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Abstract: Increasing heat flux restricts the development of the miniaturization of electronic devices.
There is an urgent need for a heat dissipation method that will efficiently cool the chip. This paper
presents a novel liquid cooling device based on dual synthetic jets actuator (DSJA) technology. The
characteristics of the temperature and velocity field of the device are numerically studied by a
three-dimensional coupled heat transfer model. The entropy generation rate caused by heat transfer
and fluid friction was studied to analyze the effective work loss and irreversibility of the heat
transfer process. When the DSJA is turned on, the temperature of the heat source with a heat flux of
200 W/cm2 is 73.07 ◦C, and the maximum velocity is 24.32 m/s. Compared with the condition when
the the DSJA is closed, the temperature decreases by 25.15 ◦C, and the velocity increases by nearly
20 m/s. At this time, the total inlet flow is 1.26 L/min. The larger frictional entropy generation is
mainly distributed near the inlet and outlet of the channel and the jet orifice. The higher the velocity
is, the more obvious the frictional entropy generation is. Due to the large temperature gradient, there
is a large thermal entropy generation rate at the fluid–solid interface.

Keywords: liquid cooling; dual synthetic jets actuator; entropy generation

1. Introduction

The continuous development of micro-electronic devices will depend on efficient heat
dissipation technology. At present, it is a great challenge to design a heat sink with a heat
flux exceeding 1 MW/m2 [1]. Many electronic devices are damaged by overheating. When
the temperature of electronic equipment increases by 10 ◦C, the reliability decreases by
50% [2]. Therefore, it is urgent that we seek an efficient heat dissipation technology.

Heat dissipation technology is divided into natural convection technology and forced
convection technology. Forced convection technology can rapidly reduce the surface tem-
perature of electronic devices, including spray cooling technology, microchannel cooling
technology, synthetic jet technology, etc. The spray cooling device has high heat dissipation
efficiency but the system is complex. The microchannel technology has the advantage
of small volume and high heat transfer. Many researchers have studied the structural
parameters of microchannels [3–13]. Rhombus fractal-like units [5] and spider-netted mi-
crochannels [7] have excellent heat dissipation performance. Rectangular microchannels
are widely used in our lives due to their good heat dissipation and hydraulic perfor-
mance. Many studies have shown that microchannels have a strong heat dissipation
capability. However, to meet the heat dissipation demand, they often need to provide more
pump power [14].

Synthetic jet technology [15] is an active flow control technology, which can be used
in the field of heat transfer enhancement. The synthetic jet actuator (SJA) comprises a
diaphragm, a cavity, and a jet orifice. The diaphragm vibrates periodically, changing the
volume of the cavity. When the cavity volume is compressed, the fluid in the cavity is
ejected through the jet orifice, forming a jet at the outlet of the actuator, and developing
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continuously downstream. When the cavity volume is expanded, the external fluid is
sucked into the cavity through both sides of the jet orifice. So far, the SJ has completed a
periodic movement [15,16]. Different parameters have different effects on the heat transfer
of the SJ. There is an optimal frequency to realize the maximum Nusselt number of SJs
impinging on a constant heat flux disk. In addition, when the jet-to-surface distance is small,
the Nusselt number increases with the jet-to-surface distance [17]. SJs can significantly
destroy the thermal boundary layer to enhance heat transfer [18,19]. However, one side of
the diaphragm of the SJA is located at the air side, which can easily cause ballast failure
and low energy utilization.

Based on SJ technology, Luo et al. [20] invented the dual synthetic jet (DSJ) technology.
The DSJ has superior performance and overcomes the problems of SJs [21]. The DSJ
technology consists of two cavities, one diaphragm, and two jet outlets. The diaphragm
separates the cavity. When the diaphragm vibrates, the cavity on one side expands and
the cavity on the other side compresses, the jet outlet on the expanding side inhales the
surrounding fluid, and the compressed side ejects the fluid in the cavity. The alternately
ejected/inhaled jets interact near the outlet and merge into the DSJ, which continues to
develop downstream. Research on SJ and SJA technology mostly focuses on the field of
air cooling. The SJA technology has been proven to be well applied to heat dissipation in
confined spaces [22].

