centered on a critical
point defined as the thinnest section of the wall. If the wall states a uniformly shaped figure,
the critical points form at its midpoint.

The characteristic shape of the inflated walls is that of an ellipse; thus, Euler’s base
approximation for an ellipse’s perimeter P is used.

P = 2π

√
R2

1 + R2
2

2
(13)

Taking into account the fact that the height of the chambers L should remain constant
thanks to the limitations of frontal and rear walls, one of the radii is taken as half the
initial height. The other radius is called a lateral deformation h, relating directly to the
variable circumference dependent on twice the initial length multiplied by the relation
of deformation λ previously calculated. The inverse equation is shown with an error
difference from the initial value taken into account for its an approximation.

h =

√
2
(

2λLo

2π

)2
−
(

Lo

2

)2
−

√
2
(

Lo

π

)2
−
(

Lo

2

)2
(14)

Following the studies of J. Wang [30] in a model for the behavior of a soft actuator,
the formula of flexion for each segment is given. This equation depends on several de-
sign parameters such as the segment distancing c and critical deformation point b. The
equation takes the lateral deformations as a dependent variable and the flexion angle as its
independent variable.

h =
b

2cosθ

(
sinθ +

c
b
+

√
2c
b

sinθ +
c2

b2

)
(15)

Figure 8 provides a graphic representation of the physical placements and definitions
of each parameters used in the calculation of lateral deformations for individual chambers.
Each chamber’s inner height is labeled as L, and h represents the lateral deformation
or distance between the inner wall’s initial and situational position. The method used
considers each wall’s effect separately to account for designs with variable geometries, and
the complete flexion of a segment is given by the sum of its calculated angles.
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Figure 8. Physical definitions of variables in the calculation of flexion.

Unfortunately, this takes the opposite approach to the objective of this study; therefore,
an inverse function is necessary. By means of trigonometric identities and simple algebra,
the result is that of a quartic equation dependent on sin θ. Each coefficient is presented
individually in the purpose of order.

Ay4 + By3 + Cy2 + Dy + E = 0 (16)

y = sinθ (17)

A = (b2 − 4h2)2 + 16b2h2 (18)

B = 32cbh2 (19)

C = 16(ch)2 − 16b2h2 + 8h2(b2 − 4h2) (20)

D = −32cbh2 (21)

E = 16h4 − 16(ch)2 (22)

To solve the equation, Ferrari’s method is applied, but its condition for use on de-
pressed quartic equations is not fulfilled; therefore, variable substitution takes place in an
effort to eliminate the coefficient corresponding to y3.

y = x− B
4A

(23)

After simplifying, the new equation is presented divided into its individual coefficients,
once again as a way to preserve order.

x4 + px2 + qx + r = 0 (24)
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p =
B2

8A2 +
C
A
− B2

2A2 (25)

q =
B3

8A3 −
CB
2A2 +

D
A

(26)

r =
B4

256A4 −
B4

64A4 +
CB2

16A3 −
DB
4A2 +

E
A

(27)

Once the equation is ready, Ferrari’s method presents several transitional parameters
to obtain the final result. The first parameter α is determined using the previously deter-
mined cubic formula. Congruence with this function ensures the applicability of further
expressions.

q2 − 8α

(
α2 + pα +

p2

4
− r
)
= 0 (28)

Cardano’s method is once again the tool of preference for a cubic equation resolu-
tion, but the necessity of a depressed cubic equation brings the need for another variable
substitution.

α = β− p
3

(29)

The final depressed cubic equation, which is now dependent on the variable β is
presented.

β3 + β

(
− 8p2

9 −
16p2

9 + 16p2

3 − 2p2 + 8r
)

−8
+

2p3

3 −
8pr
3 + q2 − 8p3

9 + 8p3

27
−8

= 0 (30)

Similar transition variables for Cardano’s method were employed to proceed in an
orderly manner. Specifically, a term is used as a component in a vector for imaginary–real
representation Q2, and the angle between these components φ2. The newly introduced
terms p2 and q2 refer to the linear and independent coefficients of the previous equation,
respectively.

Contrary to the obligatory use of these terms in previous implementations, they will
only be used situationally when required.

Q2 =

√
−

q2
2

4
−

p3
2

27
(31)

φ2 = tan−1

(
Q2(
− q2

2
)) (32)

Faced with uncertainty about the sign of the discriminant derived by the variation of
possible combinations of variables, the necessity for a piece-wise equation is clear. Both
the classic solution and the answer, achieved through a detour into complex mathematics,
are stated dependent on the sign of the discriminant. The solution for β and thus a direct
relation to α is achieved, where αo will be a real answer to the initial equation. Even while
all limits within the function exist, it fails in its continuity because there exists a point where
it lacks a derivative where the boundary between domains lies.

