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Abstract: In lower-limb rehabilitation systems, exoskeleton robots are one of the most important
components. These robots help patients to execute repetitive exercises under the guidance of phys-
iotherapists. Recently, pneumatic artificial muscles (PAM), a kind of actuator that acts similarly
to human muscles, have been chosen to power the exoskeleton robot for better human–machine
interaction. In order to enhance the performance of a PAM-based exoskeleton robot, this article
implements an active disturbance rejection control (ADRC) strategy with a nonlinear extended state
observer (NLESO). Moreover, the stability of the closed-loop system is proved by Lyapunov’s theory.
Finally, the experimental results show that with the proposed control strategy, the rehabilitation robot
can effectively track the desired trajectories even when under external disturbance.

Keywords: nonlinear extended state observer; pneumatic artificial muscle; active disturbance
rejection control; gait training device

1. Introduction

In rehabilitation devices, exoskeleton robots play an essential role in assisting/replacing
physical therapy for patients. Among them, lower-limb rehabilitation robots, which can
recover one’s ability to move, have attracted much attention [1]. Developments have been
carried out in multiple stages, from research to commercial products [2]. In this kind
of robot, the actuators generate torque to the subject’s limbs and move them along the
designated path. Thus, choosing a suitable actuator is a crucial factor. Various types have
been used such as electric motors, hydraulic cylinders, and PAMs. Due to their outstanding
features, such as being lightweight and compliant, having the capability of generating a
high peak torque, and their spring-like behavior similar to biological muscles, PAMs have
been widely used to actuate exoskeleton robots in recent years [3,4]. However, PAMs have
some inherent drawbacks, such as uncertainty, time variance, and strong hysteresis, which
require great effort to overcome.

Trajectory tracking control is the essential requirement of a rehabilitation exoskeleton
robot, to ensure the desired trajectory generation and high tracking accuracy. Multiple
control strategies have been applied to PAM-based robots. Conventional tracking control
strategies such as PID-based controllers [5–8] and modified computed torque [9] are often
used at the early stage of the system’s development to verify the mechanism of the robot
without a subject. Since these types of control strategies do not require much knowledge
about system modeling and control theory, they are the most common choice for researchers
to test the tracking performance of the robot. However, these linear controllers can not
deal with the uncertainty and hysteresis of PAM-based robots. To handle the nonlinearity
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problem, some nonlinear control strategies such as backstepping control [10,11], energy-
based control [12], and adaptive control [13,14] have been reported in the literature. These
controllers, however, are sensitive to model uncertainty and disturbance. Another promi-
nent nonlinear control algorithm is the sliding mode control (SMC). The SMC with various
improved versions proposed in [15–22] was shown to be effective with a robust control
strategy in the presence of the uncertainties and disturbances of PAMs. However, these
control algorithms, more or less, still require the PAM model.

Due to the difficulty in modeling pneumatic artificial muscles, some intelligent con-
trol strategies that require less information about the actuator model have recently been
reported [23–28]. In [23], a sliding mode control with an adaptive sliding surface was
applied to control the PAM. Fuzzy logic was utilized to adjust the discontinue term in the
sliding mode controller to reduce the chattering of the sliding mode control. Although the
result was acceptable, the controller was too complicated. A fuzzy logic controller was also
used to estimate the PAM’s inverse model in [24]. However, the fuzzy set must be large
enough to obtain a satisfactory result, which requires a high computation effort. In [25],
the backstepping technique was used to design the controller for PAM with fuzzy logic
and neural networks to approximate the unknown parts. To control the PAM robot, [26]
applied a sliding mode control and fuzzy logic to estimate the PAM-model-based part. An
artificial neural network was trained to approximate the inverse PAM robot model in [27]
and then used as a feedforward controller in combination with PID feedback to control the
PAM robot. The Takagi–Sugeno fuzzy model was combined with model predictive control
in [29] to handle changing load scenarios. These intelligent control strategies enhanced
the effectiveness of the artificial muscles in terms of control due to their extraordinary
capacity for learning nonlinear characteristics. However, they were generally complicated
and required a high level of computation; having to select a fuzzy rule or neural network
structure for an effective controller is rather complex and sometimes unsuccessful.

