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Abstract: Hollow cathodes are electron sources used for the gas ionization and the beam
neutralization in both ion and Hall effect thrusters (HETs). A reduction of power and propellant
consumption from the cathode is particularly needed in small satellite applications, where power and
mass budgets are inherently limited. Concurrently, the interest in high-power HETs is increasingly
fostered for a number of space applications, including final positioning and station-keeping of
Geostationary Earth Orbit (GEO) satellites, spacecraft transfers from Low Earth Orbit (LEO) to GEO,
and deep-space exploration missions. As such, several hollow cathodes have been developed and
tested at Sitael, each conceived for a specific power class of thrusters. A numerical model was used
during the cathode design to define the geometry, in accordance with the thruster unit specifications
in terms of discharge current, mass flow rate, and lifetime. Lanthanum hexaboride (LaB6) hollow
cathodes were successfully developed for HETs with discharge power ranging from 100 W to
20 kW. Experimental campaigns were carried out in both stand-alone and coupled configurations,
to verify the operation of the cathodes and validate the numerical model. The comparison between
experimental and theoretical results are presented, offering a sound framework to drive the design of
future hollow cathodes.

Keywords: electric propulsion; Hall thrusters; hollow cathodes

1. Introduction

Hollow cathodes based on thermionic electron emission are used in space electric propulsion to
supply electrons for propellant ionization and beam neutralization of both ion engines and Hall effect
thrusters (HETs). The cathode mass flow rate in xenon fed HETs tends to be 7%–10% of the anode mass
flow rate [1], whereas the cathode power consumption can reach up to 20% of the available power [2].
As such, a performance improvement of the cathode can have a significant impact on the overall
performance of the thruster unit in small satellite applications, where the power and mass budgets
are limited. Hollow cathodes are also being developed for high-power HETs, to perform in-space
transportation of large masses, orbit transfer and exploration missions. The benefits provided by
electric propulsion are tied to a lower propellant mass with respect to chemical propulsion, allowing for
a higher payload mass, a lower total mass, therefore less expensive launch vehicles [3]. In general, the
spacecraft application of the hollow-cathode technology demands a power consumption minimization,
while maintaining a lifetime in the order of 104 h. Since the cathode performance is strongly tied to
its geometry and size, numerical tools are required to select the geometries and operating conditions
for a given mission profile. Several numerical models have been developed to determine the plasma
properties in hollow cathodes [4–6]. However, in these models, experimental data are used as input
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or assumptions are made to set the plasma density, the electron temperature, or the coupling voltage
to the keeper [5]. A reduced-order model was thus proposed to overcome these limitations through
the development of a self-consistent code, encompassing all the relevant components of an orificed
hollow-cathode assembly [7]. The theoretical study paved the way to the development of several
hollow cathodes, for Hall effect thrusters belonging to different power classes [8].

2. Cathode Design

The cathode design features the same basic components as conventional thermionic hollow
cathodes (Figure 1). The active electron emitter is a lanthanum hexaboride (LaB6) hollow cylinder,
located inside a refractory metal tube and pushed against an orifice by means of a tungsten spring.
The direct contact of the LaB6 insert with the refractory metal tube is prevented by means of graphite
sleeves. An electrode denoted as keeper encapsulates the internal elements, and is made from refractory
metals, titanium alloy, or graphite. The cathode can be provided with a heater, which is wrapped
around the tube to raise the emitter temperature to thermionic emission values. The heater is made of a
tungsten/rhenium filament electrically isolated by the tube by means of a boron nitride insulator, and
is immersed in a ceramic potting. Tantalum heat shields are wrapped around the heater to improve
the thermal behavior of the cathode, through a reduction of the power radiated towards the keeper.
The function of the heater is to reduce the emitter thermal stress at the cathode start-up and to ease
the thermionic electron emission from the emitter prior to each ignition, due to an increased surface
temperature. The cathode is assembled by means of screws, which allow for rapid modifications
in the cathode configuration, i.e., the inclusion of a heater or the replacement of the orifice plate.
The geometrical features of the cathodes described in the following sections are not specified due to
property rights.
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Concerning the emitter material, LaB6 has been selected for the high robustness in handling
and processing, capability to deliver high current densities in the order of 105 A/m2 [4], and long
life, with respect to the traditional dispenser cathodes. Dispenser emitters feature a tungsten matrix
impregnated with barium-based mixtures and rely on chemical reactions to form a low-work-function
surface layer [4]. They are thus susceptible to poisoning that can increase the emitter work function or
even hinder the cathode operation. A LaB6 emitter does not require lengthy activation procedures and
has a low sensitivity to contaminants and air exposure, increasing the cathode reliability. The main
disadvantage of LaB6 with respect to dispenser emitters is the higher work function, which is between
2.4 and 2.7 eV for polycrystalline LaB6 cathodes [9,10], compared to about 2.1 eV for dispenser
cathodes [4]. This property directly translates into operating temperatures of over 1600 ◦C for
LaB6 emitters compared to over 1000 ◦C for dispenser emitters, to deliver current density in the
order of 105 A/m2. Given the high temperatures required, developing a heater to reach ignition
temperatures and efficiently reducing heat losses during operation is a significantly challenging task
for LaB6 cathodes.

