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Abstract: To improve collision safety in robot–human collaborative applications, increasing attention
has been paid to rotational variable stiffness actuators. A new rotational variable stiffness actuator,
which works in two stages, is proposed for hybrid passive–active stiffness regulation. The passive
stage is based on the motions of springs driven by the rack-and-pinion systems, elastically converting
the shaft’s rotation into the inner shell rotation fixed to the internal gear of the active stage. The active
stage is designed to achieve the movement of the pivot point located on the roller actuated by the
adjustment motor, providing the output angle of the output shaft. The two pairs of rack-and-pinion
systems of the passive stage and the two pairs of planetary gears of the active stage are designed for
side-by-side placement, improving the stability and balance of the stiffness regulation process. Two
symmetrical cam-slider mechanisms acting as leverage pivots ensure the synchronous movements
of the two rollers. The variable stiffness actuator is designed and validated by simulations and
experiments. Strength analysis and stiffness analysis are presented. The designed actuator can obtain
the range of stiffness adjustment of 35–3286 N·mm/deg. The range of the angle difference between
the input and output shafts is ±48◦.

Keywords: rotational variable stiffness actuator; mechanical design; hybrid stiffness regulation;
stiffness regulation experiments; robot–human collaboration

1. Introduction

Robots are widely used in human–machine cooperation, such as surgery and service.
The demand for additional work to protect workers from hazards of robot–human collisions,
reduce the risk, and improve the intelligence of such robots is increasing [1]. Robots’
flexibility requires improvement [2–4] to increase safety and cooperation performance [5,6].
Therefore, the flexible joint based on a variable stiffness actuator is considered an important
strategy, becoming the focus of the relevant research. The variable stiffness actuators
include linear [7–9] and rotational [10,11]. Linear actuators are usually applied for the knee
joint, legged robotics, and finger joints. The rotational actuators are used for the shoulder
joint and knee exoskeleton. The rotational variable stiffness actuator has attracted much
attention due to its advantages of improving robot safety, flexibility, and adaptability.

The rotational variable stiffness actuators can be divided into three types [10,11]:
(1) Passive type, which is achieved by adjusting elastic elements; (2) active type, which

is achieved by controllable motors to adjust the stiffness between the input and output; and
(3) hybrid active–passive/passive–active type achieved via elastic elements and motors.

Some passive rotational variable stiffness actuators have been developed. Xu et al. [12]
designed a linear digital variable stiffness actuator (LDVSA) based on a memory alloy
S-shaped spring. The authors used different combinations and forms of springs to modify
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the stiffness. Moore et al. [13] proposed a variable stiffness driver for counteracting the
input. The authors pulled the cable to drive the spring-loaded pulley along an arc and
create a nonlinear tension deflection at the cable’s end, producing a secondary spring
behavior. Mengacci et al. [14] proposed a variable stiffness actuator based on elastic
elements. The authors reversed two pulleys to load the spring and varied the working
point to regulate stiffness.

The passive actuators are based on the passive elastic elements, limiting the loading
capacity. There are several different types of active variable stiffness actuators proposed.
Xiong et al. [15] designed an elastic element (SMA-TE) using a shape memory alloy SMA
spring. The SMA-TE with torsional stiffness and the counter arrangement of helical
SMA springs were used to achieve variable stiffness. Wolf et al. [16] developed an active
variable stiffness joint. The joint controls the nonlinear elastic element through the motor,
affecting the rigidity of the entire joint. The QA-Joint invented by Eiberge et al. [17] can
control the output position and joint stiffness by employing the main and adjusting motors,
respectively, protecting the joint transmission. Liu et al. [18] designed a variable stiffness
actuator to adjust the mechanism stiffness by varying the effective length of the bending
rod and rearranging the cam position.