In order to overcome these problems, the active disturbance rejection control (ADRC)
method [30] has been considered. In the ADRC technique, the plant was regarded as a linear
system, the ignored dynamics and disturbance were considered as a total disturbance, and
an extended observer was established to determine the uncertainty. This ADRC method
did not require as much knowledge about the system and its disturbances compared to
other disturbance observer-based control approaches. In practice, the linear ADRC has
been implemented in many applications [31–34]. A nonlinear ADRC scheme was also
developed that not only maintained the advantages of the linear ADRC but also utilized the
beneficial nonlinearities to enhance the control performance [35]. However, they focused
only on the trajectory tracking of the actuators instead of the overall robot. In addition,
the developed nonlinear ESO-based ADRC in [35] only tracked the 0.2 Hz sinusoidal and
needed further improvement. In addition, the number of research works concerning the
practical aspects of the nonlinear ADRC scheme for exoskeleton robots is limited.

This paper implements the nonlinear ADRC for the trajectory controller in a two-DOF
PAMs-based rehabilitation exoskeleton. This robot simulates human hip and knee joints to
help patients rehabilitate after surgery or injury. Due to the use of PAMs for actuators, the
robot is strongly nonlinear with time-variant parameters and unknown disturbance. So,
to effectively control the robot, a nonlinear extended state observer (ESO) is established.
Then, a nonlinear feedback controller is designed to enable the system to follow the desired
trajectory. In addition, a tracking differentiator (TD) is also proposed to create a physically
feasible reference trajectory. In summary, the paper contributes the following:

• We build a mathematical model of the PAM-based exoskeleton robot named BK-Gait.
• We improve the tracking performance of the robot by implementing an NLESO-based

ADRC controller, which utilizes a nonlinear ESO that can accurately approximate the
system disturbance.

• We develop a feedback controller based on the Lyapunov stability theory. The controller
shows outstanding effectiveness when guiding the robot to follow a gait pattern trajectory.
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2. Problem Statement
2.1. System Description

This research was carried out on the exoskeleton robot of the BK-Gait rehabilitation
system, as shown in Figure 1. The weight of the support system was not taken into account
in this work. The robot’s skeleton was made of aluminum, designed with two DOF to cover
the thigh and leg of the patient and support them during training. The length of the robot’s
link could be first adjusted with sliders and fixed with the screw afterward. The movement
limitation of the hip joint was 45 degrees, and it was 90 degrees for the knee joint. The robot
was controlled by an embedded controller, the Myrio-1900 from NI. A computer was used
to monitor and collect data from the reference trajectory and its measured counterpart.

 

Hip PAMs 

Knee PAMs 

Hip Joint 

Knee Joint 

Figure 1. The lower-limb exoskeleton of the BK-gait rehabilitation system.

Each robot joint (hip or knee) was actuated by two opposing pneumatic muscles.
These PAMs were fabricated (25 mm diameter) with 500 mm in length for the hip joint
and 350 mm for the knee and could stretch up to 30%. The air pressure in the PAM was
adjusted through the pressure regulator valve ITV-2030-212S-X26 of SMC. For the joints’
angles, a potentiometer WDD35D8 was used to measure the deflection.

2.2. System Modeling

Two opposing PAMs can convert axial motion to rotation movement by changing
the pressure difference ∆P between both PAMs, which can be called the antagonistic
configuration. In this setup, the two PAMs were supplied with P0 and P0 + PAP pressures
to initialize the rotation angle.

Reynolds’s model [36] of a single PAM is the most common choice of researchers when
developing a model of PAM-based systems:

Mÿ + B(P)ẏ + K(P)y = F(P)−Mg, (1)
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with 
K(P) = K0 + K1P
B(P) = B0j + B1jP
F(P) = F0 + F1P

, (2)

where y is the length of the PAM. The spring, damping, and contractile elements of the
model are denoted by K, B, and F. Ki, Bi,j, and Fi (i = 0, 1) are the linear components. j = 1
when the PAM contracts, and when it deflates, j = 2. Based on Reynold’s model, many
reports [20,37,38] have constructed a mathematical model of PAMs in an antagonistic setup.
In that setup, two PAMs affect a torque τ on the actuator as:

τ = a1∆P + b2θ̇ + b1θ + b0, (3)

where 
a1 =

[
2F1 − 2K1L0 − Rθ̇(B1e − B1 f )

]
R

b2 = −
[

B0e + B0 f + (B1e + B1 f )P0 + B1ePAP)
]

R2

b1 = −(2K0 + 2K1P + K1PAP)R2

b0 = (F1P′ − K1PAPL0)R

We considered the robot dynamics with two rotating joints as follows:

T = M(θ)θ̈ + H(θ, θ̇)θ̇ + G(θ) (4)

where M, H, and G are the inertia, viscous moment and radial force, and the gravity torque

matrices, respectively. T =

(
τh
τk

)
is the matrix torque created by the PAMs’ effect on the

robot’s joints, and θ =

(
θh
θk

)
are the coordinates of the robot joints.

