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Abstract: Aiming at the challenges to accurately simulate complex friction models, link dynamics, and
part uncertainty for high-precision robot-based manufacturing considering mechanical deformation
and resonance, this study proposes a high-precision dynamic identification method with a double
encoder. Considering the influence of the dynamic model of the manipulator on its control accuracy,
a three-iterative global parameter identification method based on the least square method and
GMM (Gaussian Mixture Model) under the optimized excitation trajectory is proposed. Firstly, a
bidirectional friction model is constructed to avoid using residual torque to reduce the identification
accuracy. Secondly, the condition number of the block regression matrix is used as the optimization
objective. Finally, the joint torque is theoretically identified with the weighted least squares method.
A nonlinear model distinguishing between high and low speeds was established to fit the nonlinear
friction of the robot. By converting the position and velocity of the motor-side encoder to the
linkage side using the deceleration ratio, the deformation quantity could be calculated based on the
discrepancy between theoretical and actual values. The GMM algorithm is used to compensate the
uncertainty torque that was caused by model inaccuracy. The effectiveness of the proposed method is
verified by a simulation and experiment on a 6-DoF industrial robot. Results prove that the proposed
method can enhance the online torque estimation performance by up to 20%.

Keywords: dynamic identification; double encoder; block regression matrix; weighted least squares;
GMM algorithm; industrial robot

1. Introduction

Traditional industrial robots are widely used in manufacturing due to their high speed
and precision, such as in welding, spraying, polishing, and cutting, where stable process-
ing trajectories are required. The performance of these tasks highly depends on accurate
dynamic models, which must account for factors such as friction and unknown disturbance
torques. Although the robot dynamics model can be obtained from CAD models, the
parameters obtained through this method may not accurately reflect the actual dynamic
parameters. Consequently, researchers have proposed various methods to decompose and
analyze the robot dynamics model to improve its accuracy. Vandanjon [1] used a method
that independently considers each part of the robot dynamics, identifies the inertial forces,
centrifugal forces, inertial integrals, and gravity separately, and designs various exciting
trajectories. While this method can enhance the model’s accuracy, excessive subdivisions
will augment the model’s uncertainty and diminish the accuracy of the identification out-
comes. Currently, the widely used method for robot model identification is the global
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identification method [2], which can comprehensively incorporate various factors in the
dynamic modeling process, and collect and process data for all joints, before applying
identification algorithms to calculate all dynamic parameters simultaneously. Due to its
easy implementation, this has become a commonly practiced approach to robot dynamics
modeling. The mainstream process is to determine the minimum identifiable parameter
set and regression matrix [3]; on this basis, design the optimal exciting trajectory to fully
stimulate the dynamic characteristics of the robot [4]. Solving for kinetic parameters, design
the parameter identification algorithm through the data collected along the exciting trajec-
tory. Designing the optimal exciting trajectory [5] and parameter identification algorithm
is a current research hotspot. In the case of industrial robots lacking joint torque sensors,
conventional identification methods [6–8] typically leverage proprioceptive signals, such as
kinematic states and motor current. Direct access to the torques applied to the robot links
is unavailable, as these values are affected by errors in friction modeling and the limited
precision of torque constants. Consequently, the identification results are susceptible to
disturbances. Identification methods based on current measurements depend on precise
prior knowledge of joint drive gains [9]. Unfortunately, the calibration scenarios for drive
gains provided by manufacturers often differ from the identification scenarios [10].

Because of the high-load joint rigidity of industrial robots, the theoretical modeling of
dynamics is sufficient to approximate the real joint driving torque due to the separation
design of driving and joints. However, small industrial manipulators have lightweight
structures and components, such as harmonic reducers, double encoders, and torque sen-
sors, resulting in a highly integrated servo drive and motor in a single joint. This structure
reduces the rigidity of the joint. Thus, theoretical dynamics modeling can only establish
the link dynamics on the load side, and the motor-side dynamics need to compensate for
the flexible error. In order to address the challenges posed by flexible systems, robots often
rely on torque sensors, as exemplified in study [11]. The introduction of joint torque sen-
sors transforms the system into a passive control configuration, ensuring system stability.
However, traditional industrial robots typically lack joint torque sensors, necessitating
the use of flexible deformation from dual encoders for approximate torque compensation.
The primary application scenario for this approach is dynamic identification, aiming to
acquire more accurate models. This, in turn, facilitates applications such as drag teaching
or collision detection. Spong [12] introduced a modeling approach for the flexible joints of
the manipulator, equivalent to a spring model with only stiffness and damping between the
motor end and the connecting-rod load end. However, because of the large stiffness of the
operating arm, unless correspondingly large external forces are acting on the connecting
rod, the error of the double encoder cannot fully capture the physical characteristics of the
flexible joint. Therefore, researchers have proposed methods to improve the model, such as
static parameter identification and neural network model fitting [13].