β =


3

√
− q2

2
4 +

√
q2

2
4 +

p3
2

27 +
3

√
− q2

2 −
√

q2
2

4 +
p3

2
27 ; q2

2
4 +

p3
2

27 >= 0

2 3

√√(
− q2

2
)2T2

2

(
cos φ2

3

)
; q2

2
4 +

p3
2

27 < 0
(33)
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After obtaining the variable αo, the secondary transition parameter to be resolved is xo
which correlates directly.

xo =
q2

4αo
(34)

The value of αo must be chosen carefully so that the resulting secondary parameter
permits a real answer, because of the use of square roots for the final solution of the initial
quartic equation.

xn =
±
√

2αo ±
√

2αo − 4(−xo
√

2αo +
p2
2 + αo)

2
(35)

Using the previously stated substitution and the arcsin trigonometric function, a
method is acquired to obtain the flexion of each segment of a soft actuator depending on its
input pressure.

The graph presented in Figure 9 shows a behavior granted by two radical equations
with a clear inflection point. This is caused by the use of a piece-wise function to finalize
the resolution of the quartic equation. Idealizing the system, the graph presents a steep
continuous radical form, making this a close approximation with a small zone of poor
effectiveness. The eventual curvature of the graph proves how the tension accumulated
within the body of the actuator gradually prevents further displacement.

Figure 9. Change in angle per chamber through constant air input.

3.4. Angular Representation Using Linear Vectors

The representation of the actuator’s backbone curve is approached through a series
of linear vectors Zn established in succession, depicting the magnitude and direction of
each segment in concordance with the initial reference state. Each vector is composed of
magnitude corresponding to segment length Ln and its global angle Θn dependent on both
half angles θn caused by adjacent pneumatic chambers.

Zn = (Ln, Θn) (36)
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The use of linear vectors is justified by the lack of change in particular segments
accomplished by using conventional designs. The axis of rotation defined for each chamber
was located at a midpoint of their length in separation. The design was further adjusted
to this assumption, for it is the thinnest part of the body in a radial direction to the center
point of its flexion. Because a requirement for the backbone curve is that its tangential
vectors are always orthogonal to the transverse area and given that the base of the actuator
will not suffer from longitudinal deformations, it was selected as the reference as shown
in Figure 10. Areas such as the top or center of inertia show troublesome results, because
their magnitude is variable in view of the fact that they contain actively deforming parts or
separating pieces.

Figure 10. Vectorial representation of a backbone curve for a soft actuator.

Owing to the dependence of a previous segment to determine the position of the next
one, the use of recursive equations is evident. The angles expressed beforehand are relative
only to the study of individual chambers and thus must be introduced to a representation of
the system as a whole. To calculate a global angle Θ from the initial reference, the previous
iteration of global angle is to be summed to the effects of both half angles.

Θn = Θn−1 + θn + θn−1 (37)

Once the direction and magnitude are obtained through design parameters such
as segment length Ln, the remaining matter is the resolution of the origin points On for
each vector. It comes naturally through another recursive equation dependent on the
components of the previous origin point summed with the components of the last vector
calculated using simple trigonometric functions.

On(x, y) = On−1(x, y) + (Ln−1 cos (Θn−1), Ln−1 sin (Θn−1)) (38)

The connection of origin coordinates represent the backbone curve of the soft actuator
located at its base in any given state dictated by the input pressure from the air flow
source. The complete mathematical model can be summarized in Figure 11 where the
principal equations on their base form are presented and classified into their corresponding
domain of analysis. The colors cyan, purple and blue correspond to the analysis of pressure,
deformation and the calculation of displacement caused by geometrical changes and
angular representation using linear vectors sections, respectively. The model starts from
the energy source and finalizes on a vectorial representation, granting graphic results.
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Figure 11. Mathematical Model’s Equation Flow.

3.5. Calculated and Test Data Comparison

As time passes, the internal volume increases and the segment angles become more
pronounced. Figure 12 presents different positions separated by 0.1 s in time. Even though
each result is given at a uniformly spaced interval, it is clear that the initial plots are
more physically separated. Later graphs are almost presented superimposed over each
other. Although the energy source adapts to satisfy a constant volumetric flow, the flexion
of the actuator depends on the ellipsoidal interaction between the chambers. At higher
lateral deformations, less of the actual segments will be in contact, thus slowing its angular
velocity.

Figure 12. Instances of positions spaced as more energy is introduced to the system.
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To validate results, various empirical samples were taken about the body of the
actuator under different conditions. Body flexion of was controlled and measured using a
pressure regulator with an integrated manometer. Photographs were obtained from a lateral
view at pressures of 0.5, 1.0, 1.5, and 2.0 kg/cm2. Figure 13 presents the results at 1.5 and
2.0 kg/cm2 and its angle measurements taken per chamber relative to the corresponding
previous segment.

