
Citation: Zhang, Q.; Li, H.; Duan, J.;

Qin, J.; Zhou, Y. Multi-Objective

Point Motion Planning for Assembly

Robotic Arm Based on IPQ-RRT*

Connect Algorithm. Actuators 2023,

12, 459. https://doi.org/10.3390/

act12120459

Academic Editor: Zhuming Bi

Received: 15 November 2023

Revised: 7 December 2023

Accepted: 8 December 2023

Published: 9 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Multi-Objective Point Motion Planning for Assembly Robotic
Arm Based on IPQ-RRT* Connect Algorithm
Qinglei Zhang, Haodong Li *, Jianguo Duan, Jiyun Qin and Ying Zhou

Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China;
qlzhang@shmtu.edu.cn (Q.Z.); jgduan@shmtu.edu.cn (J.D.); jyqin@shmtu.edu.cn (J.Q.);
zhouying@shmtu.edu.cn (Y.Z.)
* Correspondence: 202130210083@stu.shmtu.edu.cn; Tel.: +86-191-5540-7760

Abstract: Six-axis industrial assembly robotic arms are pivotal in the manufacturing sector, playing
a crucial role in the production line. The IPQ-RRT* connect motion planning algorithm for the robotic
arm is proposed to improve the assembly process by reducing the time of motion planning and
improving the assembly efficiency. The new IPQ-RRT* connect algorithm improves the original
PQ-RRT* algorithm applied to UAVs in two dimensions by adding a node-greedy bidirectional
scaling strategy. An obstacle detection range is set on the node-greedy bidirectional scaling strategy,
in which the existence of obstacles is judged, and different sampling strategies are used according to
the judgment results to get rid of obstacles faster, while bidirectional sampling can further improve
the operation efficiency of the algorithm. In addition, effective collision detection is realized by
combining the hierarchical wraparound box method. Finally, the Bezier curve is utilized to smooth
the trajectory of the assembly robotic arm, which improves the trajectory quality while ensuring
that the assembly robotic arm does not collide with obstacles. This paper takes the actual assembly
process of an intelligent assembly platform as an example and proves the feasibility and effectiveness
of the algorithm through simulation experiments and real I5 assembly robotic arm experiments.

Keywords: assembly industrial robotic arm; rapidly exploring random tree; multi-target point
path planning

1. Introduction

With the advent of Industry 4.0, robotic arms are used in a variety of industries, such
as medicine, industrial production, and aerospace [1–3]. At this stage, with the research
and application of robotic arms, the efficiency of industrial production has been greatly
improved [4–6]. Motion planning is a crucial area of research in the industrial robotic
arm field. Over the years, as more industrial robotic arm applications have surfaced, the
demand for motion planning of industrial robotic arms has increased to accommodate
varied scenario requirements. Among them, the assembly environment is one of several
application scenarios, as it involves multiple assembly target points and necessitates that
the industrial robotic arm avoids colliding with obstacles in the scene between those
target points.

In the field of three-dimensional motion planning for robotic arms, the sampling-
based graph search algorithm has been shown to be effective in high-dimensional and
complex environments compared to other algorithms [7]. The method includes the rapidly
exploring random tree (RRT) [8] and the probabilistic roadmap method (PRM) [9]. Com-
pared to the PRM algorithm, the RRT algorithm does not require the construction of a path
map. It can effectively solve the path planning problem of a robotic arm in high dimen-
sions and possesses strong exploration capabilities and a high probability of completeness
in high-dimensional space. However, the algorithm’s randomness can result in prob-
lems of blindness and slow search speeds, as well as insufficient exploration abilities for
complex environments.
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In response to the limitations of the RRT algorithm, researchers have proposed var-
ious solutions. For instance, some have incorporated the greedy algorithm into the RRT
algorithm to achieve the RRT-connect dual-tree algorithm. RRT-connect generates two
trees from the start and end points, respectively, which speeds up the path searching speed,
but in essence, it is still a tree derived from the RRT algorithm, which does not guarantee
the optimality of the path and the cost of the tree’s growth [10]. Wang et al. proposed
a variable step size RRT method, which speeds up the convergence of the RRT algorithm
but cannot control the step size of their tree in the workspace [11]. Therefore, Karaman
et al., in order to address the poor asymptotic optimality of RRT, added ChooseParent and
Rewire optimization modules to optimize the path length by re-selecting the parent node
and rewiring. As long as the search time is sufficient, a near-optimal path can be obtained.
However, the problem of low search efficiency persists [12]. However, it is undeniable
that RRT* is an important milestone in the study of the RRT family of algorithms. The
RRT*Smart algorithm adds smart algorithms to the sampling process. The addition of smart
algorithms speeds up the convergence of the RRT* algorithm and reduces the path cost,
but it also leads to a reduction in the probability of searching for different configurations
due to the dependence on the quality of the initial solution, violating the uniform sampling
assumption of RRT* [13]. To ensure a better sampling space for generating RRT*, Gammell
et al. proposed the Informed-RRT* algorithm, which uses RRT* to solve the initial solution
and generates an elliptic state-space region determined by the initial point, the target point,
and the length of the path. This algorithm speeds up convergence to the optimal solution
as the optimization range shrinks, but it still relies on undirected exploration and struggles
to handle complex environments [14]. A fusion algorithm combining potential field and
particle swarm optimization (PSO) can predict dynamic obstacles and obtain satisfactory
paths [15].