Linear identification methods typically model frictional forces as Coulomb and linear
viscous forces. Coulomb and linear viscous forces are directly identified through the method
discussed in [14]. However, some studies demonstrate a nonlinear relationship between
the viscous frictional force and joint velocity [15,16]. Several identification methods have
been widely used, including the least squares method [17], the weighted least squares
method [18], and the maximum likelihood method [19]. The least squares method is
a classic algorithm used in a linear regression analysis that is easy to understand and
implement; however, it is vulnerable to noise and has poor robustness. For this reason,
many scholars at home and abroad have conducted further research [20–24]. Recently, some
researchers have utilized neural networks to establish dynamic models, but the results are
unreliable due to the networks’ high sensitivity to noise and tendency to overfit. Thus,
despite advancements in dynamic modeling, improving dynamic model accuracy is still an
active area of research [25].

The motor and the load are not directly coupled but are essentially an elastic system.
This paper presents an algorithm for the identification and compensation of dynamic
model parameters for industrial robots, based on compensating for information with
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double encoders. This approach is exemplified using a 6-DOF industrial robot, where the
minimum parameter set is derived by constructing the dynamic model and employing QR
decomposition. The optimization parameters for the incentive trajectory are determined
using a trajectory optimization algorithm, resulting in the acquisition of the optimized
incentive trajectory. Subsequently, upon obtaining the trajectory, joint torque is identified
using the iterative weighted least squares method. The nonlinear friction force of the
manipulator is modeled by constructing a nonlinear model that distinguishes between high
and low speeds. The WLS (weighted least squares) method is used for the identification
of the dynamic parameters. Finally, the information of the nonlinear residue is fitted
using a double encoder to complete the identification and compensation of dynamic
parameters of the industrial manipulator. To address uncertainties in torque components
that cannot be precisely modeled, the GMM (Gaussian Mixture Model) algorithm is applied
for compensation. This improves the accuracy and robustness of the identification results.
The entire dynamic identification process in this study is conducted in an offline mode,
with only torque estimation being performed in real-time online. Figure 1 illustrates the
functional flowchart of the offline identification method.
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The rest of the article is arranged as follows: Section 2 introduces the linearization of 
the dynamic model and the identification of friction. Section 3 proposes the block regres-
sion matrix, which is used as the index to optimize the trajectory parameters for obtaining 
a relatively ideal exciting trajectory. Section 4 provides the identification method of the 
dynamic parameters based on WLS. Section 5 proposes the GMM algorithm, which is 
used to compensate for the uncertain torque component that cannot be accurately mod-
eled. The simulation and experimental results are demonstrated in Section 6. At last, Sec-
tion 7 concludes the article. 
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The rest of the article is arranged as follows: Section 2 introduces the linearization of
the dynamic model and the identification of friction. Section 3 proposes the block regression
matrix, which is used as the index to optimize the trajectory parameters for obtaining a
relatively ideal exciting trajectory. Section 4 provides the identification method of the
dynamic parameters based on WLS. Section 5 proposes the GMM algorithm, which is used
to compensate for the uncertain torque component that cannot be accurately modeled.
The simulation and experimental results are demonstrated in Section 6. At last, Section 7
concludes the article.

2. Linearization of Dynamic Model and Identification of Friction

The expression of the joint torques of a serial robot can be obtained using the Newton–
Euler iterative method base on MDH [26] and can be represented as follows: “∈”.

τm = M(θ)
..
θ+ C(θ,

.
θ) + G(θ) + τf + J(θ)TFext + τu (1)

In this equation, M(θ) ∈ Rn×n and n represent the positive definite symmetric inertia
matrix and the number of joints, respectively. C

(
θ,

.
θ
)
∈ Rn×n and G(θ) ∈ Rn×1 represent

the Coriolis and gravitational torques, respectively. θ,
.
θ,

..
θ are displacement, velocity, and

acceleration vectors of the joint’s n× 1 vector space. τm ∈ Rn×1 and τf ∈ Rn×1 represent
the driving torque and frictional torque of the joint in the dynamic model, respectively.
Fext and J(θ) represent the external force acting on the robot endpoint and jacobian matrix,
and τu ∈ Rn×1 represents the unmodeled and disturbance torques of the joint. Since the
external force, unmodeled part, and disturbance torque are independent of the parameters
of the robot dynamic model itself, the dynamic model becomes a link dynamic model.
Therefore, in this paper, Equation (1) is linearized [3] to obtain the link dynamic model. The
link dynamic model is built solely on the characteristics of the link, without accounting for
joint influences. On the other hand, the joint dynamic model incorporates the effects of joint
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parameters. The torque in this part will be studied in the following text. After rearranging
the link dynamic parameters of the robot to be identified and removing and integrating the
columns that do not affect the identification process, the basic dynamic parameters, namely
the minimum parameters, will be obtained.