The cathode geometry was selected on the basis of a theoretical model previously developed
at Sitael, which describes the operation of a hollow cathode [7]. A global (volume-averaged) model
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appeared to be the most practical compromise between including details and keeping the model
flexible and time-saving. The model is self-consistent: once defined the cathode geometry and the
operating conditions in terms of discharge current and mass flow rate, the plasma parameters, surface
temperatures, and total discharge power are estimated by solving a system of particle and energy
balance equations [7]. The dependence of the results on the geometry can thus be assessed to target
the definition of the main dimensions of the cathode, i.e., emitter inner and outer diameters, emitter
length, orifice diameter, and orifice length. The work function of LaB6 considered in the computation
is 2.66 eV, along with a Richardson constant of 29 A·cm−2·K−1, in accordance with the values reported
by Lafferty [9]. The cathode lifetime is estimated on the basis of an evaporation model at the computed
emitter surface temperature, where the lifetime is described as the time to halve the emitter initial
mass. Other life-limiting mechanisms such as keeper or orifice plate erosion, or heater life, are not
considered [11].

3. Low-Current Hollow Cathodes

Low-power Hall effect thrusters are a sub-class of HETs with an operating power lower than
500 W, which can be installed onboard small satellites to perform a wide variety of missions, ranging
from drag compensation in LEO to final orbit insertion, and spacecraft end-of-life disposal [12]. In this
context, two hollow cathodes were designed, to be coupled with the Sitael 100 W and 400 W Hall
thrusters. The cathodes are named as HC1 and HC3, where the number refers to the current level each
cathode was designed for.

3.1. HC1

A hollow cathode for 100 W-class Hall thrusters was designed, to provide a discharge current in
the 0.3–1 A range [13]. The cathode operates in steady-state conditions at mass flow rates between
0.08 and 0.5 mg/s of xenon. The cathode can include a heater, designed to deliver up to 30 W to ease
the cathode ignition. The expected cathode lifetime, estimated on the basis of the theoretical model,
is higher than 104 h.

3.1.1. Experimental Setup

HC1 was experimentally characterized during a dedicated stand-alone test campaign, after which
the cathode was coupled with the Sitael HT100D 100 W-class Hall thruster [14]. A current-limited
Huettinger Electronic, Inc., PFG5000 (1000 V, 6 A, Farmington, CT, USA) power supply controlled
the cathode-to-keeper voltage during discharge initiation and the current during operation. During
the stand-alone experiments, an external anode plate was located about 15 mm downstream of the
cathode. The cathode-to-anode current was controlled using a Ametek Programmable Power, Inc.,
Sorensen DLM 300-3.5E (300 V, 3.5 A, San Diego, CA, USA) power supply. The heater current was
controlled using a Sorensen DCS 80-13E (80 V, 13 A) power supply. All the power supplies were
connected to a common negative reference and the setup was electrically floating with respect to
ground. The gas feeding system of the cathode was equipped with a dedicated mass flow controller
(Bronkhorst High-Tech B.V., F-201C-FAC-22-V, Ruurlo, The Netherlands). Grade N48 xenon was used
during the test campaigns. The temperature at the mounting interface of the cathode was monitored
by means of a K-type thermocouple. A mass flow controller (Bronkhorst F-201C-FAC-88-V) was added
in the setup to feed the anode, during the coupling tests with the HT100D thruster.