For the heat dissipation of higher heat flux, the ability of air cooling is not enough.
Therefore, some scholars have preliminarily studied the heat transfer mechanism of SJs in
the liquid cooling field. Combining SJs with microchannels, the influence of the interaction
between the jet and incoming flow on heat transfer is studied [23–28]. The PIV technique
was used to observe the flow field of SJs underwater. Compared with the condition without
SJs, the effect of an SJ makes the heat transfer increase by about 4.3 times [23]. The SJ
promotes fluid mixing in the channel and enhances heat transfer [29]. It is worth noting
that the SJ contributes little to the pressure drop in the channel. With a low flow rate,
heat transfer can be enhanced by 130% [30]. Multiple synthetic jets can be combined
with microchannels at the same time for better heat dissipation [26]. The convective heat
transfer capacity of two SJs is more effective when 180◦ is out of phase [31,32]. The higher
the frequency and amplitude of the diaphragm, the higher the convective heat transfer
capacity. There is an optimal fluid inlet temperature of 297.15 K for achieving maximum
heat transfer. The overall performance of the heat sink increases significantly with the
Reynolds number at the inlet [32]. The underwater PIV experiment of DSJ technology
shows that the jet strength is the highest when the driving frequency is 30 Hz [33]. The heat
transfer characteristics and physical properties of the SJ flow field in the channel are very
complex, so a comprehensive parameter study of SJAs is required [34].

Some other scholars have carried out entropy generation analysis on the studied
device. Entropy generation analysis is helpful to understand the source of irreversible loss.
Luis et al. [35] analyzed local entropy generation and global entropy generation of different
parts of a hybrid microjet heat sink. It is found that the irreversibility of the system mainly
comes from the heat transfer of the copper plate. The total entropy generation consists of
thermal entropy generation and friction entropy generation. Mehdi et al. [36] found that the
latter has little influence on the irreversible loss of the heat sink. Omid et al. [37] reviewed
the entropy generation theory of nanofluids and introduced two calculation methods for
entropy generation.

In our previous research, a side-mounted liquid cooling device was proposed [38].
Good heat transfer and flow performance are obtained. To further simplify the fluid
circuit and reduce the flow resistance, this paper proposes a front-placement liquid cooling
device. In this paper, the DSJ is combined with a channel for liquid cooling. The entropy
generation of the cooling device is analyzed from the point of view of the second law of
thermodynamics. The novelty of this study is that a new type of forwarding compound
DSJ liquid cooling device is proposed. It is of great significance to solve the heat dissipation
of electronic devices in a high heat flux confined space. At the same time, this study fills in
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the blanks that remain from the study of DSJs by the entropy generation analysis method.
The research contents of this paper are as follows: Section 2 mainly introduces the relevant
models and numerical methods; Section 3 is the result discussion. The temperature field,
velocity field, entropy generation, and the effect of diaphragm frequency have been studied.
Section 4 is the conclusion.

2. Numerical Methods
2.1. Physical Model

In this paper, the DSJA cooling device consists of a DSJA, a channel, and an aluminum
plate, as shown in Figures 1 and 2. The jet orifices are directly arranged on the upper side
of the cavity to connect the channel and the actuator cavity. The channel consists of an inlet
and an outlet. Jet orifices set to 5 × 5 arrays. The fluid enters the cooling device in three
ways. One fluid enters the channel, and the other two fluids enter the channel through the
jet orifices, through the actuator. The three converge in the channel and move downstream.
The yellow arrow in Figure 1 indicates the path of fluid flow. The jet orifices are row 1,
row 2, row 3, row 4, and row 5 along the positive direction of the y-axis.
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When the DSJA diaphragm is not vibrating, the actuator only acts as a fluid circuit.
At this time, jets from the jet orifices can be regarded as steady jets. When the DSJA
diaphragm vibrates upward, the cavity on the upper side of the actuator shrinks, and fluid
is ejected from the third, fourth, and fifth-row jet orifices. At the same time, the cavity at
the lower side of the actuator expands, and the fluid in the channel flows into the cavity
at the lower side through the 1st and 2nd discharge orifices. When the DSJA diaphragm
vibrates downward, the flow situation is opposite to the above process. Different jet outlets
alternately eject/inhale fluid, and the formed jets fuse and develop with each other, and
interacts with the incoming flow of the channel to form a violent disturbance.
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2.2. Governing Equations