Khatib proposed the artificial potential field (APF) method in 1986 for path planning.
Assuming a joint force comprising the obstacle’s repulsive force and the goal point’s
gravitational force, the algorithm guides the robot through the obstacle. However, the
method is prone to local minima or oscillations, and there may be instances where the robot
cannot reach the goal point [16]. To enhance search efficiency, Qureshi et al. combined
RRT* with the artificial potential field (APF) method in an intelligence-based path planning
algorithm, resulting in the P-RRT* algorithm. With the addition of APF, the growth of the
tree has directionality, enabling faster convergence speed compared to the RRT* algorithm.
However, the issue of the artificial field potential method falling into local minima remains
unresolved [17].

In addition, Jeong proposed Quick RRT*, which uses trigonometric inequalities to
improve the ChooseParent and Rewire procedures, allowing Quick RRT* to have a faster
convergence rate compared to RRT* [18].PQ-RRT* combines P-RRT * with Quick-RRT*,
allowing the algorithm to produce better initial solutions, which can quickly converge to a
relatively optimal solution [19]. Since PQ-RRT* only considers static path planning and does
not take path planning in dynamic environments into account, it has limitations. Therefore,
Yu et al. improved New Potential Quick-RRT* (NPQ-RRT*) for UAV applications [20]. After
completing the path planning, in order to ensure the quality of the path, it is also necessary
to optimize the planning path with smoothing [21,22]. Since the paths are optimized
in a two-dimensional environment, they have high-dimensional limitations. Guo et al.
proposed an optimal B-spline curve to produce smoother and shorter paths, which is
particularly suitable for closed paths, and applied to robotic arms [23].

On the basis of the above study, for the problems of low search efficiency and slow
convergence speed of RRT series algorithms in robotic arm motion planning, the Im-
proved Potential Quick-RRT* connect (IPQ-RRT* connect) algorithm adds a node-greedy
bidirectional scaling strategy on the basis of the PQ-RRT* algorithm. This strategy uses
a bidirectional algorithm to scan the obstacles on the map and set an obstacle detection
range in the process of random tree sampling, adopting different node sampling methods
according to different detection results to realize dynamically coordinated double random
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tree growth. In addition, the hierarchical wraparound box method is used to ensure the
effectiveness of collision detection of the assembly robotic arm in the assembly process.
Finally, the Bezier curve method is used to smooth the trajectory curve to realize the motion
planning of the assembly robotic arm.

2. Problem Description

During the assembly process of an assembly robotic arm, it needs to pass through
several target points to accomplish different tasks. The following problems need to be
solved during the operation of the robotic arm. First of all, a series of target points, as
well as task sequencing, should be set up, and the running path of the robotic arm should
arrive at these target points in sequence according to the task requirements. In addition,
the robotic arm should not collide with obstacles during the running process, and it should
keep running smoothly.

Throughout this paper, assume that R denotes a set of real numbers, N denotes a set
of natural numbers, and Xnearest denotes a vector space.

Then, assume that X ⊆ Rd is a three-dimensional bitmap space, d ∈ N, 2 ≤ d ≤ 3.
Assuming that Xobs is the obstacle area, the accessible space is denoted as Xfree. Xinit and
Xgoal are the initial configuration and target area. Let the continuous function σ : [0, 1]→ X,
A continuous function σ is called a collision-free path if it is collision-free in a three-
dimensional bitmap space.

Problem 1 (Task Guidance). Tasks need to be sequenced during the assembly process to guide the
end-effector of the assembly industrial robotic arm through these target points in order to complete
the assembly task.

Problem 2 (Feasible Path Planning). Set a triplet
{

Xinit, Xobs, Xgoal

}
, find a feasible path in

three-dimensional bitmap space, unify all feasible paths into a set ∑ f easible, and report success if
a feasible path exists in three-dimensional space X, otherwise, report failure of path search.