Figure 13. Test measurements of soft actuator flexion at different pressures. (a) Tested Displacement
at 1.5 kg/cm2. (b) Tested Displacement at 2 kg/cm2.

The major limitation encountered in this study was the supply of compressed air. This
did not allow validation with angles greater than those shown in the results. As future
work, the model should be tested with other materials that have greater deformation to
validate larger angles.

Relying on the relationship between pressure and volumetric deformation, the exact
time expressed by the model can be calculated by applying calculations at a specific pressure.
Such methods were used to create comparisons with real calculations. Figure 14 present
graphic representation of the backbone curve of a soft actuator set at 1.5 and 2.0 kg/cm2

using the geometrical parameters designed for the real test prototype.

Figure 14. Modeled Displacement of soft actuator flexion at different pressures. (a) Calculated
Displacement at 1.5 kg/cm2. (b) Calculated Displacement at 2 kg/cm2.

The reference taken was the initial position of the first segment which was considered
to be constant. The backbone curve was drawn by tracing the inflection points between
segments.The slight difference in measurement is due to the composition of the material as
well as human errors in prototype manufacturing. The first angle is notoriously smaller
because the flexion at that particular point is dependent only on one active segment as the
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initial constant segment lacks a pneumatic chamber to contribute towards the flexion of the
actuator.

A comparison between test photographs and the modeled backbone curve is presented
in Figure 15 with a superposition between images. The angle of the graphed model shifts
to correlate with the reference line which is the initial segment.

Figure 15. Comparison between Modeled Displacement and Test Measurements of soft actuator
flexion at different pressures. (left) Comparison at 1.5 kg/cm2. (right) Comparison at 2 kg/cm2.

The contents listed in Table 1 provide the individual results for the angular displace-
ment for each segment at the four pressure conditions mentioned. To compare test results
with the calculated predictions, an average value was obtained from the angles θ2− θ7. This
approach was permitted due to the fact that all chambers were designed with equivalent
geometries. Angle θ1 is omitted because its movement depends only on a single active
chamber, this being a different instance from that of the rest of the segments.

Table 1. Comparison between measured angles and mathematical model’s results (Radians).

kg/cm2 kPa θ1
1 θ2 θ3 θ4 θ5 θ6 θ7 θAvg Model Error

0.5 49.03 0.0339 0.0597 0.0561 0.0524 0.0514 0.0541 0.0617 0.0555 0.0462 0.0096
1 98.07 0.0520 0.085 0.083 0.085 0.087 0.074 0.072 0.080 0.0921 −0.011

1.5 147.1 0.094 0.138 0.137 0.142 0.153 0.133 0.132 0.139 0.137 0.0016
2 196.1 0.117 0.165 0.174 0.187 0.191 0.192 0.184 0.182 0.182 −0.0001

1 θ1 is not taken into consideration when calculating the average.

The results are provided in degrees in Table 2 to facilitate the understanding of the
magnitudes presented.

Table 2. Comparison between measured angles and mathematical model’s results (Degrees).

kg/cm2 kPa θ1
1 θ2 θ3 θ4 θ5 θ6 θ7 θAvg Model Error

0.5 49.03 1.949 3.425 3.215 3.005 2.945 3.104 3.538 3.205 2.654 0.551
1 98.07 2.983 4.875 4.762 4.870 4.967 4.231 4.123 4.638 5.285 −0.647

1.5 147.1 5.432 7.936 7.869 8.123 8.759 7.612 7.582 7.980 7.888 0.091
2 196.1 6.711 9.457 9.986 10.743 10.968 10.982 10.542 10.446 10.456 −0.009

1 θ1 is not taken into consideration when calculating the average.

Comparing the average with the theoretical results, the maximum error was that of
0.647° at a pressure of 1 kg/cm2. The model grants precision at elevated deformations. This
is attributed to the fact that the ellipsoidal geometrical approximation is advised only for
ellipses with radii that do not differ significantly in magnitude. This holds true, as tests
with low deformation are less precise.
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4. Discussion

The results validate that at high deformations, which reflect concrete and applicable
states for industrial and experimental use, a simple deterministic model is accurate at
predicting the position and trajectory of multi-chamber pneumatic soft actuators. A notable
increase in error can be encountered at the initial positions but the modeled values are
sufficient, especially taking into account the fact that these transitory positions are rarely
used as a practical end point. Even though the error was significantly reduced, the quantity
of pneumatic chambers considered affects the error to the total sum of angles referring to
the final angular displacement of the actuator´s tip from the reference point.