3.1.2. Cathode Performance

The cathode internal pressure was measured at room conditions, flowing a xenon mass flow
rate between 0.1 and 1.5 mg/s. The cathode pressure model, based on a Poiseuille flow in the orifice
region, was used as a stand-alone code to decouple the dependence of the pressure on the plasma.
The collected data are reported in Figure 2a, together with the theoretical predictions, which show a
fairly good agreement with the experimental curve. The pressure comparison for the cathode operated
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in diode mode with 1 A keeper current is shown in Figure 2b. The parameter Th/Tw represents the
ratio of the heavy particles temperature, Th, to the cathode wall temperature, Tw. As expected [15],
a value of Th/Tw comprised between 1 and 4 gives a good estimate of the cathode internal pressure.
In the heaterless configuration, the cathode was ignited by flowing 1 mg/s Xe, applying 700 V to
the keeper, and regulating the keeper power supply to 1 A. On the other hand, a heater power of
about 23 W allowed for starting the cathode with keeper voltages lower than 400 V with 0.4 mg/s
Xe. The electrical characteristics collected in diode mode with the keeper alone (without the anode
operating) in steady state conditions are shown in Figure 3a, at different mass flow rates between
0.08 and 0.5 mg/s. The presented results refer to the heaterless configuration. The discharge voltage
was found to decrease from about 30 to 15 V, when increasing the current from 0.3 to 1.5 A. The total
discharge power of HC1 with the keeper alone is in the range from 9 to 20 W, depending on the
operating conditions. The discharge voltage showed a negligible dependence on the mass flow rate,
as expected during the cathode operation in spot mode [4], being identified by low voltage oscillations
and broad optimum gas flow at a given current. The results of the model, in terms of electrical
characteristics, are in good agreement with the experimental data (20% of discrepancy for the worst
prediction), as shown in Figure 3b at a fixed mass flow rate. The electrical characteristic at 0.1 mg/s
Xe of the cathode with heater in diode mode with the keeper alone (without the anode operating)
is compared with the heaterless case in Figure 4. As expected, the additional mass of the heater,
although thermally shielded by means of a tantalum foil, implied an additional conduction of the heat
away from the emitter and an increased radiation area, causing a less-efficient thermal behavior of
the cathode during the steady-state operation due to higher power losses, ultimately leading to an
increased voltage drop at the emitter sheath with respect to the heaterless case. The increase in the
discharge voltage ranges from about 9.5 to 2 V, for a discharge current increasing from 0.4 to 1.5 A,
as shown in Figure 4. Figure 5a shows HC1 operating with keeper and anode in the stand-alone
configuration, where the current was split between the two electrodes not to excessively increase the
keeper temperature. HC1 is also shown in Figure 5b, during steady-state operation with HT100D and
floating keeper.
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3.2. HC3

A hollow cathode was conceived for the Sitael 400 W-class Hall thruster HT400 and designed to
provide a current up to 3 A, hence the name HC3. The cathode operates at nominal mass flow rates
between 0.08 and 0.5 mg/s of xenon. The cathode can be provided with a heater, to supply up to 50 W
of power during the ignition transient. The expected cathode lifetime is higher than 104 h.

3.2.1. Experimental Setup

HC3 was characterized with the aid of an auxiliary anode plate. After the stand-alone campaign,
the cathode was coupled with the HT100D thruster, whereas the coupling test with HT400 is still being
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planned according to the activities related to the thruster development. The same experimental
equipment described in Section 3.1.1 was adopted for both the stand-alone and the coupling
test campaigns.

3.2.2. Cathode Performance

Measurements of the cathode pressure were performed and compared with the theoretical results
from the numerical model. Figure 6a reports the cathode pressure measured at room temperature
(no discharge), at xenon mass flow rates from 0.2 to 1.5 mg/s. The presented data are in excellent
agreement with the values predicted by the pressure model. Figure 6b shows the cathode pressure
during operation in diode mode with the keeper electrode alone, with a current limited to 3 A.
The cathode pressure increased from about 5 to 130 hPa (namely, from about 3.8 to 97.5 torr), when the
mass flow rate was increased from 0.1 to 1 mg/s. The theoretical pressure at the highest mass flow
rate (i.e., 1 mg/s) is in reasonably good agreement with the measured one for a ratio of the plasma
heavy particles temperature and the wall temperature between 2 and 3, which is in agreement with
the experimental findings by Williams [15]. On the contrary, the model slightly over-predicted the
pressure value recorded at the lowest mass flow rate (i.e., 0.1 mg/s), even when considering the heavy
particles in a thermal equilibrium condition with the cathode walls. A fixed ratio of the plasma heavy
particles temperature and the wall temperature does not provide good agreement of the computed
pressure with the experimental values as a function of the mass flow rate. This occurrence is likely
tied to the influence of the plasma parameters on the ion energy, which affects the charge exchange
mechanism between ions and neutrals, and in turn the neutral gas temperature.