Problem 3 (Optimal Path Planning). Set up a triplet
{

Xinit, Xobs, Xgoal

}
and a cost function

C to compute a feasible path σ∗, C(σ∗) = min{c(σ∗) ∈ ∑ f easible}.

Problem 4 (Fast Path Planning). Find the optimal path solution in the shortest time t ∈ R in
the same three-dimensional bitmap space.

Problem 5 (Jitter Reduction). While satisfying the above issues, the smoothness of the robotic
arm path needs to be satisfied to minimize the jitter of the robotic arm.

3. Methodology

In this paper, we first analyzed the overall assembly task and determined the target
points that the assembly robotic arm needs to pass through. The paths between these target
points are planned according to the IPQ-RRT* connect algorithm. Then, according to the
parameters of the assembly robotic arm, the assembly robotic arm model was optimized
using the hierarchical wraparound box method to prevent collisions with obstacles during
the operation of the robotic arm. Finally, the paths completed by IPQ-RRT* connect planning
were optimized using Bezier curves to make the overall paths smoother and prevent the
assembly robotic arm from jittering during movement.

3.1. Assembly Task

According to the assembly process, the assembly flow chart is listed to give a realistic
basis for the setting and selection of target points afterward. The task flow chart is shown
in Figure 1.
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From the flowchart shown in Figure 1, take the intelligent assembly test bench as an
example; in order to clearly express the tasks to be accomplished by each assembly robotic
arm, the total flowchart can be simplified, as shown in Figure 2.

1: The robotic arm moves from the initial position to the fixture table to change the gripper;
2: The robotic arm clamps unassembled workpieces;
3: The robotic arm places the clamped workpiece onto the assembly table;
4: The robotic arm moves to the fixture table to replace the gripper with the screwdriver;
5: The robotic arm moves to the assembly table to complete the assembly of the workpiece;
6: When the assembly is complete, the robotic arm moves to the fixture table to be

replaced by the gripper;
7: The robotic arm returns to the assembly table to clamp the processed workpiece;
8: Place the clamped workpiece onto the conveyor and wait for the next task to begin.

Based on the analysis above, we identified four target points, which are the starting
points of the conveyor, assembly table, fixture table and assembly robotic arm, as well as the
paths that need to be traveled to complete the assembly task. In addition, we determined
that only four paths between these four target points need to be planned for motion.
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3.2. IPQ-RRT* Connect Algorithm for Robotic Arms

The PQ-RRT* algorithm employs a heuristic function to guide path searching and
a priority queue to expedite the process. Its primary concept is to convert the search
problem into a shortest path problem, followed by utilizing a priority queue to locate
the shortest possible route. However, the PQ-RRT* algorithm employs a random and
disorderly approach to sampling points, inevitably leading to increased overall running
time. IPQ-RRT* connect joins the node-greedy bidirectional scaling strategy, divides the
process of algorithmic path search into two parts, joins the obstacle detection function, and
samples according to different obstacle detection results with different random sampling
methods to get rid of obstacles faster, and reduces the generation of redundant branches to
speed up the efficiency of random tree expansion.

3.2.1. PQ-RRT*

The rapidly exploring random tree is a method of generating the rapidly exploring
random tree in C space and using random sampling and collision detection to extend its
nodes, ultimately finding a collision-free path by constantly backtracking to the parent
node of a particular tree node when it reaches the goal point. The PQ-RRT* algorithm
adds the objective attraction function RGD and the deep parent node search function to the
original RRT* algorithm. The addition of these two functions speeds up the convergence to
the optimal solution and produces better initial solutions. The pseudocode for PQ-RRT*
algorithm is presented in Algorithm 1.

The PQ-RRT* runs as follows:

(1) First, a random point Xrand is selected on the map using the SampleFree function, and
then an adjusted random point Xprand is obtained by the target attraction function
(RGD), under the effect of gravity at the target point. In the RGD function, the
NearstestObstacle function is used to compute the Euclidean equation of the distance
from Xprand to the obstacle Xobs, and the distance parameter m represents the number
of iterations, dobs denotes the set distance and µ denotes the step size. The pseudo-
code of RGD is shown in Algorithm 2. Then, the distance evaluation function Nearest
is used to return the node Xnearest that is positively closest to Xprand.

(2) Use the steer function to connect the two points Xnearest and Xprand, return a line seg-
ment σ. After detecting no collisions with obstacles using the CollisionFree function,
use the Near function to detect all nodes centered on Xprand within a radius r and
return a set Xnear.
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(3) Use the Ancestry function to search deeply into the parent nodes of all nodes in Xnear
and return a set of nodes Xsparent. Then, the ChooseParent function is used to compare
the cost of each path and determine the node Xparent and the path σparent based on the
result of the comparison.