τlink =
[

Γlink Γf
][Φlink

Φ f

]
= ΓΦ (2)

The dynamic model becomes a dynamic model of a link without a motor. Where
τlink ∈ Rn×1 is link torque, Γlink ∈ Rn×rank(Γlink) is link parameters, Φlink ∈ Rrank(Γlink)×1

is the link regression matrix, Γf ∈ Rn×8 is friction parameters, and Φ f ∈ R8×1 is the
friction regression matrix. Γ is solely dependent on the mechanical arm’s motion state and
independent of its structural parameters. The regression matrix can be obtained using the
kinematic formula. Φ represents the minimum set of expressions corresponding to the
dynamic structural parameters. Bidirectional torque detection is an accurate method to
obtain frictional force data. It can be derived that the Coriolis/centrifugal matrix satisfies

C(θ,−
.
θ)(−

.
θ) = C(θ,

.
θ)

.
θ (3)

Given that a majority of industrial robots lack joint torque sensors, directly acquiring
joint friction torque becomes impractical. Nevertheless, it is feasible to deduce the joint
friction torque by examining the characteristics and design of the robot’s configuration
and kinematic state. Industrial robots typically feature encoders on each joint’s motors,
enabling the direct reading of joint velocity. Subsequently, [27] introduces a bidirectional
friction estimation method for extracting joint friction torque from the overall joint torques.
For simplicity, it can be assumed that the friction torque is only related to the joint velocity:

τf (−
.
θ) = −τf (

.
θ) (4)

Assume two industrial robot configurations θ1, θ2 meet the following conditions:

θ1 = θ2 = q
.
θ1 = −

.
θ2 =

.
q

..
θ1 = −

..
θ2 =

..
q

(5)

Substituting Equation (5) into Equation (3), it can be obtained that

τ1 = M(q)
..
q + C(q,

.
q)

.
q + G(q) + τest f (

.
θ)

τ2 = M(q)(− ..
q) + C(q,− .

q)(− .
q) + G(q) + τest f (−

.
θ)

(6)

Substituting Equation (5) into Equation (6), it can be found that

τ1 − τ2 = 2M(q)
..
q + 2τest f (

.
q) (7)

According to Equation (7), when the robot moves slowly, friction is typically obtained
under low-speed and constant-speed conditions, where joint accelerations are exceedingly
small and can be approximated as negligible. This method provides a straightforward and
easily implementable approach for acquiring frictional force data in robotic arm systems.
The inertia force/torque M(q) can be ignored, and it can be obtained that

τest f (
.
θ) =

τ1 − τ2

2
(8)

A common approach for dynamic model identification involves assuming the friction
model as Coulomb friction plus viscous friction linear to the joint velocity; this is often
inadequate in practical scenarios. Recognizing the nonlinearity of friction, several advanced
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friction models have been proposed in relevant literature [28,29]. However, these models
are typically isolated from mass-inertial parameters and identified independently using
nonlinear optimization methods. In recent developments, a unified approach has been
introduced for dynamic model identification that incorporates nonlinear friction. This
paper adopts the following nonlinear friction model for each joint:

τf i =

 τf ci

∣∣∣ .
θi

∣∣∣ < λ

τf ci + τf vi

∣∣∣ .
θi

∣∣∣ ≥ λ
(9)

τf ci =


kci1

tanh
( .

θi
eps

)(
tanh

( .
θi

eps

)
+1
)

2

.
θi ≥ 0

kci2

tanh
( .

θi
eps

)(
1−tanh

( .
θi

eps

))
2

.
θi < 0

(10)

τf vi =


kvi1

tanh
( .

θi
eps

)
+1

2

.
θi + k2

vi1

.
θi

2 + k3
vi1

.
θi

3
.
θi ≥ 0

kvi2

1−tanh
( .

θi
eps

)
2

.
θi + k2

vi2

.
θi

2 + k3
vi2

.
θi

3
.
θi < 0

(11)

Coulomb and viscous friction models are adopted in this paper, where kci1 and kvi1
represent the friction coefficients during forward motion, and kci2 and kvi2 represent the
friction coefficients during backward motion. However, accurately defining static and low-
speed friction poses a significant challenge. A suitable threshold λ is set with Equation (9)
to make the joint’s low-speed and high-speed movements smoother, and friction model
accuracy is ensured by considering the joint velocity squared and velocity cubed in the
calculations. tanh(·) is the hyperbolic tangent function, and eps is the transition accuracy
typically set to 0.0001. This method overcomes the discontinuity problem of the sign(·)
function near the switching point at 0 and avoids the estimation errors in friction force
caused by identification errors or switching the direction of movement. τest f i is the friction
torque of the i-th joint determined through measuring torque and inner-layer identification,
while τf i is the estimated friction torque of the i-th joint obtained through the friction model.

arg(λ, kci1, kci2, kvi1, kvi2)min(
6

∑
i=1
‖τest f i − τf i‖) (12)

3. Optimization Index Based on the Condition Number of Block Regression Matrix

Matrix calculation sensitivity to errors can be reflected by a matrix’s condition number.
A smaller condition number of the regression matrix, viewed physically by a robot, results
in an exciting trajectory, allowing higher velocity and acceleration over the entire workspace,
thereby collecting more information for parameter identification. The dynamic model used
in this paper suggests that a smaller condition number of the regression matrix results in
higher joint acceleration, stimulating the robot’s inertia tensor matrix. Higher joint velocities
better stimulate the centrifugal force and Coriolis force terms. Significant joint position
changes create larger torque differences, thus better stimulating the gravitational force term.
Thus, the condition number cond(Γ) can be used as an index for the regression matrix’s
influence on inertial parameter identification. The condition number of the regression
matrix Γ generally serves as the optimization index for the exciting trajectory. However,
research indicates that optimizing only the condition number of the regression matrix fails
to meet accurate dynamic model requirements. Therefore, optimizing the condition number
of submatrices is also necessary during the optimization process to constrain the internal
structure of the regression matrix Γ. The text introduces the weight matrix based on the
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least squares method and converts the optimization objective to a weighted regression
matrix Γ* following [24].

