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Abstract: The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires
an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative
motion during close-proximity maneuvers has been consecutively applied using dynamic modeling
as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation
model that performs image processing via a deep convolutional neural network. The pose estimation
model was constructed by repurposing a modified pretrained GoogLeNet model with the available
Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional
neural network learns from the data samples to create correlations between the images and the
spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based
loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based
loss function, the implemented pose estimation model achieved moderately high performance with a
position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach
87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can
contribute to spacecraft detection and tracking problems. Although the finished vision-based model
is specific to the environment of synthetic dataset, the model could be trained further to address
actual docking operations in the future.

Keywords: spacecraft docking operation; on-orbit services; pose estimation; deep convolutional
neural network

1. Introduction

In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft
and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”,
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and [1] defined docking as an on-orbital service to connect two free-flying man-made space objects.
The service should be supported by an accurate, reliable, and robust positioning and orientation
(pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft
docking operation. The position estimation can be obtained by the most well-known cooperative
measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured
by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to
non-cooperative targets. Many studies and missions have been performed by focusing on mutually
cooperative satellites. However, the demand for non-cooperative satellites may increase in the future.
Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological
research problem that can improve spacecraft docking operations [2]. One traditional method, which is
based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the
equations of motion, which are a function of time. However, the prediction using a spacecraft equation
of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation
algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for
space application with a faster and more powerful computational resource [3].

From this demand, the computer vision field is currently developing as an alternative way for
estimating the pose of a spacecraft. A vision-based detection system is a non-cooperative method that
takes images of a target object using a camera and then processes them using estimation software.
The estimator extracts numerical data from the images based on the constructed relation. When a
mathematical model is unavailable, a deep learning algorithm can construct an empirical mathematical
model by learning from the data samples. The resulting mathematical model represents the relation
between the input image data and the numerical output data. A vision-based estimator needs
input and output data samples instead of the exact relationship among the training parameters.
The primary precondition of deep learning algorithms is that they need massive amounts of data for
training, and the cost of acquiring real spacecraft image data is exceptionally high. Undoubtedly,
there identifying the position and attitude while real photos are being taken is problematic. However,
pretrained convolutional neural network models, are available that require less data for fine tuning.
Many researchers prefer to use public data instead of generating the data themselves because the
public data have been well validated and are ready to use. Thus, using public data to construct the
estimation algorithm is an excellent choice.

2. Related Works

Currently, deep learning algorithms are widely applied to aerospace information engineering
problems. Moreover, applications involving deep Convolutional Neural Network (CNN) architectures
have been demonstrated in many studies, for example, processing satellite images to detect forest-fire
hazard areas [4], estimating and forecasting air travel demand [5], determining the crack length
in aerospace-grade aluminum samples [6], aircraft maintenance and aircraft health management
applications [7], and so on; however, their applications in pose estimation is limited compared with
aerospace information applications. In this study, we apply deep learning to solve the problems
involved in spacecraft pose estimation. Several pose estimation methods have been demonstrated in
various fields in prior studies.

The pose estimation of spacecraft has been a problem of considerable interest in various applications.
In satellite image registration tasks via push-broom sensors, the variations in registration shifts occur
when the attitude of the satellite is changed. Bamber et al. [8] constructed the attitude determination
model for a low-orbit satellite by modeling the changes in attitude and rates of the image registration
shifting. Before the deep learning algorithm became well known, there was an attempt to apply the
computer vision technique via artificial intelligence to estimate the spacecraft poses. Casonato and
Palmerini [3] demonstrated the application of artificial intelligence in low-level processing to detect
the edges of an Automatic Transfer Vehicle (ATV). After the edge detection, a Hough transformation
was employed to identify the basic shape of the vehicle, and the relative position and attitude
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parameters were determined using the mathematical formulation of the detected features. The relative
position and attitude data were considered real-time navigation data and accomplished with the
Clohessy–Whiltshire relative motion equations to estimate the rendezvous trajectory of the ATV to the
international space station.

In addition to deep learning algorithms, several methods did not attempt to process the entire
image; instead, they utilized the image only for feature detection. Liu et al. [9] applied the edge
detection algorithm to extract meaningful features from the images of a cylinder-shaped spacecraft.
The ellipses, which are obtained from arc detection, were employed to estimate spacecraft poses
by the manipulation of shape, size, and position of features. For a similar method, Aumann [10]
developed a pose estimation algorithm using Open source Computer Vision (OpenCV) to detect
two longitudinal lines on the sides of a cylinder-shaped object. Then, the author manipulated the
positions, directions, and parallelism of the two lines to acquire the pose of the cylindrical object.
Sharma et al. [11] employed a Gaussian filter to detect edge lines and cutting point of the spacecraft in
2D images. Later, using principles of spacecraft kinematics, they manipulated the governed points and
lines via the efficient perspective-n-point (EPnP) method to solve the 3D parameters from 2D images.
Kelsey et al. [12] developed the Vision System for the Autonomous Rendezvous and Docking (VISARD)
algorithm by implementing a model-based technique and edge detection for image preprocessing.
For pose refinement, the researchers employed Iterative Reweighted Least Squares (IRLS) to estimate
the motion of the model. The research also applied a tracking algorithm and used an Extended Kalman
Filter (EKF) to predict the model pose. Nevertheless, all the prior studies have some implementation
limitations. For example, the edge lines of an object with a complicated shape leads to complexities
in the mathematical formulation. As a result that numerous points and lines are detected, in harsh
lighting conditions, the feature detection performance may be reduced. Transfer learning is a technique
to train the machine learning model using a learning agent, which contains the knowledge of a related
task. This accumulated knowledge is theoretically able to accelerate learning with a similar task [13].
Therefore, to reduce the implementation complexities, transfer learning using a pretrained model as a
learning agent is preferable for constructing the pose estimation algorithm.