In this paper, a three-dimensional fluid–solid coupling model is established. The
thermophysical properties of fluids and solids are considered constant. The fluid is assumed
to be incompressible. The working fluid is water, and the solid is aluminum. The mass,
momentum, and energy equations of the problem [25] can be written as

∂ρ

∂t
+∇·ρU = 0 (1)

∂

∂t
(ρU) +∇·(ρUU) = −∇p +∇·(τ) (2)

∂

∂t
(ρE) +∇·(U(ρE + p)) = ∇·

(
λeff∇T +

(
=
τeff·U

))
(3)

2.3. Boundary Conditions and Numerical Solver Setting

The simulation software used in this research is Fluent. Pressure-based solver is
selected for calculation. The energy equation is opened. Considering the need to solve
the jet impact problem and large-scale flow changes, the SST k-ω model is selected. The
calculation includes a fluid domain and a solid domain. The material of the fluid domain is
water, and the material of the solid domain is aluminum.

The boundary conditions of the cooling device are set as shown in Figure 3. Consider-
ing that the cooling device is completely symmetrical, only half of the model is calculated.
Symmetrical boundary conditions are adopted for the model section. The entrance of
the channel and the entrance of the actuator adopt the velocity inlet boundary. The inlet
velocity is 1.5 m/s and 0.3 m/s, respectively. The channel outlet is set as the pressure outlet.
The chip uses a constant heat flux boundary. The inlet water temperature is 25 ◦C. The
fluid–solid interface is set as the coupling surface. The rest are set as non-sliding walls.
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The actuator diaphragm uses velocity inlet boundary conditions of user-defined
functions (UDF) as {

u(t)l = 0.02 sin(2π f t + 0◦)
u(t)r = 0.02 sin(2π f t + 180◦)

(4)

The pressure and velocity are coupled by a SIMPLE algorithm. The relaxation factors
for pressure, density, and momentum are set by default to 0.3, 1, and 0.7, respectively.
The criterion of the energy equation is 10−6, and the convergence criterion of mass and
momentum is 10−3. In this paper, the frequency is selected as f = 30 Hz [33]. The time step
is set to 2.778 × 10−4 s, and the total time is 6.67 s.

2.4. Numerical Method Validation

Grid independence verification is performed on the model, as shown in Table 1.
Because the model is completely symmetrical, only half of the model is used for structural
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mesh generation. Three sets of grids are divided, and the y+ value is less than 1. The
error between the number of grids (8,555,843) and the number of grids (11,713,823) is less
than 8%. To ensure the calculation accuracy and velocity, 8,555,843 grids are selected for
calculation, as shown in Figure 4.

Table 1. Grid independence verification.

Grid Number Pressure Drop (kPa) Convergence Criteria Base Temperature (◦C) Convergence Criteria

DSJ off
4,374,057 4.35 0.685% 97.82 1.082%
8,555,843 4.38 0.000% 98.22 0.677%

11,713,823 4.38 - 98.89 -

DSJ on(T)
4,374,057 5.93 18.767% 76.31 0.883%
8,555,843 6.78 7.123% 76.61 0.493%

11,713,823 7.30 - 76.99 -
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The experimental model in reference [33] is selected to verify the numerical method in
this paper. As shown in Figure 5, the RNG k-ε model and SST k-ω model are selected. The
velocity distribution at 2 mm away from the DSJ orifice was studied. The results show that
the SST k-ω model is in better agreement with the experiment.

2.5. Relevant Definitions

The hydraulic diameter of the channel is

Dh =
2w h0

w + h0
(5)

where w, and h0 are the channel width and height, respectively. In this paper, Dh = 1.8182 mm.
The channel Reynolds number Rec [28] and the DSJ Reynolds number Redsj are defined

as follows:
Rec =

ρuinDh
µ

(6)

Redsj =
ρudsjd

µ
(7)

where uin = 1.5 m/s, udsj = 24.32 m/s, and d = 0.36 mm are the flow velocity of the channel
inlet, the maximum flow velocity at the exit of the actuator, and the diameter of the jet
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orifice, respectively. The value of the channel Reynolds number is 2714. The range of jet
Reynolds numbers Redsj is 43,998.192.