(4) Finally, the final path diagram G is generated using the Rewire-PQ-RRT* function.

Algorithm 1: PQ-RRT* algorithm.

PQ− RRT∗
1 : V ← {xinit}; E← φ;
2 : for i = 1 to n do
3 : xrand ← SampleFree (i);
4 : xprand ← RGD (xrand);
5 : xnearest ← Nearest (V, xprand);
6 : σ← steer (xnearest, xprand);
7 : if CollisionFree (σ) then
8 : Xnear ← Near (V, xprand, r);
9 : Xparent ← Ancestry (G, Xnear);
10 :

(
xparent, σparent

)
← ChooseParent

(
Xnear ∪ Xsparent, xnearest, σ

)
;

11 : V ← V ∪ {xrand};
12 : E← E ∪

{
xparent, xrand

}
;

13 : G ← Rewire− PQ− RRT∗(G, xprand, Xnear);
14 : end if
15 : end for
16 : return G = (V, E);

Algorithm 2: RGD function.

RGD(xrand)
1 : xprand ← xrand
2 : for n = 1 to m do
3 :

→
F att ← (xgoal − xprand);

4 : dmin ← NearestObstacle (Xobs, xprand);
5 : if dmin ≤ dobs then
6 : return xprand;
7 : else
8 : xprand ← xprand + µ

→
F att∣∣∣∣→F att

∣∣∣∣ ;
9 : end if
10 : end for
11 : return xprand;

3.2.2. Node-Greedy Bidirectional Scaling Strategy

In motion planning algorithms, the node-greedy bidirectional scaling strategy is a
heuristic search strategy commonly used for robotic arm path planning. The purpose of
the node-greedy bidirectional scaling strategy for robotic arms is to set up an objective
function for the sampling of the sampling points in the sampling process in the three-
dimensional search space in conjunction with the dual-tree strategy and use the node-
greedy bidirectional scaling strategy to more efficiently find a path to the goal location from
the starting point and the end point, respectively, and eventually, use the ConnectTwoTree
function to connect the two trees to form a complete path. The pseudocode for the IPQ-RRT*
connect algorithm is presented in Algorithm 3.

In the implementation of the algorithm for robotic arm planning, the node-greedy bidi-
rectional scaling strategy using a node-greedy approach includes a function for detecting
obstacles. Detecting obstacles during tree growth can be used to avoid unsafe situations
such as collision when the robotic arm is in motion, and at the same time, it can also reduce
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the time and energy consumption of the robotic arm motion and improve the efficiency of
the robotic arm motion.

The role of the node-greedy bidirectional scaling strategy is due to the randomly
generated tree nodes being randomly distributed in the map. The generated random points
are too scattered, so in order to speed up the generation of the tree, reduce the generation
of redundant branches, and guide the tree to get out of the way of obstacles as soon as
possible to get around the obstacles, the node-greedy bidirectional scaling strategy is added
to the algorithm to improve the search efficiency of the fast search of the random tree. The
pseudocode for the Greedynodes function is presented in Algorithm 4. The node-greedy
bidirectional scaling strategy is applied to two trees, and the expansion process is divided
into two processes in the dual-tree random point picking:

1. When no obstacle is detected in the obstacle detection function Objudge within the
dob range, then the random points Xrand1 and Xrand2 are selected as the target point
bias point output of Xgoal and Xinit, respectively, and the target bias point will guide
the two trees to grow towards the start and end points, respectively. The aim is to
reduce the generation of unnecessary trees and improve the convergence.

2. When an obstacle is detected within dob by the obstacle detection function Objudge,
the random points Xrand1. and Xrand2 select the nodes in the other tree. Xrand2 and
Xrand1, respectively, as the target point bias point outputs, and the target bias point
guides the expansion of the two trees to the other node, respectively. The aim is to get
rid of obstacles faster and reduce the algorithm running time.

3. After going through the above two processes, two new nodes Xl1 and Xl2 are output,
which are brought into the RGD function for further processing.

Algorithm 3: IPQ-RRT* connect algorithm.