Image regression through deep learning algorithms has been widely applied to pose estimation
model construction, and the basic algorithms and mathematical models have been developed in
several works. The regression method demonstrated in [14] derived equations for constructing
convolutional neural network models. This study used various orientation estimation models for
rotation in different dimensions. According to the methodology, the estimation algorithms for
viewpoint estimation, surface-normal estimation, and 3D rotation have different rotation parameters
and operations. Spacecraft usually behave as 3D rotating objects. Thus, the implementation of
spacecraft pose is beyond the determination via Euler angles, as shown in surface-normal estimation.
Instead, quaternions are required to represent the object’s angle of rotation.

Many public datasets contain images with labeled data that are positioned and oriented in a
representation of quaternions. Proença and Gao [15] generated a dataset by using Unreal Rendered
Spacecraft On-Orbit (URSO). The tool proposed in that study is a simulator built in Unreal Engine 4
that creates realistic images of the spacecraft surroundings by mimicking the appearance of outer space.
The generated images can visualize these outer space conditions for the spacecraft under harsh lighting
conditions and can use realistic earth-surface images as the background. They also demonstrated a
method that uses a ResNet architecture based on a pretrained CNN model as a backbone. This method
achieved high accuracy but also has high complexity. Consequently, it consumes large amounts of
computational resources.

Another previous work on spacecraft datasets can be found in [16], which introduced the spacecraft
pose network (SPN), a custom CNN whose architecture includes three separate branches. They trained
the CNN model using a public dataset, Spacecraft PosE Estimation Dataset (SPEED) and estimated the
six degrees of freedom parameters separately. The position was estimated from a 2D bounding box on
a target detected by one branch of the CNN model using the Gauss–Newton algorithm. The relative
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attitude was determined directly from the other two branches using a hybrid discrete-continuous method.
Although the custom convolutional network is beyond the research scope, it provides a significant
contribution and performs estimation using separated parameters classification and regression method.

Kendall et al. [17] presented a deep neural model that employed a convolutional neural network to
perform pose estimation for a camera. The dataset preparation process considers the pose as parameters
relative to the scene and a practical algorithm for pose estimation is developed. The researchers
implemented this process using a modified GoogLeNet architecture, which is a CNN model developed
by Google. The pose estimation model was initially trained with interior data and subsequently
required less outdoor data to train the model. Moreover, it was successful at performing relocalization
and pose prediction from the camera images. Although spacecraft attitude estimation must be
manipulated using data regarding the spacecraft’s position and orientation relative to the camera rather
than calculating the pose of the camera itself, the principle is still applicable. Artificial intelligence (AI)
studies are concerned with constructing correlations between input and output data.

Mahendran et al. [18] developed a pose estimation algorithm for single objects using a pretrained
VGG-M model. Using the Pascal 3D+ dataset, the training process adopted geodesic distance as the
loss function. The next year [19], used a ResNet-50 model as the base architecture and demonstrated
the use of various loss functions such as simple/naïve, log-Euclidean, geodesic, and probabilistic loss
on the same dataset (Pascal 3D+). Another work involving single object detection in [20] applied
state-of-the-art AI methods to medical science. They implemented CNNs to estimate six degrees of
freedom, including the position and attitude of the human brain, from MRI scans. The pose estimation
model was constructed using a ResNet18 model, which reduced the required size of the training
dataset. In the training stage, the position loss was the mean-squared error, while the orientation loss
was the geodesic distance. In addition, some works have addressed multiple-object pose estimation,
such as [21–24]. The contributions from these works could be applied to multiple-object detection in
space. For example, in situations where multiple objects need to interact, such a pose estimation system
may need to estimate the poses of the various objects individually. Such situations might include space
debris collection or vision-based docking operations involving multiple detected objects. Although
this research concerns one spacecraft detection, the multiple object detection task could be applied
to future works of advanced aerospace image sensing. Due to the lack of data samples for multiple
space objects, pose estimation for a single object is more applicable. In the many prior works, different
applications have been implemented by different techniques. However, the efficiencies of pretrained
models have been evaluated by many research works. Based on that information, the base pretrained
model was selected with respect to high efficiency and minimal computational resource consumption.

Another consideration of this research is the formulation of the loss function. Various works have
used different formulations to address the terms of position loss and orientation loss. For position
loss, most of the works implemented mean squared error [20,24] as the loss function. However,
some research was successful using the Euclidean distance [15,17] and a multiplication of the scaling
coefficient, as shown in Equation (1).

Lossposition = βx

∣∣∣∣∣∣xi − xgt
∣∣∣∣∣∣, (1)

where xi is the trial position vector from the layers of the CNN model and xgt is the ground-truth
position vector available in the dataset. In many studies [14,18,20], the orientation loss was formulated
as the geodesic loss in Equation (2).

Lossorientation = βqarccos
(∣∣∣∣qT

i qgt

∣∣∣∣), (2)

where qi is the trial quaternion component extracted by the layers of the CNN model and qgt is
the ground-truth quaternion component, which is available in the dataset. The total loss defined in
Equation (3) is a summation of Equations (1) and (2)
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Losstotal = Lossposition + Lossorientation. (3)

To minimize the prediction error, the scaling factors βx and βq, must be optimized. Using the
most straightforward method, βx and βq could be fine-tuned by trial and error.