The Nusselt number of a channel is defined as

Nu =
Dhh

λ
(8)

where h = q
(Tw−Tf )

is the convective heat transfer coefficient of DSJA, where Tw and Tf are

the solid surface temperature and the fluid temperature, respectively.
The volume entropy production rate includes the entropy production rate caused

by irreversible heat transfer and the irreversible flow loss caused by fluid friction. All
formulas [36] are as follows:

.
S
′′′
gen,total =

.
S
′′′
gen,thermal +

.
S
′′′
gen, f rictional (9)

.
S
′′′
gen,thermal =

λ f

T2
f

[(
∂T
∂x

)2
+

(
∂T
∂y

)2
+

(
∂T
∂z

)2
]

(10)

.
S
′′′
gen, f rictional =

µ
Tf

{
2
[(

∂u
∂x

)2
+
(

∂v
∂y

)2
+
(

∂w
∂z

)2
]
+
(

∂u
∂y + ∂v

∂x

)2
+
(

∂u
∂z + ∂w

∂x

)2

+
(

∂v
∂z +

∂w
∂y

)2
} (11)

u, v, w are velocity components in x, y, z directions respectively.
The total entropy generation is the integral sum of thermal entropy generation and

frictional entropy generation in the entire cooling device.∫ ∫ ∫
Ω

.
SgendV =

∫ ∫ ∫
Ω

.
Sgen,thermaldV +

∫ ∫ ∫
Ω

.
Sgen, f rictionaldV (12)
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3. Results
3.1. Temperature Field

To study the enhanced heat transfer mechanism of the DSJ, the central section of the
channel (section x = 28.5 mm) is taken as an example for analysis. The inlet velocity of
the channel is 1.5 m/s, and the inlet velocity of DSJA is 0.3 m/s. The heat flux of the heat
source is 200 W/cm2. The heat source is located at −5.25 mm < y < 5.25 mm.

The temperature field of the channel is shown in Figure 6. The average temperature of
the chip is 120.35 ◦C. It is observed that the substrate temperature near the outlet is higher
than that of the inlet. This is because the fluid takes away heat along the flow direction,
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increasing the fluid temperature. A thermal boundary layer attached to the substrate is
gradually thickening along the flow direction, weakening the heat transfer capability. There
are partitions between adjacent channels to enhance the heat conduction effect.
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frictional entropy generation in the entire cooling device. ම 𝑆ሶ 𝑑𝑉 
ஐ = ම 𝑆ሶ,௧𝑑𝑉 

ஐ + ම 𝑆ሶ,௧𝑑𝑉 
ஐ  (12) 

3. Results 
3.1. Temperature Field  

To study the enhanced heat transfer mechanism of the DSJ, the central section of the 
channel (section x = 28.5 mm) is taken as an example for analysis. The inlet velocity of the 
channel is 1.5 m/s, and the inlet velocity of DSJA is 0.3 m/s. The heat flux of the heat source 
is 200 W/cm2. The heat source is located at −5.25 mm < y < 5.25 mm.  

The temperature field of the channel is shown in Figure 6. The average temperature 
of the chip is 120.35 °C. It is observed that the substrate temperature near the outlet is 
higher than that of the inlet. This is because the fluid takes away heat along the flow di-
rection, increasing the fluid temperature. A thermal boundary layer attached to the sub-
strate is gradually thickening along the flow direction, weakening the heat transfer capa-
bility. There are partitions between adjacent channels to enhance the heat conduction ef-
fect.  

 
Figure 6. Temperature distribution of channel’s center section (x = 28.5 mm). 

The temperature fields of the DSJ when off and the DSJ when on are shown in Figures 
7 and 8, respectively. In Figure 7, the maximum temperature of the heat source is 98.22 
°C. The thermal boundary layer gradually develops and thickens along the channel’s top 
wall from the channel inlet. It is destroyed in the jet impact area. Compared with other 
areas, a part of the thermal boundary layer is observed above the fourth and fifth row of 

Figure 6. Temperature distribution of channel’s center section (x = 28.5 mm).