cond(Γ∗) = cond(Ω−
1
2 · Γ) ≤ cond(Ω−

1
2 ) · cond(Γ) (13)

The constant matrix in the formula is denoted by Ω. The matrix is calculated by
measuring noise throughout this paper. The matrix is utilized to optimize the condition
number of Γ* throughout the paper. It serves as a prerequisite for obtaining a more accurate
dynamic model. The observation matrix of frictional force contains many zeros since
the exciting trajectory of each joint is independent, which could increase the condition
number. Therefore, this paper uses an observation matrix for exciting trajectory that
does not have the frictional force part. Optimizing the condition number of Γ* alone
as the optimization objective does not achieve the desired results, as per experimental
observations. We also optimize the condition number of the submatrix of Γ* to constrain its
internal structure. The Γ* matrix is decomposed into sub-regression matrices including the
acceleration term Γ*

α and velocity term Γ*
β and joint position term Γ*

γ . The impact of each sub-
regression matrix on the total regression matrix varies. As such, assigning varying weights
to different sub-regression matrices is necessary. Ωα, ωβ, and ωγ, respectively, represent the
respective weights of sub-regression matrices. In order to optimize the internal structure
more effectively, parts with larger condition numbers are given heavier weights and those
with smaller condition numbers are given lighter weights. The weight values are computed
by finding the variance of the corresponding columns of the regression matrix. The values
show that indicators with greater differences in variation are assigned larger weights, while
those with smaller differences are given smaller weights. The larger the weight, the more
significant the respective target. To summarize, the optimization objective of the paper is

coΓ = (ωα + ωβ + ωγ) · cond(Γ∗) + ωα · cond(Γα
∗) + ωβ · cond(Γβ

∗) + ωγ · cond(Γγ
∗) (14)

This paper uses a limited Fourier series trajectory as the identification exciting trajectory.

θi(t) =
N
∑

l=1

al,i
w f l sin(w f lt)− bl,i

w f l cos(w f lt) + θi0

.
θi(t) =

N
∑

l=1
al,i cos(w f lt) + bl,i sin(w f lt)

..
θi(t) = w f

N
∑

l=1
−al,il sin(w f lt) + bl,il cos(w f lt)

(15)

where N is the number of terms in the Fourier series trajectory, the sampling frequency of
the trajectory is ff, and the fundamental frequency is wf = 2πff; al,i and bl,i are the amplitudes
of the trigonometric functions. Considering joint limits, velocity, and acceleration limits,
the following objectives and constraints are given, where ts and te are the start and end
times of the sampling time:

min coΓ

subject to :



|θi(t)| ≤ θi,max∣∣∣ .
θi(t)

∣∣∣ ≤ .
θi,max∣∣∣ ..θi(t)

∣∣∣ ≤ ..
θi,max

θi(ts) = θi(te) = 0
.
θi(ts) =

.
θi(te) = 0

..
θi(ts) =

..
θi(te) = 0

(16)



Actuators 2023, 12, 454 7 of 17

To perform optimization and solve the problem, it is necessary to process Equation (16)
above and convert it to

|θi(t)| =
∣∣∣∣ N

∑
l=1

al,i
ω f l sin(ω f lt)− bl,i

ω f l cos(ω f lt) + θi0

∣∣∣∣
≤

N
∑

l=1

1
ω f l

√
a2

l,i + bl,i
2
+ |θi0| ≤ θi,max∣∣∣ .

θi(t)
∣∣∣ = ∣∣∣∣ N

∑
l=1

al,i cos(ω f lt) + bl,i sin(ω f lt)
∣∣∣∣

≤
N
∑

l=1

√
al,i

2 + bl,i
2 ≤

.
θi,max∣∣∣ ..θi(t)

∣∣∣ = ∣∣∣∣ω f
N
∑

l=1
bl,i cos(ω f lt)− al,il sin(ω f lt)

∣∣∣∣
≤ ω f

N
∑

l=1
l
√

a2
l,i + bl,i

2 ≤
..
θi,max

(17)



θi(ts) = θi(te) =
N
∑

l=1

bl
ω f l − θi0 = 0

.
θi(ts) =

.
θi(te) =

N
∑

l=1
al = 0

..
θi(ts) =

..
θi(te) =

N
∑

l=1
ω f lbl = 0

(18)

At the beginning of each iteration, a starting point is randomly selected. During
optimization, if the objective function decreases in the current process, the present outcome
will be upheld, and the regression matrix will be amplified. Otherwise, a new starting
point will be randomly selected, and the regression matrix will remain unchanged. If the
objective function value does not decrease after k attempts, the global optimal solution is
considered to have been reached, and the search process stops.