From Equations (3) and (4), we have

Mθ̈ + Hθ̇ + G = A1∆P + B2θ̇+ B1θ+ B0 (5)

↔ θ̈ = M−1(−H′ θ̇ −G′) + M−1A1∆P, (6)

with


H′ = H− B2

G′ = G− B1θ − B0

A1 =

(
a1h 0
0 a1k

)
,

where ∆P =

(
∆Ph
∆Pk

)
, and h and k represent the hip and

knee joints, respectively. By adding ω(t), which is the unknown disturbance existing in
any system, the state-space model of the dynamic system (6) can be expressed as follows:

x1(t) = θ(t)
ẋ1(t) = x2(t)
ẋ2(t) = f(x1(t), x2(t), ω(t)) + [∆λ(ω(t)) + λ]u(t)

, (7)

with


f(.) = M−1(−H′ θ̇ −G′

)
λ = M−1A1
u(t) = ∆P

.

3. Nonlinear Eso-Based ADRC Controller

ADRC controllers are designed to eliminate disturbances in control. Here, disturbances
can be understood as external influences on the model or the components of the model that
have not been mathematically modeled [30,39,40].

Figure 2 demonstrates the model of the ADRC controller. The ADRC controller had
the following main components:
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• Tracking Differentiator (TD), which avoids a sharp deviation of the output signal
from its reference. Alternatively, one can create a desirable reference orbit that is
physically feasible;

• Extended State Observer (ESO), which estimates the function f (.) to remove the
unknown component in the model control;

• Nonlinear Feedback Controller (u(t)), which controls the state variables of the model
to follow the desired trajectory.

Figure 2. ADRC controller model.

3.1. Tracking Differentiator (TD)

The conventional tracking differentiator y(t) of the signal r(t) is:

y(t) ≈ 1
Ts

[r(t)− r(t− Ts)], (8)

where Ts is the time sample (Ts > 0, Ts very small). If the signal r(t) contains a high-
frequency noise component of n(t), the signal input becomes r(t) + n(t), and the delay
component r(t− Ts) can be filtered.

y(t) ≈ 1
τ
[r(t) + n(t)− r(t− Ts)] ≈ ṙ(t) +

1
Ts

n(t) (9)

Thus, the differential estimator y(t) is sensitive to noise in the signal r(t) because it is

multiplied by the gain
1
Ts

. To solve this difficulty, Han developed an enhanced TD [30] that

is resistant to noise as follows:

ṙ(t) ≈ r(t− t1)− r(t− t2)

t2 − t1
, (10)

with the condition: 0 < t1 < t2. All the components in (10) are delay signals, so we can
avoid the effect of the noise. We considered the corresponding state-space model of (10) by
setting z2(t) = y(t) as follows:

z2(t) = y(t)
ż1(t) = z2(t)

ż2(t) = −
1

t1t2
[z1(t)− r(t)]− t2 − t1

t1t2
z2(t)

. (11)

It can be seen that the smaller
t1

t2
is, the faster z1 tracks r. In this research, we employed

the modified version of (11) by adding a tuning parameter γ as the following equation:
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{
ż1γ(t) = z2γ(t)
ż2γ(t) = −k1γ2[z1γ(t)− r(t)

]
− k2γz2γ(t)

, (12)

where k1 and k2 are positive constants, and γ > 0 is the tuning parameter.
We considered the estimation error of the tracking differentiator as follows:{

e1(t) = z1γ(t)− r(t)
e2(t) = z2γ(t)− ṙ(t)

. (13)

From (12) and (13), we have
ė1(t) = e2(t)

ė2(t) = γ2
[
−k1e1(t)− k2

z2γ(t)
γ

]
− r̈(t)

(14)

or (
ė1
ė2

)
= Aγ2

 e1(t)
e2(t)

γ

+ Bṙ(t), (15)

where A =

(
0 1
−k1 −k2

)
and B =

(
0
−1

)
.