Several hybrid variable stiffness actuators have been designed based on active and
passive mechanisms. Wang et al. [19] proposed a variable stiffness actuator (LVSA) divided
into a flexible actuator unit and a stiffness adjustment device. The LVSA can change the
actuator stiffness by adjusting the preload of four springs with a single motor and altering
the maximum deformation of the springs. Shin et al. [20] designed a switchable supple
actuator (Swi-CA) comprising a variable stiffness spring and a parallel elastic unit. The
effective length of the leaf spring is varied to adjust the output stiffness. Moreover, the
compression spring works as a parallel elastic actuator. Liu et al. [21] proposed a parallel
spring variable stiffness actuator (SPVSA). A wire rope and a screw were employed to
modify the distance between the sliders and adjust the stiffness. The proposed actuator can
withstand a maximum load torque of approximately 25 N·m, the range of the elastic angular
deflection is ±18.5◦, and the theoretical stiffness range is 0–∞ N·m/rad. Ayoubi et al. [22]
proposed a compact variable stiffness actuator V2SOM comprising two modules: a stiffness
adjustment (SAB) and a nonlinear stiffness generator (SGB). The SAB varies the output
force arm, changing the output torque and adjusting the stiffness. Shi et al. [23] designed
a composite variable stiffness flexible joint based on the cam mechanism. The joint is
characterized by active and passive stiffness adjustment. The active stiffness adjustment is
achieved by changing the pre-compression of the spring with the cam and the screw; the
passive stiffness adjustment is accomplished by designing the contour lines of different
cam grooves.

In summary, several important investigations have been conducted in the design of
rotational variable stiffness actuators for flexible robot joints. The actuators based on the
passive mechanisms are designed with the final output torque determined by springs,
limiting their load capacity. Most active actuators cannot absorb impact shocks and store
energy due to the lack of elastic elements. The load capacity of hybrid variable stiffness
actuators is limited because the external load acts on the passive mechanism, where the
bearing capacity of the elastic elements is affected by the stiffness and effective lengths.
The active mechanism can provide additional load capacity by actuators. From the user’s
point of view, the hybrid variable stiffness actuator needs to improve its performance by
providing a higher maximum load capacity, a higher range of angular differences between
the input and output axes, and better energy storage.

A new variable stiffness actuator for adjusting the stiffness is proposed to improve the
angular differences. The proposed actuator has the following features:

1. The variable stiffness actuator is designed with two different mechanisms acting as
the first and second stages of stiffness regulation. The first stage can store energy and
absorb shocks of the input shaft. The second stage can be applied to bear heavy loads
by an active motor.
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2. The required output torque can be adjusted to regulate the actuator stiffness.
3. Two pairs of the rack-and-pinion systems of the first stage and the two pairs of the

planetary gears of the second stage are arranged side by side, improving the stability
and balance of the stiffness regulation process.

4. The two cam-slider mechanisms are symmetrically arranged as the leverage pivot,
guaranteeing the synchronous movements of the two rollers inside the cam.

The mechanical design of the proposed actuator is described by the working principles
and a developed CAD model. The strength analysis is verified utilizing ANSYS. Dynamic
simulation of the actuator is established via MATLAB, and the simulation results are
validated against prototype experiments, indicating good mechanical performance of the
proposed design strategy.

2. Materials and Methods

The proposed variable stiffness actuator with two different mechanisms acting as the
first stage and the second stage in stiffness regulation is shown in Figure 1a. The actuator
includes two parts. The first mechanism, which is considered the passive mechanism,
is presented in Figure 1b, and the second, which is considered the active mechanism, is
presented in Figure 1c.
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Figure 1. The designed actuator: (a) variable stiffness actuator, (b) first mechanism, and (c) second 
mechanism: 1—input shaft; 2—rack-and-pinion system; 3—flange bearing 1; 4—flange bearing with 
the shell as inner ring; 5—shell; 6—guide plate; 7—stiffness adjustment motor; 8—output shaft; 9—
slider; 10—ball screw; 11—internal gear; 12—grooved cam; 13—planetary gear; 14—inner shell; 
15—planetary gear frame; 16—guide rod; 17—spring; 18—drive gear; 19—sun gear. 

2.1. First Mechanism Design 
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cess. The first mechanism acts as the first stage to adjust the stiffness. 

Figure 1. The designed actuator: (a) variable stiffness actuator, (b) first mechanism, and (c) second
mechanism: 1—input shaft; 2—rack-and-pinion system; 3—flange bearing 1; 4—flange bearing with
the shell as inner ring; 5—shell; 6—guide plate; 7—stiffness adjustment motor; 8—output shaft;
9—slider; 10—ball screw; 11—internal gear; 12—grooved cam; 13—planetary gear; 14—inner shell;
15—planetary gear frame; 16—guide rod; 17—spring; 18—drive gear; 19—sun gear.

The first mechanism is connected to the input shaft. When the input torque activates
the input shaft, the first mechanism can elastically convert the shaft’s rotation into the inner
shell’s rotation fixed to the second mechanism’s internal gear. Then, the internal gear drives
the second mechanism to generate resistive forces against the rotation direction of the input
shaft, providing the output angle of the output shaft.