4. Dynamic Model Identification of Link Based on WLS

Currently, we have identified the required exciting trajectory coefficients and per-
formed dynamic identification to obtain parameter sets. We must note that the collected
torque belongs to the joint driving torque, and we need to identify the link kinematics after
excluding the friction torque. Consequently, Equation (2) can be modified to

τm = ΓlinkΦlink + δ (19)

where δ is the torque error and noise error. The cause of these errors is that the collected joint
torque does not possess a complete equal relationship with the identified link kinematics.
Torque is collected from each joint at different sampling time units, where it is concatenated
and combined into the final collected torque set. Furthermore, the torque error collected
from each joint has different standard deviation. To mitigate the impact of collected data
errors on the accuracy of the identification, we followed the approaches presented in
reference [24]. Consequently, errors are defined with the following attributes:

E(δTδ) = o2
δe (20)

E(·) represents mathematical expectation, and o2
δ represents the variance of δ. Assum-

ing that each joint’s noise error is independent of each other, e is a unit diagonal matrix. o2
δe

represents the variance of the noise error of the driving torque of the six joints. Directly
using the traditional standard LS (least squares) method for identification can only mini-
mize the 2-norm of the error between the collected torque and the estimated torque of the
linear part, without minimizing the 2-norm error δ. This leads to suboptimal optimization
of the minimum parameter set variance during identification. To overcome this limitation,
we recommend using the WLS (weighted least square) method. First, calculate the torque
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error, define the collected torque as τsample, the data number is 6 m, and estimate the torque
through LS as τLS.

E = τsample − ΓsampleΦLS (21)


Σ =


Σ11

Σ22
. . .

Σnn


Σii = var(Ei)

(22)

ΦWLS = (ΓTΣ−1
6m Γ)

−1
ΓTΣ−1

6mτ (23)

E ∈ R6mx1, εi ∈ E, var(·) represents the calculation of variance, and ∑−1
6m ∈ R6m×6m is

a block diagonal matrix consisting of m identical blocks of ∑. There is no unique method to
determine the weighting coefficients. Due to the assumption that the joint noise is mutually
independent, σ2

δ e can be a diagonal matrix. However, in reality, the joint noise is correlated.
Hence, the weight can be calculated by computing the non-diagonal covariance matrix.

Ω =
E · ET

m− rank(Γlinkmin)
(24)

ΦWLS = (ΓTΩ−1
6m Γ)

−1
ΓTΩ−1

6mτ (25)

5. Nonlinear Joint Dynamics Compensation

This study proposes a three-stage iterative identification method for dynamic model
identification. In the first stage, theoretical identification is conducted for the link dynamics.
The second stage focuses on identifying friction. The third stage involves compensating for
uncertain components based on flexible error. The sections and functional modules in the
paper are as shown in Figure 2. The three-ring identification algorithm proposed in this
paper is included in it.
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Figure 2. The flowcharts of three-loop dynamic identification.

In the absence of considering factors such as joint vibration and flexibility, the servo
motor and the load end are regarded as rigid bodies to improve the basic identification
accuracy as much as possible. However, in actual situations, the motor and the load end
are not directly coupled, but rather form an elastic system, and the joint bearings and
outer frame are not completely rigid. Under the action of motor drive torque, mechanical
deformation occurs. Mechanical resonance has a certain effect on the dynamic performance
of the system, mainly due to harmonic reducers, and the joint physical model is shown
in Figure 3. Therefore, for joint systems that have requirements for accuracy and speed,
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elastic deformation cannot be ignored. This principle can be used to estimate the torque
component during mechanical resonance in reverse. Another significant torque component
can be estimated directly through current, while compensating for frictional forces, which
will result in a better effect.
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The servo drive section is located on the right; the link end is located on the left, with
the harmonic reducer transmission device being in the center. The servo motor drives the
entire executing mechanism, and its position is measured with an incremental encoder.
The position of the link end is measured with an absolute value encoder. The position and
velocity of the motor-side encoder are converted to the link side through the reduction ratio.
Thus, the theoretical and actual errors can be calculated to determine the deformation. The
joint module is driven by a coupled drive, which results in the servo system becoming a
highly coupled and multi-inertia system. For ease of study, the system can be simplified into
a flexible connected servo system with two inertias. τw represents the harmonic resonance
torque component caused by the harmonic reducer, and τm is generally directly obtained
from the motor without taking this into account. Jm and Jl refer to the rotational inertia of
the motor and the link, respectively. Kw is the transmission coupling stiffness coefficient
while Dw is the transmission shaft damping coefficient. θm and θl are, respectively, the
theoretical angle calculated to the link side and the actual angle of the link side. Due to
the challenging friction modeling and accurate modeling of the harmonic link and torque
transmission error, errors occur. Also, the acceleration is measured inaccurately prone to
fluctuations, and filtering causes errors. Therefore, the torque generated by Jm

..
θm is not

taken into account, and the following text will incorporate it into the error. Based on the
traditional dynamic model, this paper calculates the difference between the model torque
and the actual torque, and analyzes it using an error model and data model analysis. To
utilize dynamic compensation, the torque τw is no longer used, and the torque τu is defined.