We assume that the reference signal r(t) satisfies suptε[0,∞)

∣∣ṙ(t)∣∣ < β, for β > 0, and
the matrix A is Hurwitz. The linear TD (12) is convergent with double poles as sTD < 0;
then, we have

k1 = (sTD)2, k2 = −2sTD. (16)

In this research, we chose STD = −1.

3.2. Extended State Observer (ESO)

The ESO is an improved development based on the fundamental state observer. The
ESO can estimate both the state variables and the system disturbances. The unmodeled
system dynamics, unknown control coefficients, external noise, etc., can cause system
disturbance. We considered the state-space model of the PAM-based robot (7):

x1(t) = θ(t)
ẋ1(t) = x2(t)
ẋ2(t) = f (x1(t), x2(t), w(t)) + ∆λ(w(t))u(t) + λu(t).

By setting x3(t) = f (x1(t), x2(t), w(t)) + ∆λ(w(t))u(t), the model (7) becomes:
θ(t) = x1(t)
ẋ1(t) = x2(t)
ẋ2(t) = x3(t) + λu(t)

. (17)

As reported in the research [39], we treat x3(t) as a new state variable, and the
model (17) becomes the observable system:

θ(t) = x1(t)
ẋ1(t) = x2(t)
ẋ2(t) = x3(t) + λu(t)
ẋ3(t) = x′3(t)

, (18)

where u(t) is the control signal, and y(t) is the measured output.
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Based on the state-space model (18), a linear high-gain extended state observer (LESO)
and its enhanced versions have been developed by many researchers to estimate the system
variables [30,41]: 

˙̂x1(t) = x̂2(t) + α1ε[y(t)− x̂1(t)]
˙̂x2(t) = x̂3(t) + α2ε2[y(t)− x̂1(t)] + u(t)
˙̂x3(t) = α3ε3[y(t)− x̂1(t)]

, (19)

in which αi, (i = 1, 3) is chosen to satisfy that the characteristic polynomial s3 + α1s2 + α2s+
α3 is Hurwitz, and the tuning parameter ε > 0. However, the faster the change in the distur-
bance, the larger the tuned parameter ε is. A detailed analysis of the LESO’s convergence
was reported in [42]. Consequently, the following assumptions were considered.

Assumption 1. Assume that two nonlinear functions f (t, x) and ω(t) are continuously differen-
tiable concerning their variables, and

|u(t)|+ | f (t, x)|+ |ω̇(t)|+
∣∣∣∣∂ f (t, x)

∂t

∣∣∣∣+ ∣∣∣∣∂ f (t, x)
∂xi

∣∣∣∣
≤ c0 +

n

∑
j=1

cj|xj|k, ∀t ≥ 0 and k ∈ N∗,
(20)

for some constants cj > 0, j = 1, 3.

Assumption 2. The state variables xi(t), i = 1, 3 and the system disturbance ω(t) in the model of
PAM-based robot satisfy |xi(t)|+ |ω(t)| ≤ b, for some positive constant b.

Assumption 3. For y = (y1, y2, · · · , yn+1), there are existing constants α and R and functions
(V,W: R3 → R), which are positive definite and continuous differentiable, such that

• {y|V(y) ≤ d} is bounded for any d > 0,

•
n

∑
i=1

∂V(y)
∂yi

[yi+1 − gi(y1)]−
∂V(y)
∂yn+1

gn+1y1 ≤ −W(y),

•
∣∣∣∣∂V(y)

∂yn+1

∣∣∣∣ ≤ αW(y) f or‖y‖ > R.

Theorem 1. With Assumptions 1 and 2, and if the following matrix E,

E =

 −α1 1 0
−α2 0 1
−α3 0 0

, (21)

is Hurwitz, then

• lim
ε→0
|xi(t)− x̂i(t)| = 0 uniformly in t ∈ [a, ∞), for every constant a > 0.

• For any ε > 0, there is tε > 0, so that |xi(t)− x̂i(t)| ≤ χiε
n+2−i, ∀t ≤ tε, where χi is an

initial value independent constant.