2.1. First Mechanism Design

The first mechanism design with variable stiffness is shown in Figures 1b and 2. The
mechanism includes a drive gear fixed to the input shaft, two rack-and-pinion systems,
two linear springs, and an inner shell. The two pairs of rack-and-pinion systems [24] are
arranged side by side to improve the stability and balance of the stiffness regulation process.
The first mechanism acts as the first stage to adjust the stiffness.
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Figure 2. The first mechanism.

As shown in Figure 2, the input torque Ti and the input angle θm applied to the input
shaft are transferred to the rack-and-pinion systems via the drive gear fixed to the input
shaft. The rotation of the drive gear is converted into the linear motion of the rack-and-
pinion systems. Then, the rack gear drives the linear springs to be compressed or stretched,
providing the spring force Fa and causing a resultant torque Ts that can be expressed as

Ts = 2Fals = 2kθmrmls, (1)

where Fa is the load applied to the springs, k is the spring’s stiffness, rm is the radius of the
gear’s indexing circle, and ls is the distance between the center of the input shaft and the
rack gear. The torque rotates the inner shell connected to the internal gear of the second
mechanism. Then, the rotation angle of the inner shell relative to the input shaft can be
obtained, which is considered the first stage of stiffness regulation.

The variable stiffness in the first mechanism is achieved via the linear motions of the
springs driven by the rack-and-pinion systems, supplying the elasticity of the inner shell
rotation, storing energy, and absorbing shocks of the input shaft [25,26].

2.2. Second Mechanism Design

The second mechanism is devised based on the first mechanism to control the output
angle of the output shaft, generating the stiffness of the proposed actuator. The second
mechanism is shown in Figures 1c and 3. The mechanism includes an internal gear, two
planetary gears, a sun gear, two grooved cams [27], a pair of ball screws, two sliders, and
an active motor. Each roller is placed inside a grooved cam and a slider. The sun gear is
fixed to the input shaft. The second stage’s two pairs of planetary gears are placed side by
side to enhance the stability and balance of the stiffness regulation process [28–30].
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As shown in Figures 3 and 4, the planetary gear is located between the internal gear,
driven by the resultant torque Ts of the first mechanism and the sun gear, fixed to the input
shaft and driven by the input torque Ti. Hence, the planetary gear rotation is caused by
the sum torque of Ti and the internal gear torque of Ts. The total torque squeezes a force
F with respect to the balance of the planetary gear, which acts on the roller placed inside
the grooved cam fixed to the planetary gear. Since the directions of the two torques are
opposite, the final squeezed force generated by the total torque can be reduced compared
to the one generated by the input torque.
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As described in Figures 4 and 5, the roller is considered the pivot and moved along
the linear groove of the grooved cam via the slider’s linear motion, which is actuated by a
ball screw mechanism driven by an active motor. The distance from the reference circle of
the sun gear to the roller’s center is the length L of the lever arm. The squeezed force F and
the length L are used to generate the torque M acting on the roller connected to the slider.
The turning angle at the outputs is denoted as θout, and r is the distance from the slider’s
center to the sun wheel axis.
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As shown in Figure 1, the sliders are connected to the guide plate fixed to the shell.
Consequently, the torque M also acts on the shell and the output shaft. Adjusting the torque
M can be achieved by modifying the length L and varying the pivot point position located
on the roller.

Finally, the stiffness of the designed two-stage actuator can be calculated according
to the difference between the output torque M and the angle difference ∆θ between the
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rotation angle θm of the input shaft and the output angle θout of the output shaft. The
stiffness can be expressed as [31]:

K =
M

θm − θout
=

f (θm, r, k)
∆θ

(2)

2.3. Mathematical Model for Describing the Dynamics of Developed Actuator

According to the designed actuator shown in Figure 1, it is simplified as presented in
Figure 6. The driving motor and input shaft are regarded as the driving system; the guide
plate, shell, and output shaft are together assumed as the output rod; the load is connected
to the output rod; the planetary gear train, cam mechanism, rack-pinion, and springs are
considered as torsion springs which are controlled by the stiffness adjustment motor.
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On the basis of Figure 6, the mathematical model for describing the dynamics is
established as 

Ts = J1
..
θm + C1

.
θm − Te(φ, θh)

Text = J2
..
θout + C2

.
θout + Te(φ, θh)