1 : V1 ← {xinit}; : V2 ← {xgoal}; E1 ← φ; E2 ← φ;
2 : G1 = (V1, E1); G2 = (V2, E2);
3 : for i = 1 to n do
4 : xrand1 ← SampleFree (i); xrand2 ← SampleFree (i);
5 : xl1, xl2 ← Greedynodes (xrand1, xrand2);
6 : xprand1 ← RGD (xl1); xprand2 ← RGD (xl2);
7 : xnearest1 ← Nearest (V1, xprand1); xnearest2 ← Nearest (V2, xprand2);
8 : σ1 ← steer (xnearest1, xprand1); σ2 ← steer (xnearest2, xprand2);
9 : if CollisionFree(σ1,2) then
10 : Xnear1 ← Near(V1, xprand1, r); Xnear2 ← Near (V2, xprand2, r);
11 : Xparent1 ← Ancestry (G1, Xnear1); Xparent2 ← Ancestry (G2, Xnear2);
12 : (xparent1, σparent1)← ChooseParent (Xnear1 ∪ Xsparent1, xnearest1, σ1);(

xparent2, σparent2
)
← ChooseParent

(
Xnear2 ∪ Xsparent2, xnearest2, σ2

)
;

13 : V1 ← V1 ∪ {xl1}; V2 ← V2 ∪ {xl2};
14 : E1 ← E1 ∪ {xparent1, xl1}; E2 ← E2 ∪

{
xparent2, xl2

}
;

15 : G1 ← Rewire− IPQ− RRT∗Connect (G1, xprand1, Xnear1);
G2 ← Rewire− IPQ− RRT∗Connect (G2, xprand2, Xnear2);

16 : (T1, T2)← ConnectTwoTree (G1, G2);
17 : end if
18 : end for
19 : return G1, G2
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Algorithm 4: Greedynodes function.

Greedynodes (xrand1, xrand2)
1 : for n = 1 to n do
2 : if Objudge (xrand1, xrand2, dob) then
3 : xrand1 ← xgoal ;
4 : xrand2 ← xinit;
5 : else
6 : xrand1 ← xrand2;
7 : xrand2 ← xrand1;
9 : end if
10 : xl1 ← xrand1;
11 : xl2 ← xrand2;
10 : end for
11 : return xl1, xl2;

3.3. Model and Path Optimization

In the assembly environment, the assembly robotic arm operation process not only
needs to ensure that the end-effector of the robotic arm does not collide with the obstacle
but also needs to ensure that the connecting rod of the robotic arm does not collide with the
obstacle; this paper uses the hierarchical wraparound box method to optimize the model of
the robotic arm and the obstacle. In addition, when the IPQ-RRT* connect algorithm is used
to complete the path planning, inflection points may appear in the path; these inflection
points may lead to some unwanted jitter in the robotic arm during the operation process;
in order to solve this problem, this paper adopts the Bezier curve method to optimize the
path so that the path remains smooth.

3.3.1. Geometric Modeling of Six-Axis Robotic Arm

The collision detection between the robotic arm and the obstacle is mainly detected
between each joint linkage of the robotic arm and the obstacle. In order to simplify the
robotic arm model, we use cylinders and spheres to represent the robotic arm model;
spheres represent some of the connecting rods, and cylinders represent other connecting
rods. The simplified model of the robotic arm is shown in Figure 3. In a real-world
environment, a robotic arm may collide with the fixture table, the assembly table, and the
portion of a conveyor. This is represented using a cylindrical wraparound box that matches
the actual dimensions of these three obstacles. The following fixture table is chosen as an
example, as shown in Figure 4.
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As illustrated in Figure 4, obstacle detection in a robotic arm can be viewed as a distance
problem between a sphere and a cylinder, as well as between two cylinders. If the distance
between these geometric structures exceeds the sum of their radii, collision can be avoided.
Since the collision of the robotic arm primarily occurs between the connecting rod and an
obstacle, this paper examines the collision detection algorithm of the robotic arm and obstacle
using the calculation of the shortest distance as an illustration. Figure 5 shows an example.
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When the robotic arm is not on the same plane as the obstacle, to determine the
distance between the robotic arm’s connecting rod and the obstacle, use the neutral lines of
the two cylinders, labeled as a and b. This is calculated as follows:

d =

∣∣∣∣ −→A1B1 ·
→
n
∣∣∣∣∣∣∣→n ∣∣∣ (1)

where A1 and B1 are the center points of the linkage and obstacle, respectively, which can
be calculated using positive kinematics;

→
n is the normal vector of the plane formed by LB

and LC. From the above analysis, it can be seen that the problem of collision detection
between the robotic arm linkage and the obstacle can be transformed into the problem of
distance calculation from the centerline of the cylinder. The dob parameter in the Objudge
function of the node-greedy bidirectional scaling strategy is used as the distance function.
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When dob > rA + rB, this indicates that there is no collision between the two cylinders. This
ensures that the sampling points are at a safe distance from obstacles during the sampling
process. If there is no collision relationship between all of the robotic arm’s connecting rod’s
basic geometric structures and the obstacle, then it can be assumed that the robotic arm
will not collide during operation. This method is computationally less intensive, making
it suitable for detecting obstacles that may lead to a collision and it has the advantage of
using the hierarchical wraparound box algorithm.