Following this, the proposed nonlinear ESO with one tuning parameter ε is:

˙̂x1(t) = x̂2(t) + ε2g1

[
y(t)− x̂1(t)

ε2

]
˙̂x2(t) = x̂3(t) + g2

[
y(t)− x̂1(t)

ε2

]
˙̂x3(t) =

1
ε

g3

[
y(t)− x̂1(t)

ε2

] , (22)

where gi, i = 1, 3 are pertinent chosen functions, such that the assumption holds.
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Theorem 2. Under Assumptions 1–3, the nonlinear ESO (22) is convergent for any α ∈ (0, 1).
There exists εδ ∈ (0, 1), such that

|xi(t)− x̂i(t)| < δ, ∀t ∈ (Tε, ∞)

for any ε ∈ (0, εδ), and Tε depends on ε and the initial values of the state-space variables xi(t) and
its estimations x̂i(t) from the nonlinear ESO (22).

Under Assumption 3, the following special case of (22) was chosen to estimate the
state variables of the proposed PAM-based robot:

˙̂x1(t) = x̂2(t) + 3ε

[
y(t)− x̂1(t)

ε
2

]α

˙̂x2(t) = x̂3(t) + 3
[

y(t)− x̂1(t)
ε2

]2α−1

+ u(t)

˙̂x3(t) =
1
ε

[
y(t)− x̂1(t)

ε2

]3α−2

(23)

where ε > 0 is the adjustment parameter and α ε (0, 1).

3.3. Feedback Controller

The last important part of the ADRC approach is the feedback controller, which was
developed as the following equation:

u(t) =
1
b0
[ϕ(x̂(t)− z(t)) + z3(t)− x̂3(t)], (24)

in which x̂(t) = (x̂1, x̂2, x̂3 is the state variable of the model (7), and z(t) = (z1, z2, z3) is the
state variable of the TD (12). x̂3 serves to cancel the x3 “total disturbance” effect of the object
model. The function ϕ(.) was selected according to the following model asymptotic stabilization:{

ė1(t) = e2

ė2(t) = ϕ(e1, e2), with ϕ(0, 0) = 0
, (25)

in which e = (e1, e2) is the estimation error of the tracking differentiator (13). The main aim
of the ADRC controller is for the state variables e = (e1, e2) of function (25) to converge to
zero (0, 0), or 

xi(t)→ x̂i(t)when t→ ∞, i = 1, 2, 3
xi(t)→ zi(t)when t→ ∞, i = 1, 2
z1(t)→ r(t) in [τ, ∞], τ > 0

There are many ways to choose a function ϕ(.) in order for (25) to be asymptotically
stable to zero.

In this research, we chose the following Lyapunov function:

V(e1, e2) =
1
2

[
(e1 + e2)

2 + e2
1

]
. (26)

We can easily conclude that V(e1, e2) > 0, ∀ e1, e2, and V(0, 0) = 0. We consider the
derivative of V(e1, e2):

V̇ = (e1 + e2)(ė1 + ė2) + e1 ė1

= −e2
1 + (e1 + e2)[e2 + e1 + ϕ(e1, e2)]

(27)
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Function (25) will be asymptotically stable if we choose

ϕ(e1, e2) = −(k + 1)e1 − (k + 1)e2, (28)

with k > 0. Substituting (28) into (25), we have

V̇ = −e2
1 − k(e1 + e2)

2 < 0, ∀e1, e2. (29)

As a result, the feedback controller was selected as:

u(t) =
1
b0
{−(k + 1)[x̂1(t)− z1(t)]− (k + 1)[x̂2(t)− z2(t)] + z3(t)− x̂3(t)}. (30)

4. Experimental Results

To determine the efficiency of the nonlinear ESO-based ADRC controller on an ex-
oskeleton robot of the BK-gait rehabilitation system shown in Figure 1, the control perfor-
mance when tracking a gait-pattern trajectory was investigated. In addition, an external
force was also added to the system to test the capability of the proposed nonlinear ESO to
cancel the external disturbance. The proposed control approach was also compared with
the LESO-based ADRC in all experimental conditions. Both controllers were discretized
and programed using the LabVIEW MyRIO Toolkit of National Instrument (NI) with 5 ms
of sampling time. The controller NI MyRIO-1900 was the hardware used to execute the
coding program. Based on the trial and error method, the finetuned parameters of the two
controllers are provided in Tables 1 and 2. The parameters of both controllers were similar.

Table 1. LESO-based controller’s parameters.

Parameters γh γk kh kk

Value 25 25 35 30

Parameters b0h b0k εk εh

Value 15 20 0.015 0.01

Table 2. NLESO-based controller’s parameters.