3. Materials and Methods

This research aims to construct an attitude and position estimation model by repurposing a
pretrained model. Figure 1 describes the brief information about the construction of the pose estimation
model through the training and testing process with the dataset. The details of implementation are
described in this section, including dataset preparation, pose estimation algorithm and preprocessing,
and construction of the pose estimation algorithm with different loss functions, which consists of both
(1) the exponential-based model and (2) the weighted Euclidean-based model.
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3.1. Dataset Preparation

Before repurposing a pretrained model, a dataset must be prepared. The dataset has a critical
role in the learning process. A dataset generated solely by the researcher might lead to inaccurate
and invalid dataset. For this reason, this experiment collected data from public datasets. Proença
and Gao [15] provided a publicly available spacecraft dataset suitable for practicing pose estimation
with supervised learning algorithms. In the Unreal Engine 4 simulator, the object moving frame
was mounted on the spacecraft, and the spacecraft images were acquired by the camera, which was
considered the reference frame. Therefore, the relative parameters of position and attitude were
described by the position and attitude of the spacecraft with respect to the camera. In the provided
dataset (refer to the example in Figure 2), the background image features include the Earth’s surface,
outer space, and simulated directional light reflections. For entire image processing, the lighting
condition is a significant challenge for the feature detection of convolutional layers. As has been
proved by Volpe et al. [25], there are differences between the reconstructed shape and the CAD model,
which indicates that the lighting condition affects the difficulty in feature identification. By capitalizing
on the capabilities of Unreal Engine 4, the images dataset was generated from the simulation of
realistic scenes. Information about the relative position and relative attitude and the labeled numerical
ground-truth data were collected in the training stage and served as the testing reference. Moreover,
the transformation values include relative position and relative attitude, which consists of Euler angles,
can be converted to quaternions. The attitude conversion object overcomes the problems of singularity
and increases the computational performance.
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Figure 2. Sample images from the dataset.

The base model in this research was trained on a dataset for the Soyuz spacecraft. Then,
the fine-tuning training process repurposed the pretrained model. The dataset includes 5000 images
with position and attitude. Conveniently, the attitude representation in the public dataset was already
in the form of quaternions. Each individual image is labeled with the file name, position, and attitude.
The dataset supplies both training and testing sets, with 4500 and 500 images, respectively. The data
consists of 1280 × 960 pixel .png images labeled with the relative position and the relative attitude in
quaternions, represented in a .csv file. The axis notations for spacecraft motion and camera reference
position are illustrated in Figure 3. These data were prepared for the training step. Thus, the learning
process took the images as input data and the output parameters specified the pose of the spacecraft in
the images.

3.2. Pose Estimation Algorithm and Preprocessing

From the state-of-the-art of the convolutional neural network, the model contains the local receptive
field, which slides through the whole image to detect the features of the spacecraft. The process converts
the image pixels into the numerical data by taking the attributes of pixels in the local receptive field to
the corresponding neuron of the first hidden layer. The information from the images passes through
the layers of neurons until the poses is determined at the final layer (Figure 4). For the application of
spacecraft pose estimation, the trained CNN model contains the direct empirical correlation of the
images and estimated poses [26]. In this study, the pretrained convolutional neural model GoogLeNet
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was employed as the base architecture for pose estimation. In [17], the authors modified the 23 layers
of the CNN in the original GoogLeNet architecture; this model was also adopted in this study instead
of the original 22-layer version. GoogLeNet was selected based on two factors: its accuracy and
limited computer resource consumption. GoogLeNet has provided accurate results in many prior pose
estimation studies and consumes only moderate computer resources.
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The Soyuz images were used as model input. Nevertheless, the spacecraft images must be
reproduced in a suitable form. This reproduction stage is called image preprocessing. The image
format GoogLeNet uses as the input consists of 224 × 224 pixel images. Thus, the original image
files were transformed into the smallest possible resolution. First, the original images (which were
1280 × 960 pixels) were resized to be four times smaller (to 320 × 240 pixels). To satisfy GoogLeNet’s
format, these small images were then center-cropped to 224 × 224 pixels (Figure 5). If the images
were resized to an even smaller resolution, image details would be lost because the cropping process
removes details at the edges of the images. The numerical output for the spacecraft pose is given by a
seven-column dataset. In this research, the mathematical pose expression is defined as follows:

Poses =
[
x, y, z, q1, q2, q3, q0

]
. (4)

This seven-dimensional vector must be sliced into two parts:

Position = [x, y, z], (5)

and
Attitude =

[
q0, q1, q2, q3

]
, (6)

where x, y, and z are the magnitude of the relative distance in the X, Y, and Z-axes, respectively, and q0
represents the real part of the quaternions, while q1, q2, and q3 are the components in the vector part.
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3.3. Exponential-Based Pose Estimation

3.3.1. Exponential Loss Function

Another consideration for pose estimation algorithm development is to choose a suitable
mathematical expression for the loss function. The loss function is the function that measures
the difference between the estimated value and the ground-truth value of the positions and attitude
during the training stage, as shown in Figure 1. In this experiment, the Adam optimizer was adopted
to identify and develop the most suitable weights for the CNN neurons during iteration to achieve
the lowest loss value. The experiment applied Equation (3), which is the combination of positional
and orientation loss with the Adam optimizer. Equation (3) consists of two terms: position loss and
orientation loss. Equation (1) was considered as the term for position loss because Euclidean distance
is suitable for measuring the magnitude of the distance between two objects.