φ = θm − θout

(3)

where Ts, Te, and Text are, respectively, the output torque of the driving motor, the flexible
torque generated by the torsion spring, and the load torque applied on the output rod; θm,
θh, θout, and φ are the output angle of the driving motor, the output angle of the adjusting
motor, the output angle of the output rod, and the flexible angle generated by the torsion
spring; J1 and J2 are the moments of inertia of the driving motor and the adjusting motor,
respectively; C1 and C2 are the damping coefficients of the driving motor and the adjusting
motor, respectively, which are simplified to include the effects of backlash, clearance
function between gears, and friction forces between the cams and sliders, planetary gears
and internal gears, planetary gears and sun gear, motors, and driven mechanisms.

The recursive least square method is used to identify the moments of inertia and damping
coefficients. The calculation results are shown in Figure 7. The numerical values are finally
achieved as J1 = 4.6× 105(kg ·mm2), C1 = 20(N ·mm · s/rad), J2 = 2.8× 105(kg ·mm2),
C2 = 30(N ·mm · s/rad).
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Figure 7. Parameter identification. (a) Identified moments of inertia. (b) Identified damping coefficients.

2.4. Stiffness Modelling

According to the dynamic model of the mechanism for stiffness regulation, as shown
in Figure 8, the generated torques Tnn−xx1 and Tnn−xx2 can expressed as [32]

Tnn−xx1 = Kxx−nnrnn f (rnnθnn − rxx1θxx1 − exn(t), bxn)

+Cxx−nnrnn

(
rnn

.
θnn − rxx1

.
θxx1 −

.
exn(t)

)
Tnn−xx2 = Kxx−nnrnn f (rnnθnn − rxx2θxx2 − exn(t), bxn)

+Cxx−nnrnn

(
rnn

.
θnn − rxx2

.
θxx2 −

.
exn(t)

) , (4)

where Kxx−nn is the time-varying stiffness between the engaging gear of the internal gear
and the planetary gear; Cxx−nn is the damping coefficient between the internal gear and the
planetary gear; θnn is the rotation angle of the internal gear; θxx1 is the rotation angle of plan-
etary gear 1; θxx2 is the rotation angle of planetary gear 2; f (rxxiθxxi − rnnθnn − exn(t), bxn)
is the clearance function between the internal gear and the planetary gear; i = 1, 2; exn(t) is
the comprehensive transmission error between the planetary gear and the internal gear;
bxn is the clearance error between the internal gear and planetary gear; rnn is the radius of
the internal gear’s indexing circle; rxx1 is the radius of planetary gear 1′s indexing circle;
and rxx2 is the radius of planetary gear 2′s indexing circle.
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As presented in Figure 8, Tty−xx1, which is the torque generated by the sun gear and
applied on the planetary gear 1, and Tty−xx2, which is the torque generated by the sun gear
and applied on the planetary gear 2, can be written as [32]

Tty−xx1 = Kty−xxrty f
(
rtyθm − rxx1θxx1 − ext(t), bxt

)
+Cty−xxrty

(
rty

.
θm − rxx1

.
θxx1 −

.
ext(t)

)
Tty−xx2 = Kty−xxrty f

(
rtyθm − rxx2θxx2 − ext(t), bxt

)
+Cty−xxrty

(
rty

.
θm − rxx2

.
θxx2 −

.
ext(t)

) , (5)

where Kty−xx is the time-varying stiffness between the engaging gear of the sun gear and
planetary gear; Cty−xx is the damping coefficient between the sun gear and planetary
gear; f

(
rtyθm − rxxiθxxi − ext(t), bxt

)
is the clearance function between the sun gear and the

planetary gear with i = 1, 2; ext(t) is the comprehensive transmission error between the
planetary gear and the sun gear; bxt is the clearance error between the sun gear and the
planetary gear; rty is the radius of the sun gear’s indexing circle.