In its heaterless configuration, the cathode was ignited by combining 950 V of keeper voltage
and an anode voltage comprised between 250 and 500 V, with a mass flow rate between 1 and 2 mg/s.
The keeper current was limited to 1.5 A. In the case where a heater was included, a heater power of
about 50 W was delivered to the cathode, before applying the keeper voltage.
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The heater significantly eased the cathode ignition and lowered the required keeper voltage to
values on the order of 300 V. The mass flow rate for the cathode ignition was set equal to 0.4 mg/s.
Nevertheless, the ignition parameters were deteriorated after about 100 ignitions, where the required
mass flow rate and the keeper voltage were increased to 0.8 mg/s and 700 V, respectively. Given that
the orifice plate could be easily replaced in the assembly, the cathode was tested with two different
length-to-diameter aspect ratios (ARs), equal to 1.2 and 0.9, to assess the effect of this parameter on
the cathode performance. The electrical characteristics in diode mode with the keeper alone (without
the anode operating) are shown in Figure 7. No substantial voltage variations between the two
configurations can be observed in the operating range investigated. The cathode discharge power was
found to be comprised between about 25 and 60 W, with a minimum at 1 mg/s and 1 A, independently
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of the aspect ratio. The discharge voltage decreased when increasing the discharge current, settling
in a range from 14 to 35 V in the various operating conditions. The comparisons of the electrical
characteristics with the model results are shown in Figure 8, at two different mass flow rates for the
AR 1.2 cathode in diode mode with the keeper alone. Consistent with data available in the literature,
a general trend of a lower voltage with higher mass flow rates was observed during the experiments,
and is correctly captured by the theoretical model. Figure 9 shows HC3 during a coupling test with the
thruster HT100D.
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4. High-Current Hollow Cathodes

The interest in high-power Hall effect thrusters is increasingly fostered for a number of different
space applications, including final positioning and station-keeping of GEO satellites, spacecraft
transfers from Geostationary Transfer Orbit (GTO) to GEO (or from LEO to other high-altitude orbits),
and deep-space missions [12]. Hall effect thrusters provide an optimal trade-off between specific
impulse and thrust, along with a higher thrust-to-power ratio with respect to other electric propulsion
technologies [4]. As such, the development of high-power Hall thrusters represents an important step
to improve the propulsion systems capabilities for space exploration, allowing for acceptable mission
durations. In this context, two hollow cathodes were designed and tested at Sitael, conceived for 5 to
20 kW Hall effect thrusters.

4.1. HC20

A lanthanum hexaboride (LaB6) hollow cathode for 5 kW Hall thrusters, named HC20, has
been developed and tested. The cathode was designed to provide discharge currents in the 8–20 A
range with a lifetime in excess of 104 h, with mass flow rates between 1 and 4 mg/s. A heaterless
configuration was selected, promoting the removal of the single point of failure represented by the
heater. The major drawback of this choice lies in the higher voltages required to ignite the cathode, and
to possible thermal shocks damaging the LaB6 emitter. The cathode was characterized with both xenon
and krypton propellants. The interest in krypton is tied to the reduction of on-ground development
and qualification costs, and also to relax the dependence on the volatile natural-resource market.
A successful operation of the cathode was observed with both propellants in the investigated range of
operating conditions.