It was difficult to find a suitable mathematical model for the orientation loss function. The first
trial was performed using Equation (2) as the orientation term. There is a mathematical conflict

with the loss function because the loss value becomes infinite when
∣∣∣∣qT

i qgt

∣∣∣∣ = 1. To avoid this
problem, the experiment was next implemented using Equation (7), which is the cosine of geodesic loss.
Therefore, the loss function is completely algebraic and does not involve trigonometry expressions.

Lossorientation = βq

(
1 −

∣∣∣∣qT
i qgt

∣∣∣∣). (7)

However, the second implementation with Equation (7) resulted in the loss value diverging to
infinity. Therefore, the third trial used the natural exponent of the cosine of geodesic loss, which is
expressed in Equation (8)

Lossorientation = βq exp
(
1 −

∣∣∣∣qT
i qgt

∣∣∣∣). (8)

For the third trial, the total loss value tended to converge to zero. Thus, this function can be
taken as the orientation term in Equation (3). Then, the mathematical model of the total loss is defined
as follows:

Losstotal = βx

∣∣∣∣∣∣∣∣∣∣xi − xgt

∣∣∣∣∣∣∣∣∣∣+ βq exp
(
1 −

∣∣∣∣qT
i qgt

∣∣∣∣). (9)

The result of this mathematical expression was minimized using the Adam optimizer. In each
iteration, the optimizer changed the weights and biases according to the descending gradient during
artificial neural model development. The most acceptable values of each scaling coefficient, βx and
βq, can be found by trial and error. The values of these scaling coefficients are dataset dependent;
therefore, models trained on different datasets may have different scaling coefficients.

3.3.2. Experimental Methods on the Exponential Loss Function

From the mathematical expression in Equation (9), the fine-tuning process of βx and βq was
performed by constructing the model on 3000 repeated training iterations with a learning rate of 0.001.
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Using this number of iterations, the model loss remained approximately unchanged after 2500 iterations.
The slope at higher iterations is approximately constant in the first observation. Therefore, the number
of iteration loops was set to 3000 in this experiment. After the training stage, the accuracy of the trained
model was measured in the testing stage. If the test result is unacceptable, the model was reconstructed
by changing the values of the scaling coefficients. In the worst case, the model would need to be
constructed by modifying the mathematical model of the loss functions. The model implementations in
this section were conducted on a laptop equipped with an NVIDIA GeForce RTX 2080 GPU with 8 GB
of memory. Clearly, the computer resources are severely restricted. Consequently, the computation
time per iteration is longer than they would be on a higher-performance processor.

The accuracy of the model was measured during the testing stage. Errors measured during the
testing stage reflect model performance. Generally, the error involves a comparison of the estimated
value and the ground-truth value. To avoid confusion between the concepts of loss and error, in this
study, loss is the difference between the estimated value and the ground-truth value during the training
stage, while error is the difference between the estimated value and the ground-truth value at the
testing stage. In addition, the loss is measured from the training set, but the error is measured from the
testing set.

As a result that the artificial neural model is constructed during the training process, its performance
is usually optimized when the model is built using the most suitable mathematical expressions.
Therefore, all the mathematical functions and scaling coefficients must be fine-tuned. This experiment
focuses on fine-tuning the scaling coefficients βx and βq by trial and error. For a deep neural model,
the performance of the model can be determined only at the testing stage. Thus, the testing was done
alongside the process of fine-tuning the scaling coefficients.

A model trained with different scaling coefficients always yields different levels of performance.
Therefore, the goal is to determine the most suitable scaling coefficients. When a test result is
unsatisfactory, the model must be reconstructed under the new training conditions until the error
is acceptable. This research considered the error as the magnitude of the distance vector to reflect
the model performance. For the positions and attitudes, the distances between the estimated values
and the ground-truth values were calculated with the Euclidean distance. Equations (10) and (11)
describe the Euclidean distance, which is the norm of the position vector and orientation in the
quaternion components.

Errorposition =
∣∣∣∣∣∣xi − xgt

∣∣∣∣∣∣, (10)

and similarly,

Errororientation =
∣∣∣∣∣∣∣∣qi − qgt

∣∣∣∣∣∣∣∣. (11)

By comparing the behaviors of Equations (1) and (8), we found that when the domain of the
exponential function is less than one, the value of the function is minimal compared to the value of
Equation (1). Therefore, in this experiment, the scaling coefficient of position βx were fixed to one and
the scaling coefficient of orientation βq was varied. The experiment started testing at low values of βq
and then increased to higher values by multiplying it by 100 to find the most acceptable range for βq.
Subsequently, this experiment investigated the artificial neural model with Equation (9), set maximum
number of iterations as 3000, and set βx as 1 to control the experimental environment. The values
of the independent variable βq were 1000, 100,000, and 10,000,000 in the training stage. From the
results under those training conditions, we assume that there might be some value that can reduce
the orientation error. Then, the experiment further adopted a random value between 100,000 and
10,000,000 when training the model, and the best training value for βq was 2,547,500. The testing
stage acquired the results from the 500 test samples. Then, a representation of those values must be
selected. In this study, the median value was selected among the 500 testing sample results under the
assumption that some overestimated values and underestimated values likely exist that would cause
a change in the distribution. Using the median ignores these outlier values and expresses only the
middle position of all the results.
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Next, the most acceptable model was selected. From Equations (10) and (11), the position error
is calculated in the unit of meters, while the orientation error implicitly appears unclear under the
representation of quaternions. Therefore, to visualize the result using a more familiar representation,
the results of this model were converted to Euler angles. From [27], the formulas to transform the
quaternions in the aerospace sequence to Euler angles are