τm = τf + τu + τlink (26)

An effective and relatively fast method, which is designed as a unified three-loop
iterative scheme [21], is proposed to acquire an accurate dynamic model, but does not
compensate for unmodeled torque or harmonics. This paper proposes an improved version
of the three-loop method. The first loop identifies the friction force, the second loop
identifies the τlink of the link dynamic, and the third loop compensates for uncertain
components using flexible error to improve accuracy. If the torque component τu cannot be
accurately modeled, direct application of the learning method will lead to over-reliance on
data. Furthermore, the linear modeling method suggested in [6] shows poor accuracy in
some states, and estimation is impossible without flexible deformation. This paper proposes
a method based on double-encoder information for identifying the residual torque. This
method is designed to enable nonlinear approximation and smoothing of the residual
torque, effectively solving the problems mentioned above. For the nonlinear f (·) part, it is
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inspired by the methods similar to DMP (Dynamic Movement Primitives) and RBF (radial
basis function) in [30] to fit the nonlinear part. The radial basis function is

ψj(u) = exp

(
− 1

2σ2
j
(u− cj)

2

)
, j = 1, 2, . . . , N (27)

σ represents the width of the radial basis function, c represents its center position, and
the number of basis functions is N. Since offline identification is used to obtain weight
coefficients, it is hoped that the fitting parameters have high compatibility, and the error
limit of θm−θl is defined as ∆θmax,∆θmin; then, the calculation method of σi and ci is cj = ∆θmin + (j− 1)

(
∆θmax−∆θmin

N−1

)
σj =

1
(0.5(cj+1−cj))

2
(28)

In the same way, operating on
.
θm−

.
θl , σj only needs to expand one data value at the

end to satisfy data synchronization, so that the values of cj and σj can be determined.
Ensure that the Gaussian function covers the entire flexible error space of the industrial
robot, and has an effective mapping for the input u of the RBF network. If the traditional
RBF network is used to fit the data, it is necessary to update the center position, width,
and weight of the radial basis function. However, increasing the amount of program
also modifies the coverage interval of the radial basis function, which is unfavorable for
dynamic identification, so [θm−θl ,

.
θm−

.
θl] needs to be identified uniformly, so as to reflect

the uncertain torque components under different joint states. Assume that the number of
radial basis functions is N, and the data have M groups:

f (u) =

N
∑

i=1
wrjψj(u)

N
∑

j=1
ψj(u)

(29)

It is necessary to identify all the data at one time, and the expected fitting data are
ftarget = [ftarget(1), ftarget(2),. . .ftarget(M)]; then, the weight identification is


ψ1(1) ψ1(2) · · · ψN(M)
ψ2(1) ψ2(2) · · · ψN(M)
...

... · · ·
...

ψN(1) ψN(2) · · · ψN(M)

 ·


ftarget(1)
ftarget(2)
...
ftarget(m)

 =



wr1
M
∑

j=1
ψ1(i)

wr2
M
∑

j=1
ψ2(i)

...

wrN
M
∑

j=1
ψN(i)


(30)

Directly calculate the network weight Wr = [wr1, wr2, . . ., wrN]; the actual process
needs to [θm−θl ,

.
θm−

.
θl] as the input data, and torque τu as the expected training.

Due to the multi-degree-of-freedom serial structure of robotic manipulators, employ-
ing a single neural network alone cannot adequately capture the coupling between joints.
Therefore, a GMM (Gaussian Mixture Model) is employed to model each joint of the multi-
degree-of-freedom robotic manipulator. Subsequently, GMR (Gaussian Mixture Regression)
is applied to fit the data for each joint individually. This approach is essential for accurately
characterizing the intricate interdependencies among the joints in multi-degree-of-freedom
robotic arms.

GMM (Gaussian Mixture Model) assumes that data are composed of multiple Gaus-
sian distributions, each referred to as a component, and a data point may originate
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from any one of these components. Model parameters include the mean, covariance
matrix, and weight for each component. These parameters are estimated using the EM
(Expectation–Maximization) algorithm, where the E-step calculates the probability of each
data point belonging to each component, and the M-step updates the model parameters.
The EM algorithm is an iterative optimization algorithm used to estimate parameters in
models with latent variables. It comprises two steps: the Expectation step and Maximiza-
tion step. The E-step computes the expectation of latent variables for observed data given
the current parameters. The M-step maximizes the expectation calculated in the E-step,
updating model parameters. GMR (Gaussian Mixture Regression) is a regression model
that uses GMM to model the conditional probability distribution, capturing the relation-
ship between input and output. GMM parameters are estimated using the EM algorithm.
Given input data, conditional probability distribution is computed using GMM, followed
by the calculation of the expected value and variance of the output. This is commonly
used for modeling complex nonlinear relationships. In summary, the fundamental idea of
the GMM EM GMR algorithm is to model data using GMM, iteratively optimize model
parameters with the EM algorithm, and then apply these parameters in GMR to establish
the relationship between input and output for predictive purposes.

