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Abstract: The interaction of a plane acoustic wave and a sheared flow is numerically investigated
for simple orifice and perforated plate configurations in an isolated, non-resonant environment for
Mach numbers up to choked conditions in the holes. Analytical derivations found in the literature
are not valid in this regime due to restrictions to low Mach numbers and incompressible conditions.
To allow for a systematic and detailed parameter study, a low-cost hybrid Computational Fluid
Dynamic/Computational Aeroacoustic (CFD/CAA) methodology is used. For the CFD simulations,
a standard k–ε Reynolds-Averaged Navier–Stokes (RANS) model is employed, while the CAA
simulations are based on frequency space transformed linearized Euler equations (LEE), which are
discretized in a stabilized Finite Element method. Simulation times in the order of seconds per
frequency allow for a detailed parameter study. From the application of the Multi Microphone
Method together with the two-source location procedure, acoustic scattering matrices are calculated
and compared to experimental findings showing very good agreement. The scattering properties are
presented in the form of scattering matrices for a frequency range of 500–1500 Hz.
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1. Introduction

The interaction effects of an acoustic wave and a sheared flow is of interest for various disciplines
in which their consequences can be either beneficial or problematic. Typically, sheared flow conditions
evolve due to a sudden change of flow cross-section, whereas the source of the acoustics can be
manifold. Such situations can e.g., be found in experimental setups that require a decoupling of the
system at its boundaries from the environment to avoid unknown interference from the surroundings.
Such requirements arise especially if acoustic damping measurements are involved. At an inlet or
outlet providing a mass flow to the system, an acoustic decoupling can be imposed by establishing
supersonic flow conditions. The high Mach numbers are especially challenging for numerical tools to
capture the relevant aeroacoustic interaction effects.

In [1], acoustic damping measurements of a rocket engine geometry with focus on the combustion
chamber and nozzle parts including additional damping devices are performed with a flow of air
at ambient temperature conditions. At the outlet, the system is decoupled from the environment by
the natural supersonic flow condition at the exit of the nozzle. At the inlet, however, a perforated
plate is used to establish high Mach numbers in the flow. Unexpectedly, measurements show that
acoustic waves are subjected to great damping in this configuration, thus obscuring the intended
determination of damping coefficients from the measurements. The knowledge of the corresponding
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acoustic reflection coefficient is essential for the understanding of the damping and for the application
as a proper boundary condition in succeeding acoustic assessment tools.

The interaction of acoustic waves with sheared flow conditions has been studied for many years.
Analytical derivations of the acoustic impedance and reflection coefficient for area discontinuities are
performed in [2–6]. The authors postulate the generation of vortical structures due to the interaction of
the acoustic wave with the jet flow. Experimental studies on the resistance and reactance of perforated
plate with mean flow are presented in [7], showing that the resistance increases with mean flow
and sound pressure level. A rich collection of further publications can be found, which investigate,
however, the low Mach number regime [8–13].

The wealth of studies on the interaction of acoustic waves with sheared flow in the high Mach
number regime is far less rich. Experimental investigations for higher Mach numbers of orifice and
perforated plate configurations are reported in [14]. Herein, scattering matrices for different area ratios
of orifice and perforated plate configurations are determined. Furthermore, considerations for Mach
numbers until 0.7 in the single holes are presented. Especially, the downstream reflection coefficient
amplitude shows an increasing and decreasing behavior over the Mach number. Analytical derivations
of an “entropy wave theory” and a “vorticity wave theory” indicate possible interaction effects of an
acoustic wave with vorticity and entropy fluctuations.

Nowadays, the progress in computational performance allows for more and more detailed
computations on aeroacoustics. Sophisticated numerical methods based on Large Eddy Simulations
(LES) techniques have been performed on simple geometries for non-resonant conditions in
the low Mach number regime in [15–17], showing excellent agreement with experimental data.
The computational efforts for LES simulations are, however, quite high and parameter studies are
rather difficult to conduct. Moreover, due to increasing computational challenges arising in the high
Mach number regime in terms of time step limitations and shock capturing techniques, LES still
seems to be out of reach for detailed studies in this particular regime. A more promising technique
for the simulation of the scattering of acoustic waves at sudden area changes is proposed in [18–21].
Herein, a coupled procedure to compute the acoustic fields of area changes including sheared flow
conditions is presented. Linearized Navier–Stokes equations are evaluated to gain the aeroacoustic
fields. Such methodologies are also found for problems including jet noise [22–24] and sound emission
from aircrafts and their air-frames [25–27]. In addition, acoustic eigenmode studies in reactive flow
problems with temperature distributions and high density gradients have been performed [28].