φ = tan−1

2
(
q0q1 + q2q3

)
2
(
q2

0 + q2
3

)
− 1

, (12)

θ = sin−1
[
2
(
q0q2 − q1q3

)]
, (13)

and

ψ = tan−1

2
(
q0q3 + q1q2

)
2
(
q2

0 + q2
1

)
− 1

, (14)

where ψ is the heading or yaw angle around the Z-axis, θ is the elevation or pitch angle around the
Y-axis, and ϕ is the bank or roll angle around the X-axis. Then, the orientation error was separated
into 3 parameters defined as the absolute errors of angles. Similar to the example in Equation (15),
the angle for Y-axis, and Z-axis are calculated by replacing φwith θ, and ϕ, respectively.

Errorangle (x−axis) =
∣∣∣φi −φgt

∣∣∣, (15)

For implementation in spacecraft dynamics control, a quaternion representation is more general
because there are no conflicts with the rotation sequence or with trigonometry functions. Moreover,
the quaternion representation is completely algebraic, which improves the computational performance.
However, the quaternion representation is quite abstract, while Euler angles are more physically
comprehensible. When comparing Euler angles, they must follow the same rotation sequence. In this
experiment, the Euler angles follow the aerospace sequence, making Equations (15) valid in all axes.

The experiment identified the most acceptable result from all the results of the approximate fine-tuning
to convert the single attitude error measurement to errors with a Euler angle representation. The predicted
quaternions and ground-truth quaternions were converted to the Euler angle representation through
Equations (12) and (13). After the individual manipulations of Equations (15) in all axes, the median of
the three angles from 500 samples was selected to represent the orientation error from the Euler angle
representations. Another performance indicator is accuracy; the error percentage is applied to determine
an accuracy measurement for each model. Therefore, the measurements for the model’s position and
orientation accuracy are given by Equations (16) and (17), respectively. Similar to the other performance
indicators, we adopted the median to represent the overall accuracy.

Accuracyposition =

1−

∣∣∣∣∣∣xi − xgt
∣∣∣∣∣∣∣∣∣∣∣∣xgt

∣∣∣∣∣∣
× 100, (16)

Accuracyorientation =

1−

∣∣∣∣∣∣∣∣qi − qgt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣qgt

∣∣∣∣∣∣∣∣
× 100. (17)

3.4. Weighted Euclidean-Based Pose Estimation

3.4.1. Weighted Euclidean Loss Function

Next, we formulated an alternative mathematical model of the loss function. The experiment
for the weighted Euclidean loss function relied on the hypothesis that a significant error may occur
when the model is constructed on the exponential function. Moreover, the previous loss function
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did not consider the characteristics of GoogLeNet. Similar to the original version, the modified
version of GoogLeNet has three regressors. Thus, the new loss function needs to be constructed by
considering the architecture. Equation (9) reflects the equal importance of the prediction values from
the three regressors. However, the testing stage generally considers only the final regressor. Thus,
the importance of the other two prediction results needs to be scaled down. The regressor coefficients
were multiplied by the loss function from each n regression layer to reflect the importance of the
prediction values. The resulting weighted Euclidean loss function considers the position loss, as shown
in Equations (18), where µ is the regressor coefficient.

Lossposition,n = µx,nβx

∣∣∣∣∣∣xi,n − xgt
∣∣∣∣∣∣. (18)

To investigate the hypothesis, this experiment employed a simpler mathematical model of the
orientation loss function by implementing Euclidean distance for the orientation loss based on the
assumption that position and orientation parameters behave identically from a data processing
perspective. Therefore, similar to the regressor coefficients, the orientation loss functions are defined in
Equations (19).

Lossorientation,n = µq,nβq

∣∣∣∣∣∣∣∣qi,n − qgt

∣∣∣∣∣∣∣∣. (19)

This experiment controlled the importance of position loss from the first regressor. The second
regressor is 30% of the position loss from the final regressor, the orientation loss from the first regressor,
and one-third of the orientation loss from the final regressor. The controlled values of the regressor
coefficients are listed in Table 1.

Table 1. Controlled regressor coefficients.

Regressor Coefficients Controlled Values

µx,1 0.3
µx,2 0.3
µx,3 1
µq,1 1/3
µq,2 1/3
µq,3 1

The total loss function is the sum of all the position loss functions and orientation loss functions
in each layer, n, as defined in Equation (20). Then, the final total loss equation can be derived by
substituting the regressor coefficients in Table 1.