The modeling and regression process for the i-th joint is as follows: In the first step,
data from joint i are ξi = {ui, f (ui)}, with ξi ∈ R3×m, ui ∈ R2×m comprising an input
vector consisting of joint position and velocity, where f (ui) ∈ Rm represents the output
vector composed of joint torque residuals, and m represents the number of sampled points
in the dataset. The second step involves modeling the dataset ξ using a GMM consisting of
K Gaussian components. The joint probability density of the GMM is defined as follows:

p(ξi) =
K

∑
k=1

πk N(ξi; µk, ∑k) (31)

In the equation, π1, . . . , πK represents the mixture coefficient for the k-th Gaussian
component, subject to the constraints πk > 0 and ∑K

k=1 πk = 1. µ1, . . . , µK denotes the mean
of the k-th Gaussian component, and Σ1, . . . , ΣK is the covariance matrix associated with
it. N(µ1, Σk) represents the Gaussian component defined by mean µk and covariance Σk.
Specifically, the k-th Gaussian component is defined as follows:

p(ξi|µk, ∑k) =
1

2π
√
|∑k|

e−
1
2 ((ξi−µk)

T ∑−1
k (ξi−µk)) (32)

The third step involves utilizing the EM algorithm to compute the parameters πk, µk,
and Σk for each Gaussian component.

In the fourth step, after obtaining the GMM parameters, GMR is employed to fit
the expected function f (·). For each Gaussian component, given the input data ui, the
conditional probability f (ui) satisfies a Gaussian distribution.

p( f (ui)
∣∣∣ui, k) = N( f (ui); f̂ (ui), ˆ∑ f (ui),k

) (33)

f̂k(ui) = µ f (ui),k + ∑ f (ui)ui ,k
(∑ui ,k

)
−1

(ui − µui ,k) (34)

ˆ∑ f (ui),k
= ∑ f (ui),k

−∑ f (ui)ui ,k
(∑ui ,k

)
−1 ∑ui f (ui),k

(35)

p( f (ui)|ui) =
K

∑
k=1

hk(ui)N( f (ui); f̂k(ui), ˆ∑ f (ui),k
) (36)

hk(ui) =
p(k)p(ui|k)

∑K
i=1 p(i)p(ui

∣∣∣i) =
πk N(ui; µui ,k, ∑ui ,k)

∑K
i=1 πi N(ui; µui ,k, ∑ui ,k)

(37)
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The estimation of the conditional expectation f (ui) given ui under the Gaussian distri-
bution is defined using the linearity property. The parameters of the Gaussian distribution
are defined as

f̂ (ui) =
K

∑
k=1

hk(ui) f̂k(ui) (38)

ˆ∑ f (u) =
K

∑
k=1

h2
k(u)

ˆ∑ f (u),k (39)

The above equation represents the torque residual f̂ (ui) fitted under joint position
and joint velocity ui for the i-th joint.

6. Simulation and Experiment

To illustrate the proposed method, several experiments were undertaken on the 6-
DoF industrial robot. The experiment system is shown in Figure 4, and the controller’s
hardware platform is equipped with a SpeedGoat RCP (The SpeedGoat, Bern, Switzerland)
real-time simulation platform [31] that has a computation cycle of 1 ms. The control
system is developed with the MDH model, utilizing the real-time function of MATLAB
Simulink (The MathWorks, Natick, USA). The computer in use is equipped with a CPU:
I7-11800H-2.30 GHz, 64 G-3200 MHZ memory, and the MATLAB version is 2022b.
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Figure 4. The experimental robotic system: (a) 6-DoF industrial robot; (b) SpeedGoat simulation
platform.

In this paper, the fifth-order Fourier series is used to design the exciting trajectory. The
exciting frequency of the trajectory is fs = 0.02 Hz, and the cycle is 20 s. The displacement,
velocity, and acceleration of each joint are calculated using the Fourier series, to obtain 200
discrete points every 0.1 s. The constraint limits of the joint displacements, velocities, and
accelerations of the industrial robots used in the experiment are shown in Table 1.

Table 1. The parameters of exciting trajectory limits.

Limits Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Joint limit θI,max (deg) Max 120 90 60 120 120 120
Min −120 −90 −60 −120 −120 −120

Joint velocity limit
.
θ I,max (deg/s)

Max 100 60 60 80 80 80
Min −100 −60 −60 −80 −80 −80

Joint acceleration limit
..
θ I,max (deg/s2) Max 120 120 120 120 120 120
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Comparing the condition number of the regression matrix obtained with the optimiza-
tion index method based on the block regression matrix condition number and the least
squares method used in this paper, the results are shown in Table 2 below:

Table 2. Comparison table of condition number optimization results of different methods.

Optimization Method Condition Number

WLS 189.4012
Ours 162.2440

It can be seen from Table 2 that the condition number of the regression matrix obtained
with the method used in this paper is the smallest. At the same time, the method used
in this paper optimizes the sub-matrix of the regression matrix and adjusts the internal
structure of the regression matrix, so it can better stimulate the characteristics of the
dynamic parameters. Because there are six joints, the number of variable coefficients for
the total trajectory optimization solution is 66. According to the constraint parameters
provided in Table 1, the coefficients of the exciting trajectory are calculated through the
pattern search optimization function provided using Matlab, as shown in Table 3. The
total system runtime is determined by the maximum integer time. Loop1 corresponds to
the friction identification module, taking 1 s to complete. Loop2 represents the dynamics
identification module, where the trajectory optimization and execution take 30 s, and the
dynamic parameter identification process requires 5 s. Loop3 corresponds to the dynamics
compensation module based on dual-encoder deformation. The GMM algorithm within
this module has a relatively longer runtime, contributing to the total module time of 2 s.