The investigations in this article are based on numerical results gained from a Computational Fluid
Dynamic (CFD)/Computational Aeroacoustic (CAA) approach used in [29]. Herein, linearized Euler
equations (LEE) are solved with a stabilized Finite Element Method (SFEM) in frequency space, which,
in contrast to the methodology used in [18–21], does not need artificially enhanced viscous dissipation
for numerical stabilization. Although, in this method, only a unidirectional coupling from the mean
flow to the acoustic field is provided, its capability of capturing the relevant interaction effects is
demonstrated in [29,30]. In comparison to LES simulations, the CFD/CAA approach reduces required
computational resources substantially and thus allows for the investigation of physical processes in
parameter studies in great detail. Furthermore, the usage of frequency space transformed equations
greatly simplifies the boundary treatment. While in time domain codes acoustic boundary conditions
are more difficult to realize (see [31,32]), acoustic impedances can directly be imposed in frequency
space. In addition, the simulated results can be post-processed more conveniently. As the CAA
solves only for fluctuating components, the characteristic waves necessary to determine the scattering
matrices can be extracted with high accuracy. A disadvantage of LEE is that their applicability is
restricted the description of small amplitude behavior.

The presented considerations are based on the experimental setup shown in [33]. Herein,
the acoustic scattering properties of orifices and perforated plates are determined and presented
in form of scattering matrices for different Mach numbers up to supersonic flow conditions within the
holes. To simplify the investigations, air is used at ambient conditions. The analyses are restricted to
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longitudinal waves in confined ducts. The behavior of the reflection properties for an acoustic wave
approaching the orifice or perforated plate, respectively, from downstream is especially analyzed.

The article is structured as follows: first, the experimental test configurations are presented
in Section 2, followed by the introduction of the numerical methodology in Section 3. Herein,
the discretization technique used to calculate the acoustic fields is explained and the procedure
to evaluate scattering matrices is presented. The numerically evaluated scattering matrices for orifice
and perforate plates as well as a comparison to experimental data is then shown in Section 4. The main
conclusions of this article are presented in Section 5.

2. Test Case Description

In [33], a systematic investigation of the scattering properties of orifice and perforated plate
configurations is conducted. The experimentally evaluated scattering matrix for an area ratio of
Ar = 35.43 % is used to validate the numerical methodology. The experiment consists of two co-axial
pipe sections with a diameter of 64.0 mm. In between the two flanges, the orifice with a single hole
diameter of dO = 38.1 mm or the perforated plate with about 58 holes of a diameter of dPP = 5.0 mm
each is located (see Figure 1). In the case of the perforated plate, a regular hexagonal pattern with
a distance between the holes of 3.0 mm is chosen. Both geometries are given with a thickness of
t = 1.0 mm. Version September 18, 2016 submitted to Aerospace 3 of 16
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Figure 1. Experimental setup of [33] for the orifice (top) and perforated plate (bottom) and relevant
geometrical dimensions in [mm].
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Figure 1. Experimental setup of [33] for the orifice (top) and perforated plate (bottom) and relevant
geometrical dimensions in (mm).

In the experiments, a mass flow of air (specific gas constant R = 287 J/(Kg·K) , isentropic exponent
γ = 1.4) at ambient temperature (288 K) and pressure (1 atm at the outlet) conditions is provided.
Different load points, defined by a systematically reduced static pressure ratio pr over the orifice or
perforated plate up to choked conditions and therefore a sonic Mach number in the single holes, are
considered. The static pressure ratios together with the mass flows of air ṁ are reported in Table 1.

Table 1. Investigated operation conditions. Ma corresponds to the Mach number within the
perforated plate/orifice.

Static Pressure Ratio pr Static Pressure Downstream pd (Bar) Mass Flow ṁ (g/s) Ma

1.0 0.937 0.0 0
0.97 0.937 83.8 0.2
0.89 0.937 160.8 0.4
0.78 0.937 234.7 0.6
0.64 0.938 330.5 0.8
0.51 0.944 455.4 1.0

A siren is used to apply a sinusoidal acoustic excitation on the system in a frequency range of
500–1500 Hz with a resolution of ∆ f = 10 Hz. The maximum excitation frequency is kept under the
cut-on frequency of higher-order acoustic modes to ensure plane acoustic wave propagation only.