Losstotal =
3∑

n=1

Lossposition,n +
3∑

n=1

Lossorientation,n. (20)

Equation (20) can be written in a more detailed form as

Losstotal = µx,1βx

∣∣∣∣∣∣xi,1 − xgt
∣∣∣∣∣∣+ µx,2βx

∣∣∣∣∣∣xi,2 − xgt
∣∣∣∣∣∣+ µx,3βx

∣∣∣∣∣∣xi,3 − xgt
∣∣∣∣∣∣+

µq,1βq

∣∣∣∣∣∣∣∣qi,1 − qgt

∣∣∣∣∣∣∣∣+ µq,2βq

∣∣∣∣∣∣∣∣qi,2 − qgt

∣∣∣∣∣∣∣∣+µq,3βq

∣∣∣∣∣∣∣∣qi,3 − qgt

∣∣∣∣∣∣∣∣. (21)

Then, substitute the controlled regressor coefficients and take the common factor:

Losstotal = βx

[
0.3

∣∣∣∣∣∣xi,1 − xgt
∣∣∣∣∣∣+0.3

∣∣∣∣∣∣xi,2 − xgt
∣∣∣∣∣∣+∣∣∣∣∣∣xi,3 − xgt

∣∣∣∣∣∣] +
βq

[
1
3

∣∣∣∣∣∣∣∣qi,1 − qgt

∣∣∣∣∣∣∣∣+ 1
3

∣∣∣∣∣∣∣∣qi,2 − qgt

∣∣∣∣∣∣∣∣+∣∣∣∣∣∣∣∣qi,3 − qgt

∣∣∣∣∣∣∣∣]. (22)

The model was trained for 30,000 iterations at a learning rate of 0.001 with the Adam optimizer
to optimize the weights and bias values. Similar to the previous experiment, the scaling coefficients
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βx and βq must be fine-tuned to achieve the highest accuracy. The model is trained ten times the
number of iterations in the previous experiment because the computational performance increased.
With the support of the National Astronomical Research Institute (NARIT), the training algorithm was
submitted to and executed on a high-performance computational unit. Chalawan, a high-performance
computer (HPC), was built for research on data processing, simulation, and optimization, which
are crucial for astronomy and astrophysics. The training stage for this study was implemented on
the GPU compute node. After that, the pose estimation models were tested on the CPU head node.
With more powerful processors in that system, the pretrained model was trained for 30,000 iterations.
The iteration loss becomes approximately constant just before the 30,000th iteration in the first trial
with the scaling coefficients βx and βq set to 1 and 300, respectively.

3.4.2. Experimental Methods on the Weighted Euclidean Loss Function

In this experiment, fine-tuning was performed by training the model with the loss function in
Equation (22) for 30,000 iterations. The scaling coefficient of position, βx, was fixed at 1 while the
scaling coefficient of orientation, βq, was varied, similar to the previous experiment. However, the error
measurement was slightly changed; the positional calculation was retained from Equation (10), but the
prediction error for orientation was changed to Equation (23) because the norm of quaternions has a
disadvantage for visualization. This alternative error measurement was slightly modified the scoring
from the Kelvins Pose Estimation Challenge 2019 into Equation (23), which is twice the dot product
between two quaternions unit vectors.

Errororientation = 2arccos

 qi∣∣∣∣∣∣qi

∣∣∣∣∣∣T qgt∣∣∣∣∣∣∣∣qgt

∣∣∣∣∣∣∣∣
. (23)

The value of the orientation scaling coefficient βq was varied. The fine-tuning process started
from 300 and increased by 300 each time (to 600, 900, 1200, 1500, and 1800). The model error when βq
is equal to 1500 was lower than that of the values. We assumed that there might be some value of βq
that resulted in lower error between 1500 and 1800. Therefore, we conducted an experiment with βq
set to 1650 because that value is in the midpoint between 1500 and 1800. The iteration loss during the
training process of each trial model was plotted to inspect the learning process behavior due to the
variation of the orientation scaling coefficient βq.

The result that achieved the smallest error in attitude estimation was considered the most acceptable
result because there are many difficulties involved in reducing the prediction error for orientation.
In addition, achieving good attitude estimation was considered to be more important than position
estimation. The position error is represented in units of meters, while a single hypothetical parameter
represents the orientation error. Based on the visualization advantages of Euler angles, the result
from the most efficient model was transformed into the error of three Euler angles. The estimated
quaternions and the ground-truth quaternions in 500 test samples were transformed into three angles
by the aerospace Euler sequence in Equations (12)–(14). Then, angles in the same sequence can be
compared individually for each sample using Equations (15) in all axes. Additionally, the representative
errors in the three Euler angles were taken as the median among the 500 test samples in the same
way as the previous procedure. The formulas to obtain the position and orientation accuracies are
described in Equations (16) and (17), respectively. The representative value of all the results was taken
as the median among the 500 testing samples.

Further experiments were then conducted using the most efficient scaling factors in the same
training conditions (except the number of iterations). The number of iterations was increased to five
times the former number (which is 150,000). We assume that increasing the number of iterations might
result in better model performance.
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4. Results and Discussion

Based on the research methodology, the results include the fine-tuning errors, the position
errors in meters, the orientation errors in Euler angle representations, and the accuracy of both
position and orientation. Moreover, the comparison between the exponential-based model [27] and
the weighted Euclidean-based model includes errors, accuracy, and the experimental condition,
allowing visualizations of the impacts of all the factors during the model learning process.

4.1. Exponential-Based Pose Estimation

4.1.1. Results of the Exponential-Based Pose Estimation Model

The exponential-based model was constructed based on a modified version of GoogLeNet.
This model was developed in Python with 4500 Unreal Engine 4-rendered training data of the Soyuz
spacecraft. The model was trained with the exponential of the cosine of the geodesic loss function in
Equation (9) for 3000 iterations on a laptop equipped with an RTX 2080 8 GB. The Adam optimizer was
used to minimize the loss value during the learning process. The learning behavior, as illustrated in
Figure 6, was plotted by monitoring the total loss at each iteration loop during the training stage until
the model reached the maximum number of iterations.
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The fine-tuning process was performed by varying the orientation scaling coefficients to find
the most acceptable result. Table 2 was recorded when the trained models in each condition were
tested on 500 image samples. The position and quaternion outputs were individually compared to
the ground-truth values with Equations (10) and (11), respectively. In addition, the results in Table 2
are plotted in Figure 7. After fine-tuning operation, the most acceptable result occurred when the
position scaling coefficient βx was set to 1 and the orientation scaling coefficient βq was set to 100,000.
After testing on the 500 test-image samples, the position and orientation estimation errors of this model
are tabulated in Tables 3 and 4, while the prediction accuracy is shown in Table 5.