Parameters γh γk kh kk b0h

Value 25 25 35 30 15

Parameters b0k εk εh αh αk

Value 20 0.015 0.01 0.9 0.9

In the first experiment, each controller was used to guide the rehabilitation robot
to follow a cycling human-gait pattern trajectory. The trajectory frequency was 0.5 Hz,
equivalent to a 2.5 km/h walking speed. The results are shown in Figure 3. The NLESO-
based ADRC achieved a better performance than the LESO-based ADRC, with the RMSTEs
at 0.92◦ for the hip joint and 1.27◦ for the knee joint. These values in the counterpart
were 1.08◦ and 1.60◦. There was alarge deviation in the absolute value of the RMSTE. The
NLESO-based controller significantly improved by 15% over the LESO-based controller.

Figures 4 and 5 illustrate the knee joint’s measured state variables x2 and the unknown
disturbance x3 together with their estimations. The nonlinear ESO achieved a high accuracy
with the state variables, especially when estimating the variable x3, which contained the
unknown disturbance. For example, in the knee joint, the trajectory was not as “smooth” as
the hip’s trajectory; so, there were some sharp points in the x2 of the LESO-based controller.
As a result, the NLESO-based controller showed better tracking performance.
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(a) (b)

Figure 3. Comparison of the results of tracking the gait-pattern trajectory with the LESO-based and
NLESO-based controller: (a) hip and (b) knee joints.

(a) (b)

Figure 4. The state variable x2 and its estimation x̂2 from the LESO (upper subfigure) and NLESO
(lower subfigure) observers for the hip (a) and knee (b) joints.

0 1 2 3 4 5 6
-5000

0

5000

10,000

0 1 2 3 4 5 6

Time (s)

-5000

    0

5000

10,000

(a) (b)

Figure 5. The state variable x3 and its estimation x̂3 from the LESO (upper subfigure) and NLESO
(lower subfigure) observers for the hip (a) and knee (b) joints.

To evaluate the ability to cancel the external disturbance of the NLESO-based controller,
at 3.5 s from the system startup, a cycling force ranging from 35 N to 40 N was added
to the system as a disturbance component. The cycling force was generated by using a
bicycle tube attached to the knee link of the exoskeleton robot. The length of the bicycle
tube was reduced by supplying a slight pressure to create the external force at the needed
time. Figure 6 illustrates the experimental results of the LESO-based and NLESO-based
controllers. The NLESO-based controller achieved a better tracking accuracy with about
2.0◦ error in the steady state. Both controllers maintained good tracking performance and
excellently dealt with the external disturbance, which was the main aim of the ADRC
approach. Table 3 provides the quantitative comparison results of both controllers.
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(a) (b)

Figure 6. The system’s response to disturbance (NLESO): (a) hip and (b) knee joints.

Table 3. The RMSE value of the two ESOs.

Joint Signal Frequency
RMSE

LESO NLESO

Hip
0.5 Hz 1.075 0.923

0.5 Hz (Disturbance) 1.753 1.534

Knee
0.5 Hz 1.598 1.271

0.5 Hz (Disturbance) 2.657 2.342

5. Conclusions

In this paper, a nonlinear ESO-based ADRC control approach was used to enhance the
trajectory tracking quality of the PAM-based exoskeleton robot of the BK-gait rehabilitation
system. First, selecting the tracking differentiator with a transient profile helped to avoid
the jump between the desired signal and the system’s output. In practical application, it
made the desired trajectory smooth as well as the control output, which is valuable for any
system. Second, a nonlinear ESO was implemented to estimate the inherent disturbance of
the PAM-based robot. The theoretical and experimental results showed that the nonlinear
observer achieved higher accuracy than the linear one in terms of approximation. Third,
the feedback control law, developed based on the Lyapunov stability theory, showed
outstanding effectiveness when guiding the exoskeleton robot to a gait-pattern trajectory.
Overall, the systems were validated through experiments on a PAM-based robot in cases
with and without external disturbance. Although experiments with a subject’s participation
were not investigated in this research, the proposed NLESO-based controller showed the
promising applicability of PAM-based robots in the rehabilitation field. The PAM-based
robot’s mechanism and control approach must be improved more before allowing a subject
to participate in the experiments. In addition, the assist-as-needed training function will
also be integrated into the system by implementing an impedance controller. A body
weight support system and its control system will also be implemented in future works. In
addition, some wearable biomedical sensors, such as electromyography (EMG), should be
included in the system to provide information about muscle recovery during the training
process. It is a valuable assessment of the health of the muscles. Based on this, physical
therapists can determine suitable exercises for the patients.
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