The temperature fields of the DSJ when off and the DSJ when on are shown in
Figures 7 and 8, respectively. In Figure 7, the maximum temperature of the heat source is
98.22 ◦C. The thermal boundary layer gradually develops and thickens along the channel’s
top wall from the channel inlet. It is destroyed in the jet impact area. Compared with other
areas, a part of the thermal boundary layer is observed above the fourth and fifth row of jet
orifices, considering the jet deflection caused by the weak jet of the upper cavity itself and
the incoming flow. The impact damage ability to the thermal boundary layer is weakened.
The existence of the thermal boundary layer will deteriorate the heat transfer, which will
help to reduce the temperature of the actuator.

Actuators 2022, 11, x FOR PEER REVIEW 8 of 20 
 

 

jet orifices, considering the jet deflection caused by the weak jet of the upper cavity itself 
and the incoming flow. The impact damage ability to the thermal boundary layer is weak-
ened. The existence of the thermal boundary layer will deteriorate the heat transfer, which 
will help to reduce the temperature of the actuator. 

Compared with the DSJ when off, the maximum temperature drop of the heat source 
is 25.15 °C when the DSJ is on, as shown in Figure 8. The alternating vibration of the dia-
phragm of the DSJA has a periodic effect on the temperature distribution of the aluminum 
plate. At 0 T (1 T), the thermal boundary layer was observed above the third, fourth, and 
fifth-row jet orifice. Consider that the upper cavity is in the suction stage at this time. The 
attachment of the thermal boundary layer results in an obvious high-temperature region. 
The temperature of the aluminum plate above the first and second rows of jet orifices is 
obviously lower, which is caused by jet impingement cooling. At 0.25 T, the temperature 
contour shows an obvious low-temperature area, and the thermal boundary layer has 
been destroyed. At this time, the upper cavity is in the ejection stage, and the jet ability is 
strong. At 0.5 T, the temperature distribution near the impact surface is relatively uniform. 
Consider the weakening stage of the jet from the upper cavity. At 0.75 T, the temperature 
of the corresponding impact area of the first and second row of jet orifices decreased sig-
nificantly. This is due to the impact of the jet at the outlet of the lower cavity. Influenced 
by the flow of the jets and incoming flow in the suction channel of the cavity, a partially 
disordered thermal boundary layer was observed. Then, the cooling device enters the 
stage of 0 T (1 T) again, and the above process is repeated. The periodic vibration of the 
diaphragm brings about the periodic change of the temperature of the aluminum plate, 
and the reciprocating disturbance of the jet and its interaction with the incoming flow 
strengthen the convection heat transfer. 

 
Figure 7. Temperature distribution (DSJ off) of channel’s center section (x = 28.5 mm). Figure 7. Temperature distribution (DSJ off) of channel’s center section (x = 28.5 mm).



Actuators 2022, 11, 382 8 of 19Actuators 2022, 11, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 8. Temperature distribution of channel’s center section (x = 28.5 mm) (DSJ on) : (a) 0 T (1 T); 
(b) 0.25 T; (c) 0. 5 T; (d) 0.75 T. 

The distribution of Nu on the impact surface (z = 44 mm) along the y direction is 
shown in Figure 9. When the DSJ is off, the distribution of Nu is low in the middle and 
high on both sides. This is because the middle area is close to the heat source and has a 
higher temperature. Both sides have low-temperature regions because they are far away 
from heat sources and close to the inlet and outlet of the channel. When the DSJ is on, the 
distribution of Nu varies at different times. The distribution of Nu is opposite to the tem-
perature distribution of the DSJA in Figure 8. The area where the thermal boundary layer 
is damaged has a large Nu number. The importance of breaking the thermal boundary 
layer for enhancing heat transfer is further illustrated. In addition, at the moment of 0.75 
T~0 T (1 T), a larger Nu number is observed in the area of y ＜ 0. It indicates that the 
lower cavity is in the injection stage at this time. Since there are only two rows of jet outlets 
in the lower cavity, the jet velocity is higher. At 0.75 T, the impact area is wider, corre-
sponding to the wider Nu distribution in Figure 9. In a word, the effect of the DSJ increases 
the Nu number and presents a “wavy” Nu distribution curve. It reflects the effective dis-
turbance of the DSJ to the flow field. 