To capture the acoustic waves, the fluctuating static pressure is measured using four axially
distributed pressure sensors upstream and six sensors downstream of the orifice and perforated plate,
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respectively. From the pressure signals, the downstream and upstream running waves and finally the
scattering matrices are evaluated. The experimental findings are shown together with the numerical
results in Section 4.2.

3. Numerical Procedure

The determination of the scattering matrices for the orifice and the perforated plate configurations
are conducted in a coupled CFD/CAA methodology following the procedure proposed in [29]. In the
CFD simulation, the mean state of the system in the statistically converged sense incorporating
turbulent influences is defined. Due to the absence of acoustic propagation in the CFD, the requirements
of small time steps following the CFL (Courant–Friedrichs–Lewy) criteria can be met with acceptable
computational efforts.

Based on the mean flow state, the acoustic propagation is then simulated in the CAA computations.
For small enough amplitudes, linearity of the acoustic quantities allows for the usage of linearized field
equations, which can be solved very efficiently through optimized discretization schemes. In terms of
spatial discretization, the CAA simulation can be performed on coarser grids than the CFD, resolving
only the mean flow gradients as well as relevant acoustic scales.

The separation of scales between the meanflow CFD simulation and the acoustic CAA
computations reduces simulation times remarkably, which makes the coupled procedure especially
advantageous for the parameter studies required in this investigation. Moreover, the inherent separated
determination of acoustic fluctuations in the CAA makes their preceeding filtering from turbulent
fluctuations obsolete and allows for effective analyses of acoustic effects.

It has been shown that the unidirectional coupling from the mean flow to the acoustics provides an
adequate description of relevant interaction effects in acoustic problems using frequency transformed
fields equations (see [20,29]), but time domain field equations are also very capable (see [34–38]) and
references therein. The generation and interaction of vorticity and entropy fluctuations are especially
well captured due to the incorporation of gradients of the mean flow quantities.

In the following, the mean flow simulations are discussed briefly from a numerical point of view,
and the differences between orifice and perforated plate in terms of mean flow fields are highlighted.
Then, a more detailed insight into the CAA is given and finally the procedure to extract scattering
matrices from the acoustic fields is explained.

3.1. Mean Flow Computation

The mean flow fields are computed in a standard k–ε Reynolds-Averaged Navier–Stokes (RANS)
simulation in ANSYS CFX 14.0 (ANSYS, Inc., Canonsburg, PA, USA). To match the given operating
conditions in Table 1, mass flow rate and temperature are imposed at the inlet, while a standard
outflow condition prescribing the ambient pressure is applied at the outlet. The walls are treated as
inviscid and adiabatic.

In Figure 2, the Mach number distribution of both geometries for each static pressure ratio
(except pr = 1) shows the formation of a jet structure after the contraction. Between the jet and its
quiescent surroundings, a thin shear layer is formed. Isolines of the axial velocity indicate strong radial
gradients in the shear layer structure. A decreasing static pressure ratio leads to an increased jet length,
higher Mach numbers in the jet region, and therefore stronger gradients in radial direction of the axial
mean velocity for both geometries.

On the basis of theoretical gas dynamics, supersonic conditions and associated shock patterns
are expected to occur below pressure ratios of pr = 0.528. However, Figure 2 shows a diamond shock
pattern for pressure ratios of pr = 0.64 and lower. On one hand, this is due to deviations between the
sharp area changes in orifice and perforated plate geometries and the perfect smooth nozzle structure
in gas dynamic derivations. On the other hand, inaccurate predictions of the supersonic conditions are
known to occur in numerical simulations and are also reported e.g., in [16].
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Figure 2. Spatial Mach number distribution of the perforated plate (top) and the orifice (bottom) for
five static pressure ratios pr.
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The coupled CFD/CAA procedure requires the decomposition of the fluiddynamic quantities q
as function of space (x) and time (t) into a mean part (•̄) and a fluctuating part (•′) according to

q(x, t) = q̄(x) + q′(x, t). (1)

The fluctuating quantities are assumed to be sufficiently describable with linearized Euler equations
(LEE) with the mean part as linearization point, viz.

u′i � c, p′ � p̄, ρ′ � ρ̄, (2)

where ui denotes the i-th velocity component, p pressure and ρ density. Applying further harmonic
time dependency for the fluctuating quantities, i.e.

q′(x, t) = q̂(x, ω)eiωt (3)

with ω denoting the angular frequency, the LEE are transformed into frequency space and are finally
given in terms of mass, momentum and energy conservation in index notation respecting Einstein
summation notation by
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Figure 2. Spatial Mach number distribution of the perforated plate (top) and the orifice (bottom) for
five static pressure ratios pr.