As described in Figure 8, according to Equations (4) and (5), the torque applied on the
slider by the planetary gear can be regarded as the output torque, and it is presented as

Thk1 = −Jxx1
..
θxx1 + Kty−xxrty f

(
rtyθm − rxx1θxx1 − ext(t), bxt

)
+Cty−xxrty

(
rty

.
θm − rxx1

.
θxx1 −

.
ext(t)

)
−Kxx−nnrnn f (rnnθnn − rxx1θxx1 − exn(t), bxn)

−Cxx−nnrnn

(
rnn

.
θnn − rxx1

.
θxx1 −

.
exn(t)

)
Thk2 = −Jxx2

..
θxx2 + Kty−xxrty f

(
rtyθm − rxx2θxx2 − ext(t), bxt

)
+Cty−xxrty

(
rty

.
θm − rxx2

.
θxx2 −

.
ext(t)

)
−Kxx−nnrnn f (rnnθnn − rxx2θxx2 − exn(t), bxn)

−Cxx−nnrnn

(
rnn

.
θnn − rxx2

.
θxx2 −

.
exn(t)

)
, (6)

where Jxx1 is the effective moment of inertia of planetary gear 1 and grooved cam 1; Jxx2 is
the effective moment of inertia of planetary gear 2 and grooved cam 2; Thk1 is the torque
generated by grooved cam 1 and applied on the slider 1; Thk2 is the torque generated by
grooved cam 1 and applied on the slider 2.

As demonstrated in Figure 9, the initial center of the sun gear is at the position o, the
initial center of the planetary gear is at the position o′, the line connecting the two centers
is rotated by ϕj, and the center of the planetary gear is rotated from position o′ to o′′ , the
rotation angle of the sun gear is θm. Fdb is the force generated by the slider and applied on
the grooved cam; Fhk is the force generated by planetary gear and applied on the slider; Thd
is the torque which equals the Thk; H is the displacement of the slider along the ball screw.

Then, the following equations can be obtained as

√
H2+(rty+rxx)

2−2H(rty+rxx)cosϕj
sinϕj

= H
sinθxx

Fhk

√
H2 +

(
rty + rxx

)2 − 2H
(
rty + rxx

)
cosϕj = Thk

Fdb = Fhkcos
(
θxx + ϕj

)
Thd = FdbH

, (7)

According to the Equation (7), the stiffness model can be written as
√

H2+(rty+rxx)
2−2H(rty+rxx)cosϕj

sinϕj
= H

sinθxx

K =
2Thk Hcos(θxx+ϕj)

(θm−θs)
√

H2+(rty+rxx)
2−2H(rty+rxx)cosϕj

. (8)
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2.5. Simulation Setup

The mechanical design of the proposed variable stiffness actuator for stiffness regula-
tion developed with the schematic CAD model is shown in Figures 1 and 10.
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Figure 10. CAD model of the variable stiffness actuator.

The diameter of the actuator is 224 mm, the height is 165 mm, and the linear spring
is 45 mm long. The maximum rotation angle ∆θmax of the input shaft is achieved at 50◦.
Gears’ dimensions are shown in Table 1, and spring’s dimensions are shown in Table 2.

Table 1. Gear parameters.

Gears Reference Circle
Diameter (mm)

Number of
Teeth Module Face Width

(mm)

Gear 18 33.0 22 1.5 10
Rack 2 — 8 1.5 10

Sun gear 19 25.5 17 1.5 10
Planetary gear 13 42.0 28 1.5 10
Internal gear 11 109.5 73 1.5 10
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Table 2. Spring parameters.

Serial Number Parameter Value

1 Outer diameter (mm) 20.0
2 Inner diameter (mm) 10.0
3 Assembly length (mm) 45.0
4 Stiffness (N/mm) 3

SimMechanics of MATLAB/Simulink is employed to establish the dynamics simula-
tion model, as shown in Figure 11a. The dynamics simulation model’s input, first, second,
and output mechanisms are shown in Figure 11b–e, respectively. The flexibility of gear
tooth and lubrication are neglected in the analysis.
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Figure 11. Simulation models established in MATLAB/Simulink. (a) the dynamics simulation model;
(b) the simulation model of input mechanism; (c) the simulation model of first mechanism; (d) the
simulation model of second mechanism; (e) the simulation model of output mechanism.
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2.6. Experimental Setup

The prototype experiments are conducted on the designed actuator, as shown in
Figure 12. The actuator’s maximum flexibility angle ∆θmax and output torque Tmax are
obtained by combining the built experimental platform with the Simulink simulation model.
The actuator’s stiffness is calculated as Tmax

∆θmax
, where the experimental data are separately

measured by a torque sensor, DAYSENSOR DYJN-101, and an encoder, OMRON E6B2-
CWZ6C. The distances are measured by using the laser displacement sensor KEYENCE
LR-X from Tokyo, Japan with a detection error of 0.5 mm.
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3—torque sensor 1; 4—encoder; 5—designed actuator; 6—the main motor; 7—master computer;
8—data transmitter.