Table 2. Fine-tuning error of the exponential-based model with various orientation scaling
coefficients, βq.

βx βq Med. Position Error (m) Med. Orientation Error

1 1000 0.82710419 0.92926225
1 100,000 0.9316442 0.90732103
1 2,547,500 1.1937147 0.94482738
1 10,000,000 1.3219991 1.11328518
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Table 3. Fine-tuning errors of the exponential-based model.

βx βq Med. Position Error (m) Med. Orientation Error

1 100,000 0.9316442 0.90732103

Table 4. Euler angle errors of the exponential-based model.

βx βq Med. Φ Error (deg) Med. θ Error (deg) Med. Ψ Error (deg)

1 100,000 91.74883037 30.10585343 84.42547416

Table 5. Accuracy of the exponential-based model.

βx βq Med. Position Accuracy Med. Orientation Accuracy

1 100,000 93.92803771% 22.73989517%

4.1.2. Discussion on the Exponential-Based Pose Estimation Model

The most acceptable results in Tables 3–5 show that significant orientation error occurs in both
the quaternions and the Euler angles systems from [27]. The model achieves a high performance
for position estimation but performs poorly for attitude estimation. The large error in orientation
estimation might be caused by the minimization of the orientation loss during the training process.
Under the applied research methodology, the model was trained for 3000 iterations because the value of
the total loss was approximately constant after approximately 2500 iterations as revealed by monitoring
the numerical training loss. Figure 6 shows that the total loss value decreased very quickly. Moreover,
the orientation error measurement in the fine-tuning process suffered from poor visualization—it
looked small compared to the position error but expanded after being converted to the aerospace Euler
angle sequence.

According to the cosine of the geodesic loss function, the exponent of Equation (9) must be
minimized to zero. Therefore, the result of Equation (9) is expected to be equal to, βq, but the
Adam optimizer always reduces the iteration loss by expecting the loss to be equal to 0 at the global
minimum in the weight spaces. From this mathematical mistake, the model might be trained by
ignoring the minimization in the orientation loss, causing the loss to converge to a constant value
very quickly. Moreover, the accuracy of the position prediction is extremely high compared to the
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orientation estimation accuracy because the importance of position learning was scaled up to reduce
the importance orientation learning. This event proved that a mistake in the formulation might be the
cause of the failure in orientation estimation. In the mathematical formulation of the loss function, it is
possible to train the model with the correction in the orientation loss function by subtracting 1 from the
exponential term of the orientation loss and taking the result as the absolute value. This corrected
loss function may solve the conflict of the exponential-based loss function and satisfy the principle
of the Adam optimizer. After the correction, the model learning behavior might learn through the
minimization of both the position and orientation loss values. However, this experiment did not
support this assumption. Therefore, it is the hypothesis for further research on pose estimation.

4.2. Weighted Euclidean-Based Pose Estimation

4.2.1. Results of Weighted Euclidean-Based Pose Estimation Model

The final model construction was based on a modified version of GoogLeNet and implemented
in a Python environment with 4500 generated images in the training dataset of the Soyuz spacecraft.
The model was trained for 30,000 iterations using Equation (22) as the loss function and optimized
by the Adam optimizer. The model was trained on the GPUs of the compute nodes at the National
Astronomical Research Institute (NARIT). The experiment on weighted Euclidean loss function was
studied by evaluating the differences in the learning behavior and the performance of each model
under different orientation scaling coefficients. The learning behavior is considered as the history of
the iteration loss during the training process. Figure 8a shows the overall learning behavior of each
model with different orientation scaling coefficients, while the illustration in Figure 8b focuses on the
events after the loss was reduced to less than 2500 to more closely inspect the learning behavior. In the
fine-tuning stage, the position error and the orientation error of models that were constructed with
different orientation scaling coefficients were manipulated with Equations (10) and (23). The results of
all the models in the fine-tuning stage are tabulated in Table 6 and plotted in Figure 9. According to the
fine-tuning method, the most efficient scaling coefficients occur when the position scaling coefficient
βx is set to 1, and the orientation scaling coefficient βq is set to 1500. After testing on the 500 test-set
samples, the model performance is reflected by the values shown in Tables 7–9.
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Figure 8. (a) Behavior of the total loss of the weighted Euclidean-based model at different iterations
during the training process; (b) behavior of the total loss of the weighted Euclidean-based model during
different iterations after the iteration loss decreased below 2500.
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Table 6. Fine-tuning error of the weighted Euclidean-based model with various orientation scaling
coefficients βq.

βx βq Med. Position Error (m) Med. Orientation Error (deg)

1 300 1.11338711 16.81335914
1 600 1.20315672 16.30207395
1 900 1.28458039 16.59338138
1 1200 1.28057494 16.29479161
1 1500 1.41480502 15.9104448
1 1650 1.32794428 17.39898174
1 1800 1.37533052 16.90322023Aerospace 2020, 7, x FOR PEER REVIEW 16 of 21 
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Table 7. Fine-tuning errors of the weighted Euclidean-based model (30,000 iterations).