3.2. Stabilized Linearized Euler Equations in Frequency Space

The coupled CFD/CAA procedure requires the decomposition of the fluiddynamic quantities q
as function of space (x) and time (t) into a mean part (•̄) and a fluctuating part (•′) according to

q(x, t) = q̄(x) + q′(x, t). (1)

The fluctuating quantities are assumed to be sufficiently describable with linearized Euler
equations with the mean part as linearization point, viz.

u′i � c, p′ � p̄, ρ′ � ρ̄, (2)

where ui denotes the i-th velocity component, p pressure and ρ density. Applying further harmonic
time dependency for the fluctuating quantities, i.e.,

q′(x, t) = q̂(x, ω)eiωt (3)

with ω denoting the angular frequency, the LEE are transformed into frequency space and are finally
given in terms of mass, momentum and energy conservation in index notation respecting Einstein
summation notation by

iωρ̂ + ū · ∇ρ̂ + û · ∇ρ̄ + ρ̄∇ · û + ρ̂∇ · ū = L⊂̂φ = R⊂̂, (4)

iωû + (ū · ∇)û + (û · ∇)ū− ρ̂

ρ̄2∇ p̄ +
1
ρ̄
∇ p̂ = Lûi φ = Rûi , (5)

iω p̂ + ū · ∇ p̂ + û · ∇ p̄ + κ p̄∇ · û + κ p̂∇ · ū = L p̂φ = R p̂, (6)
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with ∇ = (∂/∂r, ∂/∂z)T and ∇ · u = (1/r∂(rur)/∂r, ∂uz/∂z)T . Furthermore, L = (Lρ̂,Lûi ,L p̂)
T

denotes the LEE operator on the vector of unknowns φ = (ρ̂, ûi, p̂)T . For a converged solution,
the residuum vector R = (Rρ̂,Rûi ,Rp)T vanishes ||R2||2 → 0. In the LEE (4)–(6), the diffusion of
heat and momentum is neglected, i.e., the values of thermal conductivity and vicosity are set to zero.
In contrast to [29], a non-isentropic description of the field equations due to density and temperature
gradients is necessary.

The LEE are discretized in a stabilized Finite Element Method (SFEM) to ensure a numerically
stable and consistent solution procedure. Using the Galerkin/least-squares (GLS) technique, which
aims for the minimization of the residuum norm ||R2||2 of the stabilized field equations, the LEE are
given in modified weak Finite Element form as∫

V
L⊂̂ φ wρ̂ dV +

∫
Ve

τρ̂ (L⊂̂wρ̂) (L⊂̂φ) dVe = R⊂̂, (7)

∫
V
Lûi φ wûi dV +

∫
Ve

τûi (Lûi wûi ) (Lûi φ) dVe = Rûi , (8)∫
V
L p̂ φ w p̂ dV︸ ︷︷ ︸

Standard FEM

+
∫

Ve
τp̂ (L p̂w p̂) (L p̂φ) dVe︸ ︷︷ ︸

GLS term

= R p̂, (9)

where the weighting function w = (wρ̂, wûi , w p̂)
T is additionally introduced. The additional GLS term

has to be calculated element-wise. In the stabilized form of the LEE, the stabilization parameter τ is
evaluated according to [39] as

τρ̂,ûi ,p̂ = τ = max
(

αhi
ūi + c

)
, (10)

where hi denotes the element size in i-th direction. The parameter α is set to 0.1 throughout the entire
investigation. All field equations are equally stabilized by setting τ the same and applying the GLS
technique. A comprehensive overview of stabilization techniques for flow problems is given in [40].