Figure 8. Temperature distribution of channel’s center section (x = 28.5 mm) (DSJ on): (a) 0 T (1 T);
(b) 0.25 T; (c) 0. 5 T; (d) 0.75 T.

Compared with the DSJ when off, the maximum temperature drop of the heat source
is 25.15 ◦C when the DSJ is on, as shown in Figure 8. The alternating vibration of the
diaphragm of the DSJA has a periodic effect on the temperature distribution of the alu-
minum plate. At 0 T (1 T), the thermal boundary layer was observed above the third,
fourth, and fifth-row jet orifice. Consider that the upper cavity is in the suction stage at this
time. The attachment of the thermal boundary layer results in an obvious high-temperature
region. The temperature of the aluminum plate above the first and second rows of jet
orifices is obviously lower, which is caused by jet impingement cooling. At 0.25 T, the
temperature contour shows an obvious low-temperature area, and the thermal boundary
layer has been destroyed. At this time, the upper cavity is in the ejection stage, and the jet
ability is strong. At 0.5 T, the temperature distribution near the impact surface is relatively
uniform. Consider the weakening stage of the jet from the upper cavity. At 0.75 T, the
temperature of the corresponding impact area of the first and second row of jet orifices
decreased significantly. This is due to the impact of the jet at the outlet of the lower cavity.
Influenced by the flow of the jets and incoming flow in the suction channel of the cavity,
a partially disordered thermal boundary layer was observed. Then, the cooling device
enters the stage of 0 T (1 T) again, and the above process is repeated. The periodic vibration
of the diaphragm brings about the periodic change of the temperature of the aluminum
plate, and the reciprocating disturbance of the jet and its interaction with the incoming flow
strengthen the convection heat transfer.

The distribution of Nu on the impact surface (z = 44 mm) along the y direction is
shown in Figure 9. When the DSJ is off, the distribution of Nu is low in the middle
and high on both sides. This is because the middle area is close to the heat source and
has a higher temperature. Both sides have low-temperature regions because they are far
away from heat sources and close to the inlet and outlet of the channel. When the DSJ
is on, the distribution of Nu varies at different times. The distribution of Nu is opposite
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to the temperature distribution of the DSJA in Figure 8. The area where the thermal
boundary layer is damaged has a large Nu number. The importance of breaking the
thermal boundary layer for enhancing heat transfer is further illustrated. In addition, at
the moment of 0.75 T~0 T (1 T), a larger Nu number is observed in the area of y < 0. It
indicates that the lower cavity is in the injection stage at this time. Since there are only two
rows of jet outlets in the lower cavity, the jet velocity is higher. At 0.75 T, the impact area is
wider, corresponding to the wider Nu distribution in Figure 9. In a word, the effect of the
DSJ increases the Nu number and presents a “wavy” Nu distribution curve. It reflects the
effective disturbance of the DSJ to the flow field.
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3.2. Flow Field Characteristics

This section studies the flow field characteristics of cooling devices, as shown in
Figures 10–13. It can be observed from Figure 10 that when there is only a channel, the
streamlines in the channel are parallel to each other along the streamlines. The fluid in the
channel does not affect each other. Thick velocity boundary layers were observed near the
upper and lower walls of the channel.

When the DSJ is off, the maximum velocity in the flow field reaches 4.5 m/s. The
fluid entering the channel flows parallel to the channel at the beginning, and its flow path
is disturbed when it passes near the jet orifice under the influence of the jet. The fluid
becomes disordered. The channel flow is “squeezed” upward by the jet, and a low-velocity
area (the blue part in Figure 11) is observed between adjacent jets. At the same time, the jet
deflects along the flow direction under the action of channel flow. The fourth and fifth rows
of jets deflect most obviously. It is consistent with the phenomenon described in Section 3.1.