3.3.2. Trajectory Optimization

When the completion of the IPQ-RRT* connect algorithm is finished, some inflection
points will appear, and the appearance of these inflection points may lead to the jitter
problem of the robotic arm during operation, and the appearance of the jitter may lead to
the damage of the equipment. In addition, the high degree of freedom joint constraints
of the robotic arm may not be satisfied at some inflection points. Therefore, this paper
proposes a trajectory optimization scheme by adding the Bezier curve.

The Bezier curve is a parametric curve applied to graphics applications [24]. This is
a smooth curve plotted based on the coordinates of four consecutive points on the path.
Where Pi is the four curvature control points, Bi,n(t) is a Bernstein polynomial and t is
a parameter that takes values from 0 to 1. n denotes the order of the curve and i denotes
the control point.

P(t) =
n

∑
i=0

PiBi,n(t), t ∈ [0, 1] (2)

Bi,n(t) =
(

n
i

)
ti(1− t)n−i, t ∈ [0, 1] (3)

Since the IPQ-RRT* connect algorithm runs with a large number of path nodes, the
Bezier curve optimized smooth path order is greater than or equal to 3. Therefore, the
Bezier curve fitted smooth slip path must have continuous curvature. In addition, since
the higher the order of the Bezier curve, the greater the deviation of the optimized smooth
curve from the original path, it may happen that the original path, which is originally safe,
collides with the obstacle after the Bezier curve optimization. In this paper, by dividing the
three control points in the original path into a small segment and performing segmented
Bezier curve optimization on the original path, a path that meets the needs of assembly
robotic arm motion planning is generated. It is shown in Figure 6.
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This method of Bezier curve optimization ensures that the optimized path is not
shifted too much compared to the original path while ensuring the smoothness of the
planned path. It meets the application requirements for assembly robotic arms in assembly
environments.

4. Case Applications

In this study, MATLAB 2023b was used as the simulation software. The simulation
results of the IPQ-RRT* connect algorithm are compared with the existing RRT*, Informed
RRT*, Improved Bi-RRT*, and PQ-RRT* in two two-dimensional maps with different
characteristics. It is proved that the IPQ-RRT* connect algorithm has the advantages of fast
search speed, shorter search path, and stability.



Actuators 2023, 12, 459 11 of 17

In the three-dimensional environment, the target points to be passed through are
specified based on the actual assembly environment. These paths are planned using the IPQ-
RRT* connect algorithm. Optimize the planned paths using Bezier curves after planning is
complete. After ensuring the smoothness of the paths, the model of the assembled robotic
arm is optimized using the hierarchical wraparound box method. Finally, the paths are
completed in the simulation environment using the simulated robotic arm.

Finally, the effectiveness of the IPQ-RRT* connect algorithm is verified by completing
the assembly task in the real assembly environment.

4.1. Two-Dimensional Simulation

Due to the random nature of the sampling-based path planning algorithms. Each algo-
rithm was run 30 times individually and the algorithm run time, trajectory length, number
of iterations and number of failures were recorded. The simulations were implemented on
an Intel I5 12500H CPU with 16GRAM. The test environment was the same for all three
algorithms, and if a solution could not be found within 200 s, the experiment was directly
recognized as a failure.

Two different two-dimensional environments were chosen, both with a map range
of 100 mm × 100 mm, and the first map was set up as a unidirectional map with starting
coordinates of (10, 90) and target coordinates of (90, 10). The second type of map was set
up as a more complex folding line map. The starting point coordinates are (20, 10), and the
target coordinates are (80, 90). In the figure, the black point and the rose red point serve as
the start and end point, respectively. The blue line is the generated path after the algorithm
is run. The green and red lines are the branches generated by the algorithm as it runs from
the start and end point, respectively. In the first simulation environment, we set up eight
black circular obstacles. The first simulation environment is shown in Figure 7.
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Figure 7. Simulation environment (1).