3. Results
3.1. Strength Analysis

The dynamic system of the designed actuator is established using ANSYS Motion
2019 R2 to analyze the contact forces between two contact surfaces of different components
during operation. The analysis does not include the flexibility of the gear tooth and
lubrication. The output shaft is assumed to be fixed during the simulation. The springs
of the first mechanism are loaded by the rated loads and used as the stop signal for the
working actuator. The gears are made of 40 Cr, whose parameters are listed in Table 3.
Lastly, the input angle is taken as 60◦ for simulations.

Table 3. Material parameters of gears.

Stats Numerical Value

Modulus of elasticity 1.92 × 1011 N/m2

Poisson’s ratio 0.27
Mass density 8000 kg/m3

Tensile strength 5.8 × 108 N/m2

Yield strength 1.72 × 108 N/m2

Thermal expansion coefficient 1.6 × 10−5/K
Thermal conductivity 16.3 W/(m·K)

Specific heat 500 J/(kg·K)

The stress of the rack-and-pinion system shown in Figure 13a indicates that higher
stresses are located on the pinion gear. Five nodes of the pinion gear shown in Figure 13b
are chosen. It can be seen that the maximum stress is lower than 40 MPa, which is smaller
than the yield strength of the material (40 Cr) [33] of the pinion gear.
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Figure 13. (a) The stress of the rack-and-pinion system of the first mechanism. (b) Stress distribution
of the pinion gear.

The stresses of the planetary gears, internal gear, and sun gear are shown in Figure 14a.
The stresses at the contact surfaces are higher than those of the other parts, which is
consistent with the actual observation. Five nodes at the teeth of sun gear during the
engagement, shown in Figure 14b, are chosen. Their stresses at different times during the
operation are shown in Figure 15, which suggests that the stress-changing trends of the
nodes are similar. The maximum stress is 97.28 MPa, lower than the yield strength of the
material 40Cr of the gears. Hence, the gears meet the strength requirements.
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Figure 15. Stresses at five nodes in the contact region between the planetary and internal gear.

The stresses of the rollers and the grooved cams are shown in Figure 16a, demonstrat-
ing that the stresses of the two pairs of roller and cams are similar due to the symmetrical
arrangement. Moreover, higher stresses are distributed over the areas around the con-
tact surface between the roller and the cam, which conforms to the distribution law of
contact stress.
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Figure 16. (a) The stress of the rollers and the cams. (b) Five nodes of the contact region of the
left roller.

Five evenly distributed nodes along the contacted edge of the roller are selected, as
demonstrated in Figure 16b. Their stresses at different times during the working process
are plotted and shown in Figure 17. The stress-changing trends of the nodes are similar.
The maximum stress is 268.72 MPa and is lower than the yield strength of 40Cr, meeting
the strength requirement. If the strength of the designed mechanism does not meet the
strength requirements, invalid motions and structural damages can easily occur, such as
fractures and cracks. The conducted analyses indicate that the closer the node is to the
contact region, the higher the stress is.
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3.2. Stiffness Analysis of Simulation and Experimental Results
3.2.1. Stiffness Analysis of Simulation Results

The output shaft and shell are assumed to be fixed in the dynamics simulation, and
the speed of the gear shaft is applied as 30◦/s. The motion of the second mechanism for
the abovementioned boundary conditions is shown in Figure 18.
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The maximum angle difference between the input shaft and the internal gear is 60◦

when the maximum rated loads act upon the springs of the first mechanism. The parameter
r shown in Figure 19a is selected to be 20 mm, 22.5 mm, 25 mm, 30 mm, 40 mm, and
50 mm, for which the simulation results of the output angles of the internal gear θig and
the planetary gears θpg are shown in Figure 19a,b. According to Figure 19b, the rotation
angle of the internal gear changes more steeply as r decreases.
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In Figure 19b, the rotation directions of planetary gears are different from that of the
input shaft. According to Figure 19a,b, changing trends of the output angle of the internal
gear and that of the planetary gears are similar.

According to Figure 19a,b, if the parameter r is in the range of 25–50 mm, the out-
put angle of the internal gear behaves linearly with the input angle of the input shaft.
Consequently, the output angle of the planetary gear is also linearly related to the shaft’s
input angle. The simulation results imply that the output angles of the internal gear and
the planetary gears change linearly with the input angle if the parameter r is 25–50 mm,
suggesting the stiffness can be precisely controlled by adjusting the input angle. If the
parameter r is 20–22.5 mm, the internal and planetary gear output angles are non-linearly
related to the input angle. Therefore, it is difficult to control the stiffness.