When the DSJ is on, the flow field distribution of one cycle of the DSJA is shown in
Figures 12 and 13. At 0 T, the actuator diaphragm vibrates downward. The upper cavity
volume expands while the lower cavity volume compresses. An obvious vortex structure
was observed in the upper cavity. Since the vibration of the diaphragm is small at this time,
the flow from the actuator will inhibit the suction of fluid in the channel. In addition, when
the jet interacts with the incoming flow, the flow in the channel is disordered, while when
the jet is far away, the flow in the channel remains stable. The region of a steady fluid flow
corresponds to the gradually thickened thermal boundary layer in Figure 8a. It further
shows that the enhancement of fluid kinetic energy destroys the thermal boundary layer
and enhances heat transfer. At 0.25 T, the upper cavity ejects fluid, and the jet impinges
on the aluminum plate surface to form an obvious low-temperature area. At 0.5 T, the
diaphragm is in a balanced position. The ability of the upper cavity to eject the jet is
weakened. The jet deflects under the influence of incoming flow. At 0.75 T, the lower
cavity ejects a strong jet. An obvious vortex structure is formed in the channel, and the
temperature of the jet impingement zone is obviously reduced. At the same time, it was
observed that the fluid in some channels was sucked into the upper cavity. The large
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vortex structure was observed above the third, fourth, and fifth jet orifices, because it was
affected by the three actions of ejected fluid, inhaled fluid, and incoming flow. The resulting
temperature distribution is consistent with that observed in Figure 8.
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To further analyze the flow field characteristics of the DSJA, the vorticity distribution of
the DSJA is shown in Figure 14. When the DSJ is off, only large vortices are observed in the
channel, especially near the jet orifices, as shown in Figure 14a. The vorticity distribution
of one cycle after the DSJ is turned on is shown in Figure 14b–e. It can be found that the
vorticity increases significantly, and the vorticity distribution also changes significantly.
Under the action of the DSJ, the fluid in the channel is affected by alternate blowing and
suction, forming a periodic disturbance. A larger range of large vorticity distribution was
observed in the channel. In addition, the reciprocating up and down the vibration of the
diaphragm increases the vorticity in the cavity. It further shows that the fluid mixing under
the action of the DSJ is enhanced, which enhances the convective heat transfer capability of
the fluid.

3.3. Entropy Generation Analysis

The entropy generation rate is used to reflect the irreversibility of the heat transfer
and flow process. This section studies the entropy generation characteristics of the DSJA
from the perspective of the second law of thermodynamics. The total entropy production
rate includes the entropy production rate caused by irreversible heat transfer and the
irreversible flow loss caused by fluid friction.
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The thermal entropy generation rate of the DSJ when off and the DSJ when on are
shown in Figures 15 and 16. When the DSJ is off, the higher thermal entropy generation
rate is mainly located at the interface between the fluid domain and the solid domain. This
is mainly due to the large temperature gradient in these places. The water temperature at
the inlet and outlet of the channel is low, the temperature gradient is large, and the thermal
entropy generation rate is higher. When the DSJ is on, a high thermal entropy generation
rate is also observed at the fluid–solid interface. The heat transfer in the region where
the thermal boundary layer exists is poor and the thermal entropy generation rate is high.
Under the disturbance of the DSJ, the distribution of the thermal entropy generation rate
near the jet orifice is obviously disordered. At the same time, the impingement of the jet
makes the thermal boundary layer thinner and the thermal entropy generation rate lower.
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The frictional entropy generation rate of the DSJ when off and the DSJ when on are
shown in Figures 17 and 18. The higher frictional entropy generation rate is mainly located
near the inlet and outlet of the channel and the jet orifice, especially in the jet impingement
area. This is mainly due to the large velocity gradient at the inlet and outlet of the channel.
The jet orifice diameter is small, and the velocity will change suddenly. When the DSJ is off,
the jet deflects under the influence of incoming flow. The deflection area has a low-velocity
area. Therefore, the frictional entropy generation rate is large. This is consistent with the
phenomenon observed in Figure 11.