The results of the simulation environment (1) are shown in Figure 7. In Figure 7a, it
can be clearly seen that due to the large number of point picking in the environment by
RRT*, its final trajectory had more inflection points and longer paths. In Figure 7b, the
path length of Informed-RRT* is longer compared to that of RRT*, and the overall path is
skewed towards searching above the middle circular obstacle, but its random trees grew
faster, the search range was more concentrated, and the time used was shorter. Compared
to Informed-RRT*, the Improved Bi-APF-RRT* algorithm in Figure 7c added the obstacle



Actuators 2023, 12, 459 12 of 17

exclusion effect and reduced some of the redundant points so that the algorithm’s search
efficiency was improved, but there were still more trees in the algorithm. In Figure 7d,
the PQ-RRT* algorithm had a faster search speed compared to the Improved Bi-APF-RRT*
algorithm, and the generation of redundant random trees is less. In Figure 7e, the IPQ-
RRT* connect algorithm given in this paper is shown, which had a clearer search direction,
generated fewer branches and shorter paths, and met the working requirements of the
robotic arm. The simulated data in the environment (1) are shown in Table 1.

Table 1. Simulation environment (1) algorithm comparison table.

Algorithm Average Path
Length (mm)

Average Running
Time (s) Average Iterations Number of Failures

RRT* 132.74 17.91 296 0
Informed-RRT* 140.22 12.22 272 0

Improved Bi-APF-RRT* 130.01 9.26 232 0
PQ-RRT* 124.26 7.34 191 0

IPQ-RRT* connect 117.76 0.28 101 0

Analysis of Table 1 shows that the IPQ-RRT* connect algorithm trajectory length was
reduced by 5.24% compared to the pre-improved PQ-RRT* algorithm trajectory length.
Compared to the Improved Bi-APF-RRT* algorithm, the average running time and the
number of iterations were reduced by 96.97% and 56.46%, respectively. The results show
that the algorithm in this paper improved the search speed and significantly reduced the
generation of redundant tree branches in unidirectional search maps, also proving the
stability of the algorithm. In the second simulation environment, we set up two rectangular
black obstacles and two circular black obstacles. The second simulation environment is
shown in Figure 8.
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Facing a more complex environment (2), the Informed-RRT* algorithm and Improved
Bi-APF-RRT* experienced search failures. The IPQ-RRT* connect algorithm in this paper
guarantees a shorter search time and also guarantees a shorter path length. The simulated
data in the environment (2) are shown in Table 2.
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Table 2. Simulation environment (2) algorithm comparison table.

Algorithm Average Path
Length (mm)

Average Running
Time (s) Average Iterations Number of Failures

RRT* 194.26 17.09 963 0
Informed-RRT* 187.76 20.22 821 5

Improved Bi-APF-RRT* 192.56 16.27 643 2
PQ-RRT* 186.72 11.29 598 0

IPQ-RRT* connect 174.88 2.33 442 0

Analyzing the above table shows that the IPQ-RRT* connect algorithm trajectory
length was reduced by 6.34% compared to the PQ-RRT* algorithm trajectory length before
improvement. The average running time and number of iterations were reduced by 85.67%
and 31.25%, respectively, compared to the Improved Bi-APF-RRT* algorithm.

In summary, it can be seen that the IPQ-RRT* connect algorithm can maintain a short
search time and good path quality, whether facing the simpler unidirectional environment
or the more complex folded line environment.

4.2. Three-Dimensional Simulation

Based on the analysis in Section 3.1, the four goal points and the paths that need to
be path planned can be identified. We assume that the robotic arm end-effector position
is P0, the fixture table position is set to P1, the conveyor belt position is set to P2, and the
assembly table position is set to P3. We determine the coordinates of each target point in
the simulation environment based on the actual position coordinates of the real assembly
platform. The real assembly environment is shown in Figure 9.
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We set up a 1000 mm × 1000 mm × 1000 mm map, and in order to test the obstacle
avoidance ability of the IPQ-RRT* connect algorithm in a three-dimensional environment,
we set up six virtual spherical obstacles with different radii in the three-dimensional map.
In addition, we set the exact position coordinates according to the target point P0 of the end-
effector of the assembly robotic arm, the target point P1 of the fixture table, the target point
P2 of the conveyor, and the target point P3 of the assembly table. The spatial coordinates
of P0 are (500, 0, 600), the spatial coordinates of P1 are (0, 789.2, 100), and the spatial
coordinates of P2 are (907.6, 612.5, 100), and the P3 space coordinates are (702.4, −200.6,
100). In the map, black dot denote the target point P1, blue dot denote the target point P2,
rose-red dot denote the target point P3, and yellow dot denote the target point P4. Blue line
denotes the path after the algorithm is run. The red and green lines indicate the branches
generated during the running of the algorithm. Yellow spheres indicate obstacles.
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The path planned by the IPQ-RRT* connect algorithm is shown in Figure 10a. It can
be found that there are many inflection points in the planning path. We used the Bezier
curve method for optimization, and the optimized path is shown in Figure 10b. It can be
found that the optimized path is guaranteed to be smooth.
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visualized the collision and accuracy of the robotic arm. The joint angles were also 
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Figure 10. IPQ-RRT* connect algorithm in three-dimensional operation.