3.3. Numerical Setup for Orifice and Perforated Plate Configurations

Based upon the mean part, the acoustic field is evaluated from the LEE on a numerical setup as
presented in Figure 3. At inlets and outlets, non-reflecting boundary conditions are imposed for the
acoustic wave in the form of an impedance Z yielding

Z =
p̂

ûini ρ̄c
= 1, (11)

with ni denoting the i-th surface normal vector component. This simple form of non-reflecting
boundary conditions makes the frequency space description of acoustic propagation advantageous in
comparison to time-domain computations, see e.g., [16] or [41] . Furthermore, isentropic conditions
are assumed to treat the entropy fluctuations, viz.

p̂ = c2ρ̂. (12)

Due to the convective transport character of vorticity fluctuations, a special treatment of such
is not necessary at the inlet. A significantly extended computational domain in the axial direction
towards the outlet of 300 · dO in the case of the orifice, and even 2000 · dPP in the case of the perforated
plate, leads to the conclusion that the vorticity fluctuations, originating in the shear layer region,
are sufficiently dissipated before they reach the outlet. Therefore, boundary conditions at inlets and
outlets are not necessary for the vorticity fluctuations.

Boundary conditions neglecting the acoustic boundary layer are assumed at the walls, viz.

ûini = 0. (13)
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Furthermore, at the walls, zero gradient conditions for density and pressure are imposed, i.e.,

∂ρ̂

∂xi
ni =

∂ p̂
∂xi

ni = 0. (14)

The excitation of the system is performed by imposing an acoustic velocity amplitude Û at the
wall, viz.

ûini = Û (15)

(see also Figure 3). The excitation velocity amplitude Û is designed such that the calculated pressure
amplitudes p̂ are comparable to the measurements in [33].

Axis-symmetrical conditions are assumed, which reduce computational effort further to only
half-plane considerations. Hence, symmetry boundary conditions are imposed at the axis of rotation
and the LEE are evaluated in a cylindrical r, φ, x-coordinate system. Axis-symmetrical conditions
require the independence of the quantities q of the azimuthal coordinate φ, i.e.,

∂q
∂φ

= 0. (16)

Moreover, the velocity component in azimuthal direction is set to zero, i.e.,

ûφ = ūφ = 0. (17)

In the case of the perforated plate, only one single hole is considered and treated in the same way
as the orifice case. That is, the mean flow simulation as well as the acoustic computation is performed
for a single hole domain with wall (symmetry) boundary conditions. For the CFD simulation, this is
an approximation. The good comparison of the computed results with the experimental data in terms
of the scattering matrices shows, however, that the assumption is reasonable, cf. Section 4.

The domain is discretized using linear shape functions on tetrahedral elements in an unstructured
grid. The grid resolution is refined in the vicinity of the contraction region to resolve the shear layer
and vorticity fluctuations. In the remaining domain, the resolution is chosen such that the acoustic
wave length is resolved with about 50 elements. Altogether, 120,000 elements are used leading to
250,000 degrees of freedom in the case of both the orifice and the perforate plate. The solution process
is performed in COMSOL Multiphysics 4.3a (COMSOL, Inc., Burlington, MA, USA) using a MUMPS
(Multifrontal Massively Parallel Sparse) direct solver. A numerical method has already been proposed
by [18].

ûini = 0Z = 1
p̂ = c2ρ̂

Z = 1
p̂ = c2ρ̂

Symmetry
x

r

Wave extraction Wave extraction
upstream downstream

Excitation
downstream

ûini = Û

Mean
LEEflow

Excitation
upstream

x0

ûini = Û

p̂−dp̂−u

p̂+u p̂+d

Figure 3. Linearized Euler equations (LEE) setup for the orifice case (perforated plate analogous):
boundary conditions, wave extraction zones upstream and downstream and phase reference x0.

3.4. Wave Extraction and Evaluation of Scattering Matrix

In order to determine the scattering properties in terms of reflection and transmission, the acoustic
fields upstream (•u) and downstream (•d) of each configuration are decomposed into pressure waves
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running in the downstream (p̂+u/d) and upstream (p̂−u/d) directions. The running waves are extracted in
a filter procedure to eliminate influences from entropy and vorticity fluctuations (see [21,29]). For that
purpose, the acoustic pressure amplitudes p̂u,i and p̂d,i are recorded at m = 150 axial positions xi and a
radial position of r = 0.5 do/pp within the wave extraction zones upstream and downstream and fitted
to the analytically given wave form of a plane acoustic wave of

p̂(u/d),i = p̂+u/d e−ik+u/d(xi−x0) + p̂−u/d e−ik−u/d(xi−x0) (18)

in a least-square sense. The wave numbers k±u/d are defined as

k±u/d = ± k
1±Mu/d

, (19)

where
k =

ω

c
=

2π f
c

. (20)

In addition, M denotes the Mach number and x0 the phase reference plane, which is located in
the center of the single hole (see Figure 3).