When the DSJ is on, Figure 18 observed the frictional entropy output value in a larger
area than when the DSJ is off. This is because the diaphragm is at a limited position of
downward vibration at this moment. The lower cavity ejects the jet and the upper cavity
inhales the jet. The high strength of the jet results in a large velocity gradient. Observing
the DSJ-off and DSJ-on cases, it can be found that the frictional entropy generation increases
with the increase of the velocity of the DSJA. This is due to the increase in velocity gradient
and the decrease in temperature. In the whole heat dissipation device, the greater the



Actuators 2022, 11, 382 15 of 19

velocity, the more obvious the frictional entropy generation. Small channels and jet orifices
favor greater velocity gradients.
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The total entropy generation rate of the DSJ when off and the DSJ when on are shown
in Figures 19 and 20. It can be seen that the high total entropy generation rate is mainly
located near the jet orifice and the inlet and outlet of the channel. We use Formula (12)
to calculate the overall value of entropy, as shown in Table 2. It can be seen that the total
entropy generation is dominated by the value of thermal entropy generation because the
contribution of frictional entropy generation is very small. Since there is no velocity in
the solid domain, its frictional entropy generation rate is 0. The total entropy generation
in the fluid domain is much greater than that in the solid domain. Moreover, the total
entropy generation of the DSJ when off is 0.01309, while the value of the DSJ when on is
only 0.00414. The entropy production is reduced, and the latter is more than three times
lower than the former. It indicates that the irreversible loss of the DSJA is greatly reduced.
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Table 2. Thermal entropy generation, frictional entropy generation, and total entropy generation in
different areas of the cooling device.

Case
Fluid Solid Cooling Device

Thermal Frictional Total Thermal Total Thermal Frictional Total

DSJ off 0.01298 0.00005 0.01303 0.00006 0.00006 0.01304 0.00005 0.01309
DSJ on (0.75 T) 0.00380 0.00030 0.00410 0.00004 0.00004 0.00384 0.00030 0.00414

3.4. Effect of Diaphragm Frequency

The influence of the diaphragm frequency on the performance of the cooling device
was studied, keeping other settings unchanged.

The change of the periodic average temperature of the wall along the y direction
along the channel with the diaphragm frequency is shown in Figure 21. The temperature
distribution of the impact surface is not monotonic with the frequency. The impact surface
temperature is the highest when the frequency is 10 Hz. When the frequency is 30 Hz, the
impact surface has the lowest temperature and the temperature change is more obvious.
The temperature near the jet impingement point is lower than that in other areas. This is
because the effect of the dual synthetic jets strengthens the fluid-mixing and improves the
convection heat transfer capacity of the fluid.
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The channel inlet and outlet pressure drop changes with the diaphragm frequency
as shown in Figure 22. The channel inlet and outlet pressure drop is the lowest when the
diaphragm frequency is 10 Hz and the highest when the diaphragm frequency is 40 Hz.
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It shows that the pressure drop at the inlet and outlet of the channel is not monotonous
with the change in the diaphragm frequency. It can be seen from Figures 21 and 22 that the
cooling device has the best performance due to the optimal frequency. In the frequency
range studied in this paper, the best comprehensive performance of the heat sink is obtained
when the frequency is 30 Hz.
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4. Conclusions

In this paper, combined with the DSJ technology, a forward liquid cooling device
is designed. The heat transfer and flow characteristics of the device are analyzed. The
entropy generation of the DSJA is analyzed from the point of view of the second law of
thermodynamics. The main conclusions are as follows

• When the DSJ is off, the cooling device observes an asymmetric temperature distribu-
tion. The maximum temperature reaches 98.22 ◦C. When the DSJ is on, the maximum
temperature is only 73.07 ◦C. A 25.60% heat transfer enhancement was achieved. The
temperature field of the cooling device changes periodically with the DSJ. The thermal
boundary layer attached to the impact surface was periodically destroyed by the DSJ.
It is helpful to enhance convection heat transfer.

• When the DSJ is off, the jet deflects under the influence of a flow velocity of 1.5 m/s in
the channel. It is difficult to achieve full-impact heat dissipation on the wall. The DSJ
on solves this problem. At this time, the DSJ can directly impact the wall and interacts
with the incoming flow to enhance mixing. The rich vortex structure is helpful for
convection heat transfer.

• The results of entropy generation analysis show that total entropy generation mainly
comprises the contribution of thermal entropy generation, and the influence of fric-
tional entropy generation is small. The entropy generation of the DSJ when on is much
lower than that of the DSJ when off.

• The optimal frequency results in the best overall performance of the cooling device.
This section studies the performance of the cooling device when the diaphragm
frequency is 10 Hz, 30 Hz, 40 Hz, and 50 Hz. It is found that the device has the best
comprehensive performance when the frequency is 30 Hz.
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