In the simulation robotic arm experiment, to ensure the realism of the simulation
environment, the robotic arm simulation model is modeled according to the DH parameters
of the real robotic arm. Inverse kinematic solution paths for each intermediate path point
of the robotic arm running path using the ikine function in the Robotic Toolbox tool of
MATLAB 2023b software. In the simulation map, several spherical obstacles were set to
verify the obstacle avoidance ability of the robotic arm end-effector. In addition, to verify
the obstacle avoidance of the linkage of the robotic arm, the assembly table, the fixture
table, and the conveyor belt were set up as obstacles using the hierarchical wraparound box
method in Section 3.2.1 with cylindrical wraparound boxes. This visualized the collision
and accuracy of the robotic arm. The joint angles were also recorded to check whether the
robotic arm jerked during operation. In the map, red dots indicate target points. The blue
line indicates the robotic arm end-effector run path. Yellow spheres and green cylinders
indicate obstacles.The simulation results of the robotic arm are shown in Figure 11.
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It can be seen from Figure 11 that the simulated robotic arm yields four collision-free
and smoother paths after running the simulation. In the actual assembly process, the robotic
arm end-effector only needs to follow these four collision-free paths. Under the premise of
ensuring safe and fast paths, the overall efficiency of the assembly task is improved.

The joint angles of the robotic arm in the four-segment path are shown in Figure 12.
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From the analysis of the robotic arm simulation diagram, it can be seen that the end-
effector and linkage did not collide with the obstacles during the operation of the robotic
arm. From the analysis of the angle diagram of each joint, it can be seen that no inflection
point was found in the curve of any joint. It can be demonstrated that the hierarchical
wraparound box method used in the robotic arm model effectively avoided the collision of
the robotic arm linkage with obstacles. The application of the Bezier curve method ensures
that the generated paths are sufficiently smooth. It also avoided jittering of the robotic arm
and allowed the robotic arm to run smoothly.

4.3. Real Environment Experiment

In this study, the I5 robotic arm was used to conduct experiments in a real environment.
The end-effector of the robotic arm is located at a certain position in space, so it can have
many possible attitudes. Since the end-attitude constraint of the robotic arm is not the focus
of this paper, we chose two reasonable attitudes as the working attitudes of the robotic arm,
i.e., vertical and horizontal. The robotic arm operated in a real environment, as shown in
Figure 13. The process of each assembly is explained in the red boxes in the figure.

As shown in Figure 13a, when the workpiece reaches the specified position, the robotic
arm reaches the fixture table to change the gripper; As shown in Figure 13b, the robotic
arm clamps the unassembled workpiece; As shown in Figure 13c, the robotic arm moves to
the assembly table and places the clamped workpiece to the assembly table; As shown in
Figure 13d, the robotic arm moves to the fixture table, places the gripper to the fixture table
and replaces the screwdriver machine; As shown in Figure 13e, the robotic arm moves to
the assembly table and uses the screwdriver machine to assemble the workpiece; As shown
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in Figure 13f, after replacing the gripper, the robotic arm places the already assembled
workpiece onto the conveyor. The task of assembling the workpiece is finally completed.
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During the operation of the robotic arm, the robotic arm operated smoothly without
sudden changes. Finally, the assembly task was completed.

5. Conclusions

This study presents an IPQ-RRT* connect motion planning algorithm for assembly
environments. The algorithm improves the original PQ-RRT* algorithm applied to two-
dimensional UAVs. A node-greedy bidirectional scaling strategy is added to address
the inefficiency caused by unidirectional random sampling in the PQ-RRT* algorithm.
The node-greedy bidirectional scaling strategy sets an obstacle detection range under the
premise of bidirectional sampling, and different sampling strategies are used according
to the results of the detection range. The IPQ-RRT* connect algorithm has the advantages
of fast searching speed, short searching path, and good stability. In addition, considering
the linkage collision and jitter problem that may occur during the operation of the robotic
arm, the hierarchical wraparound box method and the Bezier curve method are added. The
superiority of the IPQ-RRT* connect algorithm is verified by the results in two-dimensional
simulation and three-dimensional simulation. In the actual experiment, the robotic arm
passes through multiple target points, moves quickly and smoothly between these target
points, and finally completes the assembly task.
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