The downstream and upstream running waves are linked to each other via reflection (R) and
transmission (T) coefficients and presented in the form of frequency dependent scattering matrices
S(ω) as (

p̂+d
p̂−u

)
=

(
Td Ru

Rd Tu

)
︸ ︷︷ ︸

S(ω)

(
p̂+u
p̂−d

)
. (21)

Besides the representation of the scattering properties, the scattering matrix also describes the
absorption capabilities of acoustic wave energy.

The determination of the complete scattering matrix requires two independent states of
the acoustic system. According to the two source-location method described, e.g., in [42–48],
two independent acoustic fields can be achieved by locating the acoustic forcing upstream and
downstream of the configuration, respectively, in two succeeding steps (see Figure 3).

Denoting the upstream excitation case with I and the downstream excitation case with II,
the scattering matrix coefficients Tu, Rd, Ru, Td in Equation (21) are finally calculated by solving
the equation 

p̂+d,I
p̂−u,I
p̂+d,II
p̂−u,II

 =


p̂+u,I p̂−d,I 0 0
0 0 p̂+u,I p̂−d,I

p̂+u,II p̂−d,II 0 0
0 0 p̂+u,II p̂−d,II




Tu

Rd
Ru

Td

 . (22)

4. Scattering Matrices for Orifice and Perforated Plates

This section presents the results of the simulations in terms of acoustic fields as well as scattering
matrices and a comparison to experimental findings. The acoustic fields are analyzed in detail for a
representative case and first indications of the physical process, which leads to the damping of acoustic
waves being explained.

4.1. Acoustic Fields for Perforated Plate and Orifice

Exemplarily, the acoustic fields of an orifice configuration for the downstream excitation case
and a static pressure ratio of pr = 0.97 (i.e., a Mach number of roughly 0.2 in the hole) are shown in
Figure 4. For an excitation frequency of 1500 Hz, the acoustic pressure field in terms of its real part
Re( p̂) (top), its amplitude | p̂| (middle), and its phase distribution φ( p̂) (bottom) is presented.
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Figure 4. Acoustic pressure fields for the real part Re( p̂) (top), amplitude | p̂| (middle) and phase φ( p̂)
(bottom) for the orifice case with a pressure ratio of pr = 0.97 and isolines of the axial mean velocity.
The values of Re( p̂) and | p̂| are normalized by their maximum values. The excitation of 1500 Hz is
located downstream.

The real part shows periodically fluctuating vortical structures within the shear layer of the mean
flow, where the isolines of the axial mean velocity indicate strong radial gradients. The amplitude
distribution shows a clear maximum in the region of 3–5 diameters dO downstream of the hole.
Interestingly, the region of maximum amplitude does not correspond to the region of the strongest
mean axial velocity gradients in the radial direction but is located further downstream.

Two regions can be distinguished in the phase plot. Within the downstream part close to the
hole, a linear phase distribution indicates a convectively dominated behavior, which corresponds to
a convective transport of the vortical structures observed in the real part plot. Further downstream
and upstream, the phase distribution represents the shape of an acoustic wave. As can be observed,
outside the shear layer and jet region, only longitudinal waves are present.

The phase plot indicates, as well, where the main interaction occurs. Shortly after the area change,
the convective structures originate out of the shear layer. Within the region between x = 250 mm and
x = 300 mm, the structures disappear again. This region marks the jet ending and only weak radial
gradients are present here.

For higher Mach numbers, the overall behavior is similar. However, the wave lengths of the
vortical structures increase. An approximative relation for the wave length of the vortical structures λv

reads according to [20]
λv = Mλac, (23)

which relates λv to the acoustic wave length λac using the Mach number. Accordingly, for lower
frequencies, the values of λac increase, which also leads to higher values of λv. The relation (23) is
confirmed by the pressure fields shown in Figure 4.

In case of the perforated plate, the ratio of the hole diameter dPP to the acoustic wave length
λac is significantly lower than for the orifice case. Thus, the vortical wave length λv is higher than
the jet length itself and can hardly be recognized. The pressure distribution for the perforated plate
configuration is thus not shown here.