3.2.2. Stiffness Analysis of Experimental Results

The maximum angular difference ∆θmax obtained by the simulation, the experiment
and the theoretical is shown in Figure 20, suggesting that the angle increases with parameter
r. The flexible angle changes quickly when parameter r is in the range of 20–25 mm. In
contrast, the flexible angle changes gradually when the parameter r is 25–50 mm.
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According to the simulation results, the flexibility angle varies in the range of (4.81◦–47.1◦).
According to the theoretical results, the flexibility angle varies in the range of (5.9◦–47.5◦).
According to the experimental results, the corresponding range is (7◦–48◦), i.e., similar
trends can be observed. The difference occurs at r = 21.5 mm, and the maximum difference
is 4◦.

The actuator stiffness is demonstrated in Figure 21. It can be observed that the stiffness
quickly increases as the parameter r decreases. When the parameter r is between 20.00 mm
and 22.50 mm, the stiffness of the mechanism changes quickly. The stiffness changes slowly
when the parameter r is between 22.50 mm and 50.00 mm. The effective stiffness range
obtained by simulation is 51–3035 N·mm/deg, the experimental one is 35–3286 N·mm/deg,
and the theoretical result is 28–3336 N·mm/deg. It can be concluded that the three change
patterns are consistent and have small errors.
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As shown in Figures 20 and 21, the flexible angle and stiffness obtained by theoretical
results are closer to that achieved by the experimental results than simulation results.
They are very close to that achieved by the experimental results, indicating the theoretical
stiffness modeling is effective. The effects of adjusted displacements should be included in
the modeling of stiffness.

3.3. Simulation and Experiment of Dynamic Movements

To validate the dynamic movements of the designed actuator, the dynamic movements
have been simulated by using ADAMS 2018. The animation is demonstrated in Figure 22,
and it shows that the designed mechanism can move smoothly without a dead band.
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out input, the input shaft is driven by a rotational speed of 60°/s at a time of 2 s, and the 
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Figure 23. Angle displacements and output torque (a) angle displacement; (b) output torque. 

The experiment of dynamic movements is presented in Figure 24. It indicates smooth 
movements. 

Figure 22. The animation of dynamic movements. (a) original state; (b) state at 2 s; (c) state at 4 s.

The initial H is adjusted during a time of 0–2 s by a stiffness adjustment motor without
input, the input shaft is driven by a rotational speed of 60◦/s at a time of 2 s, and the output
shaft is fixed. When H = 50 mm is set, the angle displacements of the sun gear, planetary
gears, internal gear, and planetary gear frame are presented in Figure 23a. The output
torque Thd is shown in Figure 23b.

The experiment of dynamic movements is presented in Figure 24. It indicates
smooth movements.

The simulated and experimental dynamic movements are shown in Figures 22–24,
indicating that the designed mechanism can move smoothly without a dead band.
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3.4. Ball Throwing Simulations

The ball throwing simulations have been carried out to verify the ability of energy
storage of the designed actuator. A rigid output rod (length: 20 cm, width: 4 cm, height:
2 cm, mass: 1441 g) was affixed to the flange cover of the designed actuator. The terminal
end of the output rod was used to support a small ball (radius: 3 cm, mass: 882 g), and the
initial output linkage was set to be horizontal. The ball throwing simulations employing
ADAMS are shown in Figure 25.

The displacements of the ball center in the horizontal direction and vertical direction
are depicted in Figure 26.
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As shown in Figures 25 and 26, the output rod can be used to provide the ability of 
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To evaluate the shock resistance performance of the designed actuator, static simula-
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of the movement of the ball at 3.5 s.
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As shown in Figures 25 and 26, the output rod can be used to provide the ability of
energy storage for throwing the small ball, indicating its performance of shock resistance.

3.5. Static Analysis and Dynamic Analysis of Shock Resistance Performance

To evaluate the shock resistance performance of the designed actuator, static simulation
and dynamic simulation of shock resistance have been conducted by using ADAMS.

3.5.1. Static Analysis of Shock Resistance Performance

The input shaft of the actuator is fixed. The distance H = 40 mm is achieved by
adjusting the sliders for 0–2 s. Then, a shock force with 50 N, which is parallel to the
tangential direction of the output shaft, is applied on the point that is located at one-third
of the shaft, as shown in Figure 27, from 2.1 to 2.2 s. The output torque Thd and the flexible
angle ϕj are shown in Figure 28.
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(b) flexible angle.