Table 3. Coefficient results of exciting trajectories.

Optimization Parameters Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

al,i

0.0046
−0.0074
0.4845
−0.5103
0.0286

−0.0406
0.0597
0.2492
0.0678
−0.3361

−0.1772
0.0661
0.1019
0.0189
−0.0097

−0.1704
0.1161
−0.1703
0.1426
0.0820

−0.0210
−0.1317
0.3614
−0.1994
−0.0094

0.0673
0.2685
0.1682
−0.4241
−0.0763

bl,i

−0.0053
−0.0182
0.6963
−0.3354
−0.1411

−0.0234
−0.2122
0.1619
−0.1082
0.0789

−0.0001
−0.0583
0.0450
0.1273
−0.1056

0.0088
−0.3357
0.1996
0.1731
−0.1257

0.1460
−0.3491
0.3639
−0.1008
−0.0273

0.1335
0.0677
0.0942
−0.2907
0.1227

θi0(rad) 0.3361 −0.2762 −0.0112 −0.2369 0.1976 0.4777

The actual running period of the industrial robot is set to 20 s, and the displacement,
velocity, and acceleration of each joint exciting trajectory are shown in Figure 5.
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The rotation axis of Joint 1 is orthogonal to that of Joint 2, with minimal gravitational
impact on Joint 1 and maximal gravitational impact on Joint 2. Consequently, selecting the
friction between Joint 1 and Joint 2 as the test parameter for the algorithm is a compelling
choice. Figure 6 illustrates the ultimate results of Joint 1 and Joint 2 friction estimation
along with the fitting parameters. The nonlinear parameters prove to be highly effective in
capturing the friction characteristics under conditions close to zero. Tailoring to specific
requirements, more sophisticated friction models can be seamlessly integrated into the
proposed framework.
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Directly use the traditional WLS method to identify the dynamic model and friction of
the link. Observing the results in Figure 7, it can be found that the effect is not ideal, and
even when the joint moves smoothly in one direction, a large error occurs. As long as the
joints are in motion, there will be joint deformations. At this time, only the encoder on the
link side is used for dynamic identification, and there will be errors. When the joints return
to the zero position, the industrial robot is in a vertical state at this time, and there is almost
no motion deformation in each joint, so the residual torque is almost zero. Finally, we
compensate for the residual torque based on the double-encoder information, and Figure 8
shows the results of the identification method proposed in this paper.

Given that the identification framework in this paper is also based on an iterative
strategy, our proposed method exhibits a notable improvement in torque estimation, partic-
ularly in turning and local positions compared to the WLS method. The collection of torque
and joint state data introduces high-frequency noise, originating from joint and mechanical
vibrations, as well as friction forces that cannot be precisely estimated. To address this,
we introduce low-pass filtering for effective noise reduction, ensuring a more accurate
representation of torque information without compromising the signal.

In Figures 7 and 8, it can be seen that the dynamic model identified with the method
used in this paper is more accurate, and the measured torque basically agrees with the
predicted torque current. The calculated RMSE (root mean square error) between the
predicted torque and the actual measured torque of each joint is shown in Table 4. The
results show that the three-loop dynamics identification scheme based on double-encoder
information compensation proposed in this paper has a significant improvement compared
with the WLS, and the RMSE of the residual torque is reduced by more than 20%, which
proves the superiority of the method in this paper compared with the traditional method.

Table 4. Result of RMSE.

Identification Method Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

WLS 2.3376 2.1278 1.5395 0.3361 0.7101 0.2578
Ours 1.9594 1.7345 1.1609 0.3027 0.5852 0.2096
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7. Conclusions

The method proposed in this paper firstly identifies the friction force through two
directional moments, and then conducts a theoretical identification on the dynamics of
the link, in which the block matrix condition number is used as the optimization index
for the exciting trajectory. Finally, the deformation moments that cannot be accurately
modeled are estimated using double-encoder information, which can reflect the influence
of unmodeled parts such as harmonic reducers. The dynamic parameter identification
of an industrial robot has been enhanced in two aspects. Firstly, a nonlinear friction
force model, distinguishing between high and low speeds, is employed to better fit the
dynamic friction effects of the robotic arm. Secondly, the GMM algorithm is introduced into
dynamic parameter identification to compensate for the uncertain torque residue arising
from nonlinear fitting. However, through an intuitive analysis of the residual torque, it
can be found that the accuracy of the torque estimation will decrease in the place where
the speed switches direction, and the error will be large. This is also due to the difficulty
in estimating the friction force when the movement switches directions. This approach
reduces the root mean square of identification residuals by 20%, signifying a significant
improvement in the precision of model parameter identification.
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