4.2. Scattering Matrices and Comparison to Experimental Data

The numerical results for the scattering matrices are compared to experimental findings in
Figures 5 and 6, respectively. The matrix elements are plotted over the non dimensional Helmholtz
number according to

He =
ωdu,O/PP

2c
, (24)

where du,o/pp denotes the upstream diameter of the single hole configuration. For the orifice, du,O
corresponds to the pipe diameter. In the case of the perforated plate, du,PP depends on the single
hole diameter and is given by du,PP = dPP/

√
Ar. The experimental data is supplemented by error
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bars, which indicate the standard deviation over five measurements. It can be noted that the standard
deviations increase with a higher Mach number. Furthermore, the highest standard deviations are
found for the transmission factor upstream Tu.Version September 18, 2016 submitted to Aerospace 11 of 16
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Figure 5. Experimentally and numerically evaluated scattering matrices for the orifice.

a pressure ratio of pr = 0.85. In general, the orifice case confirms this observation with a stronger282

tendency to decrease over the entire frequency range covered. Similarly to the observations for |Rd|,283

a characteristic turning point is also found for the transmission coefficient upstream |Tu|.284

The amplitude behavior of the reflection coefficient downstream |Rd| over the pressure ratio285

emphasizes the presence of acoustic wave damping effects. With decreasing pressure ratio less and286

Figure 5. Experimentally and numerically evaluated scattering matrices for the orifice.



Aerospace 2016, 3, 33 11 of 16Version September 18, 2016 submitted to Aerospace 12 of 16

0
0.2
0.4
0.6
0.8
1.0

|Tu||Tu| φ(Tu)

pr = 1.0

|Rd||Rd| φ(Rd) |Ru||Ru| φ(Ru)

−π

−π
2

0

π
2

π
|Td||Td| φ(Td)

0
0.2
0.4
0.6
0.8
1.0

|Tu|

pr = 0.97

|Rd| |Ru|

−π

−π
2

0

π
2

π
|Td|

0
0.2
0.4
0.6
0.8
1.0

|Tu|

pr = 0.89

|Rd| |Ru|

−π

−π
2

0

π
2

π
|Td|

0
0.2
0.4
0.6
0.8
1.0

|Tu|

pr = 0.78

|Rd| |Ru|

−π

−π
2

0

π
2

π
|Td|

0
0.2
0.4
0.6
0.8
1.0

|Tu|

pr = 0.64

|Rd| |Ru|

−π

−π
2

0

π
2

π
|Td|

0.0
0.2
0.4
0.6
0.8
1.0

0 0.03 0.06 0.09
He 

|Tu|

pr = 0.51

0 0.03 0.06 0.09
He 

|Rd|

0 0.03 0.06 0.09
He 

|Ru|

0 0.03 0.06 0.09
−π

−π
2

0

π
2

π

He 

|Td|

Exp.
LEE

Figure 6. Experimentally and numerically evaluated scattering matrices for the perforated plate.
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The simulations are performed in a frequency sweep between 500 and 1500 Hz with a resolution
of 100 Hz, which sufficiently reproduces the experimental curves. Altogether, a very good agreement
is achieved for both configurations and for the entire Mach number regime considered. It is especially
interesting to note that the CFD/CAA approach is capable of describing the scattering properties
even in the high Mach numbers regime including complex interaction of the acoustic motion with the
emanating shocks.

Small discrepancies between the simulation results and the experimental data are apparent in
the orifice case in terms of Tu and Rd amplitude as well as the phase for pr = 0.78 and 0.64 in the
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higher frequency range. The simulated Tu amplitude results tend to decrease, while the experimental
findings indicate a rather constant behavior for higher frequencies. For the Rd amplitude, a certain
offset is present between the simulation results and the experimental findings for higher frequencies.
The deviations cannot be explained by the systematic measurement errors since the numerical results
do not match the standard deviation range. Because the deviations increase with frequency, it is likely
that the jet length of the shear layer is not captured accurately enough using RANS k–ε simulation,
cf. Figure 2. Another indication that the jet length might not be correctly predicted can be seen
in the phase of Rd for pr = 0.64 and 0.51. The characteristic strong increase in phase occurs at
lower frequencies in the case of the simulation results, which indicates that the shear layer dynamics
might not be satisfactorily captured. A rather significant offset between simulation results and the
experiments can be seen for the Tu amplitude in the case of pr = 0.51, which might also be attributed
to insufficiently accurate mean flow simulations.