4.1.1. Experimental Setup

HC20 was tested with the aid of an anode plate located 70 mm downstream of the cathode.
The keeper power supply was a Huttinger PFG5000, whereas the cathode-to-anode current was
controlled using a Sorensen DLM 150-20E (150 V, 20 A) power supply. Both power supplies were
connected to a common negative reference and the setup was electrically floating with respect to
ground. A Bronkhorst F-201C-FAC-22-V mass flow controller was used to feed the cathode. High
purity (grade N48) xenon and krypton were used during the test campaigns. K-type thermocouples
were installed on the mounting flange constituting the mechanical interface, on the outer keeper flange
and on the backside of the anode. Two additional B-type thermocouples suited for measurements up
to 1800 ◦C were installed on the external surface of the cathode main tube at 12 and 41 mm upstream
of the tip. HC20 was then coupled with the Sitael HT5k Hall thruster [16]. During the coupling tests
with the thruster, the cathode-to-keeper voltage was controlled by a Magna-Power Electronics, Inc.,
XR1000-6.0 (1000 V, 6 A, Flemington, NJ, USA) power supply, whereas the cathode-to-anode current
was controlled by a Magna-Power TSD400-36 (400 V, 36 A) power supply. The gas feeding system
consisted of two independent lines as described in Section 3.1.1.

4.1.2. Cathode Performance

The cathode was operated with xenon before and after a 300-h endurance test at 1 mg/s and 16 A
anode current (floating keeper), in a stand-alone configuration. In addition, krypton propellant was
used after the endurance test for a comparison with the xenon-fed cathode performance. The ignition
procedure with xenon propellant consisted in applying 800 V to the keeper and 130 V to the anode.
The keeper current was regulated to 2 A and the anode current was set to 16 A. A mass flow rate of
5 mg/s was then flowed through the cathode, which was run at a total current of 18 A for about 30 min
before starting each characterization test. Immediately after the discharge initiation, the mass flow
rate was smoothly reduced to 1 mg/s in a couple of minutes. A similar procedure was adopted with
krypton propellant, with the following ignition parameters: 800 V keeper voltage, 2 mg/s Kr mass
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flow rate, 2 A keeper current, 130 V anode voltage, and 10 A anode current. The mass flow rate was
reduced to 0.8 mg/s as soon as the discharge was stable.

As regards the electrical characteristics, the comparison of pre-endurance and post-endurance
keeper voltage is shown in Figure 10a, at 2 A keeper current and 1 mg/s Xe, with the corresponding
anode voltage reported in Figure 10b. The error bars shown in the figures reflect the standard deviation
found in the collected data, including an error of ±2% associated with the DC voltage measurements
(some markers in the graphs hide the error bars). The comparison of the keeper voltage shows a
difference of 1–4 V between the pre-endurance and the post-endurance values. At anode currents
below 2 A, the anode voltage increased and the cathode tended to cool off, likely due to an insufficient
ion-bombardment self-heating. The oscillations of the anode voltage as a function of the anode
current likely correspond to mode changes [17,18]. HC20 was also tested with krypton, with similar
trends in the electrical characteristics with respect to xenon, as shown in Figure 11. Representative
comparisons are reported in Figure 12, where the results of the theoretical model are compared with
the experimental data, showing a good agreement of the electrical characteristics, both in the voltage
values and in the general trends with the current. The pre-endurance keeper voltage is compared with
the corresponding numerical results in Figure 12a, as a function of the anode current, at 2 A keeper
current and 1 mg/s Xe. The maximum discrepancy is about 3 V, and the model proved to predict the
keeper voltage values with a difference lower than 20%. A very good agreement between theoretical
and experimental results was found for the cathode operating with krypton propellant, as shown in
the comparison reported in Figure 12b.

During the endurance test, the B-type thermocouple located in proximity to the active zone on
the outer cathode tube surface measured a temperature of 1168 ± 3 ◦C. The corresponding value
computed from the numerical model is 1530 ◦C, thus a discrepancy of about 27% exists. However, the
discrepancy may be affected by a non-perfect contact of the thermocouple with the tube. As a matter of
fact, the second B-type thermocouple located 29 mm upstream of the first one measured a temperature
of 1114 ± 3 ◦C, which is in good agreement with the theoretical value of 1035 ◦C (discrepancy of
about 7%). Figure 13 shows HC20 with the Sitael 5 kW Hall thruster HT5k, during operation with
xenon propellant.
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4.2. HC60