As shown in Figure 28a,b, the vibrations of output torque and flexible angle can be
observed after the shock force is applied. At the 2.12 s, the maximum vibration of the
output torque reached 986.30 N·mm, and the maximum vibration of the flexible angle is
2.51◦. Then, the vibrations can be suppressed by the actuators at about 4 s, indicating the
capability of robust shock resistance.

3.5.2. Dynamic Analysis of Shock Resistance Performance

The distance H = 40 mm is obtained by adjusting the sliders during 0–2 s. The input
shaft is driven with a rotational speed of 5◦/s within 2–10 s. A shock force with 50 N,
which is parallel to the tangential direction of the output shaft, is applied on the point that
is located at one-third of the shaft, as shown in Figure 27, from 3.1 to 3.2 s. The output
torque Thd and the flexible angle ϕj are demonstrated in Figure 29.
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As presented in Figure 29a,b, the vibrations of output torque and flexible angle occur
after the shock force is applied. At the 3.13 s, the maximum vibration of the output torque
is obtained as 985.57 N·mm, and the maximum vibration of the flexible angle is captured as
1.64◦. Then, 1.30 s is required by the designed actuator to stabilize the vibrations, suggesting
the designed actuators can provide the capability of shock resistance.

4. Discussion

A new rotational variable stiffness actuator with two different mechanisms acting
as the passive and active stages of stiffness regulation was designed in the paper. The
simulations and experiments showed that the proposed actuator can adjust stiffness in the
35–3286 N·mm/deg range, and the obtained range of the angle difference between the input
shaft and output shaft is±48◦, which is wider than previously achieved ranges as in [21,22].
The passive mechanism is the first stage of adjusting the stiffness between the input shaft
and the inner shell via the linear motions of springs driven by the rack-and-pinion systems.
The active mechanism was devised as the second stage to regulate the stiffness between the
internal gear connected to the first mechanism and the output shaft using an active motor.
The two pairs of the rack-and-pinion systems of the first mechanism and the two pairs
of the planetary gears of the second mechanism were placed side by side to improve the
stability and balance of the stiffness regulation process. Two cam-slider mechanisms of the
second part, considered the leverage pivot, were symmetrical to achieve the synchronous
movements of the two rollers inside the cam.

As shown by the designed mechanisms, simulations, and experiments, effective
stiffness regulation was demonstrated with the required strength of the selected materials
of the designed actuator. When the unwanted torque caused by unexpected collisions
between the input shaft and the external operator or itself occurs in automotive industries,
the proposed actuator absorbs or converts it to prevent damaging the output shaft. This
mechanism meets the urgent demand for collision safety and intelligence of robots in robot–
human collaborative applications. In addition, it can be applied for automatic stiffness
adjustment with advanced controllers.

In this study, if the mechanisms are produced with higher precisions and the assembly
of them is improved, the stiffness could be achieved more accurately. Due to the lack
of control methods, it is difficult to carry out automatic control. In the future, different
control methods will be adopted and developed to gain better performances in the stiffness
adjustment of designed actuators. And, future studies are planned to test the performance
of stiffness regulating in applications of the designed actuator, such as robotic arms and legs.



Actuators 2023, 12, 450 22 of 23

5. Conclusions

• The proposed actuator can adjust stiffness in the range of 35–3286 N·mm/deg, and
the obtained range of the angle difference between the input shaft and output shaft is
±48◦, which is wider than previously achieved ranges as in [21,22]. In addition, the
performance of the designed actuator can be used to meet the needs of the collaborative
robots according to [34,35];

• The passive mechanism is connected to the active mechanism to store energy and ab-
sorb shocks of the input shaft for achieving hybrid passive–active stiffness regulation;

• It has been observed that the output angle of the internal gear behaves linearly with
the input angle of the input shaft when the parameter r is in the range of 25–50 mm.
This way, the stiffness can be precisely controlled by adjusting the input angle;

• The passive and active mechanisms are composites of simple structures and standard
motors. This can be easily applied for adjusting rotational stiffness;

• On the basis of the achieved stiffness range, obtained angle difference, strength anal-
ysis, analysis of dynamic movement, and analysis of ball throwing simulations, the
proposed actuator can be applied in the future with required performances.

6. Patents

The authors hold a patent related to this work.
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