The finalized model is mainly intended for use with a constant air flow provided by a
controllable source such as an air compressor or an air pressure pipeline coupled with an
appropriate pneumatic pressure regulation system. This provides a clear way to create a
time-dependent system for further analysis of its variables. Since pressure, volume and
time are closely related to the first steps into energy calculation, a direct relationship can be
formulated to determine the pressure of the system at any given time, which is how the
specific model values where acquired.

The relative angles θ are not easily represented physically given that they do not
present complete movement of any given part of the actuator but the effects of a single wall
belonging to one of the two possible active pneumatic chambers. The complete angle of a
segment relative to the position of the previous one can be recognized as the sum between
the two walls creating flexion θn−1 + θn. An easily interpreted result is that of the global
angle Θ, which represents the segment angle relative to the initial position reference.

Trajectory analysis at multiple instances in time reveal a deceleration on its angular
velocity, for its displacement diminishes as the angle becomes more pronounced. Individual
angles also displayed their dependency on both adjacent segments for the initial rotation
axis, which always presents a smaller angle because segment Zo lacks a pneumatic chamber.
This results are also seen on test measurements of a real actuator.

Several models use complex relations to provide a detailed response like that presented
by J. Wang [30]. His work was used as the basis for the angular displacement analysis
presented in this study, but redefined using the opposite approach. This type of analysis
is usually limited to accounting for phenomena belonging directly to the actuator’s body,
generalizing any type of external influence. The addition of an energy source interpretation
creates a direct relation to the full purpose of the actuator in its entirety.

Other models for multi-chamber soft actuators were created by adopting dynamic
approaches to movement [4,20]. This provides a precise analysis of their movement at the
cost of simplicity, for equations become increasingly complex and difficult to adapt. The
model presented in this research permits the study of various general variables given its
ease of manipulating parameters, while accomplishing its main purpose. For the study of
specific parts of the system, a different model is beneficial.

This study finalizes with the graphical representation of a backbone curve similar to
other studies. This is a varied topic, for a range of methods, such as trigonometric functions,
can be used to describe its behavior [15,21]. The approach used in this research, as well
as that preferred for geometrically limited design models, is that of multiple recursively
dependent linear vectors.

Defining the concept of instabilities as an issue with elastic structure continuously
exposed to high pressures and consequential deformations, instabilities present a displace-
ment in state without an input change occurring [31]. Considering that this model is
inclined towards the industrial use of soft actuators for production chain robots, high
pressures and thus deformations are not to be expected. This is true only for a design with
relatively wide walls. The model’s purpose is to serve as a tool to design and innovate
with future research throughout the field and thus it is encouraged to experiment with new
ideas. Such an approach can be taken where instabilities are embraced as a tool to reduce
energy inputs and yet achieve high deformations to achieve a certain task [32]. Although
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this particular model does not take instabilities into consideration, it is valuable research
portraying new forms of actuation in a rapidly expanding field.

Even though it is taken as a system failure in most cases, instabilities can be used
as a quantifiable tool able to be deduced through mathematical means. Such work is
demonstrated by [33] through their work towards harnessing snap-through instabilities
as a method of optimizing energy efficiency through a reduction in their necessary input
while still achieving high deformations. They present the mathematical means to deduce
the deformation the material will endure and thus presents a possible addition even for a
deterministic model such as the one presented in this study. This would be an addition
towards the complexity of the Neo-Hookean model for nonlinear elastic deformations,
providing reliable results even in presence of instabilities.

5. Conclusions

In this study, a geometric approach was adopted towards the mathematical description
of a multi-chamber pneumatic soft actuator dependent on the energy provided from air
flow source. The Neo-Hookean model is used as a basis to link the traditional energy
equilibrium physics to the behavior of nonlinear hyper-elastic materials comprising the
body of the actuator. Taking approximations through the study of ellipses and using
previous works as a basis for the geometrical compliance of multi-chamber configurations,
angular displacement referent to individual segments is achieved.

The use of recursive equations presents a means of representing the actuator’s position
in different states through the backbone curve. This was established in concordance with
the actuator’s base providing an easily understandable graphic with constant magnitudes
and an initial segment used as reference.

A specific design was created with the intent of validating the results portrayed by
the mathematical model. Using a seven-chamber configuration with constant geometries
within every segment containing a single passive segment the model was tested. Test
results present expected outcomes where each relative angle is almost equivalent for every
rotation axis with two adjacent active chambers. The first angle was always smaller because
only one chamber is effecting a deformation.

A maximum error of 0.647° is observed after taking the average from the empirical
results and comparing them to the model’s results. The precision of the mathematical
model is sufficient for the study’s reach. At high deformations, objectively more important
states, the error is mitigated considerably.
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