A hollow cathode has been developed to be coupled with HT20k, a 20 kW-class Hall thruster
recently developed at Sitael [19]. The HC60 cathode has been designed to operate at mass flow rates
between 2 and 5 mg/s, at discharge currents between 30 and 60 A. A 200 W-class heater can be included
in the cathode assembly. The cathode predicted lifetime is higher than 104 h.
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4.2.1. Experimental Setup

During the cathode stand-alone test campaign, an external anode plate was located 100 mm
downstream of the keeper orifice section. A current-limited Magna-Power TSD 1000-15 (1000 V,
15 A, 15 kW) power supply controlled the cathode-to-keeper voltage during discharge initiation, and
the current during operation. The cathode-to-anode current was controlled using a Regatron AG
TopCon TC.P.20.500.400.S (500 V, 50 A, 20 kW, Rorschach, Switzerland) power supply. The heater
current was controlled by using a Sorensen DLM 300-3.5E (300 V, 3.5 A). The power supplies were
connected to a common negative reference and the setup was electrically floating with respect to
ground. The gas feeding system was equipped with a Bronkhorst F-201C-FAC-22-V mass flow
controller. High purity (grade N48) xenon and krypton were used during the test campaigns. K-type
thermocouples were installed at the cathode mechanical interface, to monitor the integrity of the
materials during extended operation.

4.2.2. Cathode Performance

The cathode pressure at room conditions was measured with both xenon and krypton, with the
values reported in Figure 14. At a given mass flow rate, the pressure with krypton is higher with
respect to xenon, due to lower atomic mass of krypton. In its heaterless configuration, the cathode was
ignited with a keeper voltage between 800 and 950 V, with a mass flow rate of 12 mg/s. The keeper
current was limited to 15 A. With a heating power of about 170 W, the cathode was ignited with a mass
flow rate of 5 mg/s, at a keeper voltage in the range between 450 and 500 V. The ignition parameters
showed no significant variations with both xenon and krypton.

The cathode was firstly operated with the keeper only, in the range of current 11–15 A, at mass
flow rates between 3 and 5 mg/s. The collected data are shown in Figure 15a, in terms of electrical
characteristics for the cathode fed with xenon. Similar results were obtained with krypton, as shown
in Figure 15b. Nevertheless, the cathode presented a stable operation in a smaller number of points,
as compared with xenon propellant, likely due to the higher ionization energy of krypton (about
14 eV) with respect to xenon (about 12 eV). The cathode was tested with xenon at a total current
up to 60 A (50 A anode current, 10 A keeper current), in the considered range of mass flow rate
3–5 mg/s. The operation with krypton required a mass flow rate of at least 5 mg/s to run the cathode
in triode mode with the anode. At 6 mg/s Kr, the lowest keeper current which allowed for sustaining
a discharge of 30–50 A at the anode was 2 A. As a matter of fact, the cathode was not able to operate
in diode mode with the anode with krypton, whereas an anode current of 50 A with keeper off was
sustained with xenon, at 4 mg/s. The electrical characteristic computed with the aid of the numerical
code, at 5 mg/s Xe, is shown in Figure 16. The theoretical results can be compared with the measured
anode voltages of about 16.5 V, for a current sweep from 30 to 50 A, even though the model does not
compute any potential drop downstream of the keeper orifice. Figure 17 shows the cathode during the
operation with keeper and anode (a), and during the coupling test with HT20k (b).
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5. Conclusions

Several hollow cathodes conceived for Hall effect thrusters with a wide range of power levels
have been developed and tested at Sitael. In particular, the cathodes were conceived for Hall thrusters
belonging to the following power classes: 100 W, 400 W, 5 kW, and 20 kW. The respective current
ranges considered in the cathode design are 0.3–1, 1–3, 8–20, and 30–60 A. The cathode ignition was
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investigated, showing that a heaterless configuration implies keeper voltages as high as 950 V to start
the cathode. The keeper voltage at ignition can be lowered down to 300 V by including a heater in the
cathode assembly. The cathodes were tested both in stand-alone configuration and coupled with the
thrusters, including several characterizations with krypton propellant. The results are promising and in
good accordance with both experimental data available in the literature and the theoretical predictions
coming from the in-house developed model. Future activities will include additional coupling tests
with the thrusters, long-duration campaigns, and a study of the influence of the heater power on the
LaB6 cathodes ignition. A more extensive comparison between theoretical and experimental data will
be also carried out to deeply validate the numerical model.
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