In the orifice case, a considerable stronger Helmholtz number, and thus frequency dependency,
is observed. The Helmholtz numbers are one order of magnitude higher compared to the Helmholtz
numbers in the case of the perforated plate and finally reach unity for higher frequencies. Hence,
jet length and acoustic wave length are of the same order of magnitude, which indicates apparent
interaction effects of the acoustic wave and the shear layer. In contrast, the small Helmholtz numbers
for the perforated plate confirm its weak frequency dependency. The perforated plate can therefore be
considered as acoustically compact.

In order to generate a better insight into the dependency of the scattering matrix elements from
the pressure ratio pr, the element amplitudes are plotted over decreasing pressure ratio in Figure 7 for
different frequencies. In the case of the perforated plate, mean values averaged over the frequency
range are plotted due to their independence of frequency.
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Figure 7. Scattering matrices of orifice (top) and perforated plate (bottom) plotted over the pressure
ratio pr.

In Figure 7, the transmission coefficient downstream |Td| tends towards zero with decreasing
pressure ratio and indicates more and more choked-like conditions within the holes until an acoustic
wave is no longer able to propagate from downstream to upstream when choked conditions are
reached. Similarly, the reflection coefficient upstream |Ru| almost reaches unity, indicating vanishing
acoustic propagation from upstream to downstream. The characteristic curves found for |Ru| and
|Td| are closely related to known scattering properties of a nozzle flow and are analytically given
in [49]. Such scattering conditions are considered to be a reasonable choice in order to decouple an
experimental setup from its environment. Consequently, reflection from downstream should be very
strong to compensate the vanishing acoustic wave transmission to upstream.



Aerospace 2016, 3, 33 13 of 16

However, Figure 7 clearly indicates that both for the orifice case and for the perforated plate
configuration, the reflection coefficient downstream |Rd| significantly differs from the expected high
values for low static pressure ratios and reaches at most a value of max(|Rd|) = 0.41. Furthermore,
a turning point from increasing to decreasing values is observed in the case of the perforated plate
at about a pressure ratio of pr = 0.85. In general, the orifice case confirms this observation with a
stronger tendency to decrease over the entire frequency range covered. Similarly to the observations
for |Rd|, a characteristic turning point is also found for the transmission coefficient upstream |Tu|.

The amplitude behavior of the reflection coefficient downstream |Rd| over the pressure ratio
emphasizes the presence of acoustic wave damping effects. With decreasing pressure ratio, less and
less acoustic intensity is reflected and, since the transmission coefficient downstream tends towards
zero, is not transmitted either. Moreover, the turning point indicates a damping mechanism which
increases in strength with decreasing pressure ratio and therewith stronger associated radial gradients
in the mean flow quantities in the shear layer.

5. Conclusions

In this article, a high fidelity and fast methodology has been used to conduct a detailed
parameter study in terms of scattering matrices for orifice and perforated plate configurations with
increasing Mach number until choked conditions are reached within the holes. The complex interaction
phenomena between acoustic and shear flow is very well captured including the generation of
vorticity and entropy fluctuations, both in the small and also in the high Mach numbers regime,
where compressible effects play a crucial role. Altogether, the scattering matrices for both geometries
are in very good agreement with experimental findings. Small discrepancies between the simulation
results and experimental findings are, however, apparent and might originate from insufficiently
accurate mean flow simulations in the higher Mach number regime. Nevertheless, frequency domain
transformed linearized Euler equations seem to be very suitable for capturing the relevant aeroacoustic
phenomena. In contrast to expensive LES methodologies, hybrid approaches reduce time consumptions
significantly whilst providing high quality results.

The scattering matrices confirm the interesting experimental finding of an increasing–decreasing
behavior of the amplitude of the reflection coefficient downstream with increasing Mach number in
the holes. Its low values indicate strong acoustic damping, which cannot be explained using available
theoretical models because of their restrictions to low Mach numbers.

One of the next steps will be to use a more accurate mean flow as the basis for the LEE
simulation. For this purpose, unperturbed LES simulations are suitable. Furthermore, further studies
will be conducted to investigate the damping effects occurring. Preliminary results already show
that a theoretical derived maximal value of 50% absorption of acoustic energy, suggested in [8],
is greatly exceeded.
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CFD Computational Fluid Dynamic
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