βx βq Med. Position Error (m) Med. Orientation Error (deg)

1 1500 1.41480502 15.9104448

Table 8. Euler angle errors of the weighted Euclidean-based model (30,000 iterations).

βx βq Med. Φ Error (deg) Med. θ Error (deg) Med. Ψ Error (deg)

1 1500 8.51153642 8.75737224 8.42390433

Table 9. Accuracy of the weighted Euclidean-based model (30,000 iterations).

βx βq Med. Position Accuracy Med. Orientation Accuracy

1 1500 91.55210137% 85.84760674%

Subsequent experiments were conducted with that same loss function and the most efficient
scaling coefficients (βx = 1 and βq = 1500) by increasing the maximum number of iterations to
150,000. The learning behavior is shown in Figure 10, and the performance indicators are tabulated in
Tables 10–12.
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Table 10. Fine-tuning errors of the weighted Euclidean-based model (150,000 iterations).

βx βq Med. Position Error (m) Med. Orientation Error (deg)

1 1500 1.19148937 13.70432697

Table 11. Euler angle errors of the weighted Euclidean-based model (150,000 iterations).

βx βq Med. Φ Error (deg) Med. θ Error (deg) Med. Ψ Error (deg)

1 1500 7.14243874 7.53373215 6.73018005

Table 12. Accuracy of the weighted Euclidean-based model (150,000 iterations).

βx βq Med. Position Accuracy Med. Orientation Accuracy

1 1500 92.53104042% 87.9304795%

4.2.2. Discussion of the Weighted Euclidean-Based Pose Estimation Model

According to Figure 8a, the iteration loss of the model with the larger orientation scaling coefficient
βq began at a higher loss value compared to the model with the smaller orientation scaling coefficients
βq. The iteration loss of the model converged to an approximately constant value. Each model
was converted to a different constant because the limit values were scaled up by the corresponding
orientation scaling coefficients, βq. This difference is visualized clearly in Figure 8b. When the learning
behavior of models is compared to a vibrated function, the amplitude increases due to the higher
orientation scaling coefficient, βq as in the iteration. Moreover, from Figure 10, the iteration loss of the
model with the orientation scaling coefficient equal to 1500 was further reduced after 30,000 iterations.
It has been proven that the iteration loss can be further reduced and approach a constant value at
approximately the 140,000th iteration. Therefore, the error can be reduced further by increasing the
number of iterations.

The results show that this study successfully constructed a moderately high-performance pose
estimation model. Although the accuracy results show that it has superior accuracy for predicting the
position and moderately high accuracy for estimating the orientation, the errors in position and Euler
angles are still prohibitively large to use in an actual docking operation. In advanced computational
algorithms such as CNNs, the prediction performance depends strongly on the architecture, the dataset,
and the training method. Thus, a pose estimation model constructed from a more complex pretrained
model may result in higher accuracy. According to the methodology, these factors were of concern
in [27], which constructed a model under limitations of the GPU, an RTX 2080, on a laptop. Therefore,
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the modified version of GoogLeNet was chosen because the model achieved successful predictions
in [17] while having only low computational resource requirements. Consequently, the pretrained
model selected for this study is a controlling factor; the obtained accuracy may be the highest accuracy
that this model can achieve for spacecraft position and attitude estimation.

However, there are some ideas for increasing prediction performance. For instance, if the pose
estimation model was constructed with a more complex pretrained model as in [15], it might result
in higher accuracy and more reliable results. Alternatively, the auxiliary algorithm, such as the line
and point manipulations of the detected features, could be applied to construct the pose estimation
algorithm [11] as an auxiliary process to the main CNN. Moreover, if a model was specifically
constructed for spacecraft pose estimation, such as the SPN from [16], it could result in a more accurate
and reliable performance.

4.3. Model Comparisons: The Impact of Training Conditions

There are some significant differences between the exponential-based and weighted Euclidean-based
pose estimation models that lead to the different levels of performance. These differences include the
loss function, the number of iterations, and the available computational resources. Thus, the comparison
includes all the construction factors and the performance indicators for the two construction methods.
For the weighted Euclidean-based model, the results of the further trained model are also included
in this comparison. Comparative illustrations of the numerical results are shown in Figure 11.
From the methodology, the critical differences between the weighted Euclidean-based model and the
exponential-based model include the loss function, the number of iterations, and the computational
resources. First, the loss function for the weighted Euclidean-based pose estimation model relates to
the architecture of the CNN. The architecture of the modified version is slightly changed from the
original version, and the changes exclude the number of regressors. There are three regressors in
the architecture of the selected neural network. The exponential-based model was not constructed
based on the unequal importance of the three regressors. Conversely, the weighted Euclidean-based
pose estimation model was developed with a loss function that included the regressor coefficients
to mathematically indicate the different importances of the three regressors. In the general testing
stage, the prediction occurs at the third regressor; thus, the third regressor is considered to be the main
regressor. Moreover, it is impossible to obtain accurate results from the first and second regressors.
Therefore, the repurposing of GoogLeNet without considering the multiple regressors hypothetically
leads to low prediction performance. The experiment also indicates that the exponential-based loss
function is unable to reduce the prediction errors.

The exponential-based model failed for attitude estimation because of a mathematical conflict.
Therefore, the impact of the number of iterations can be observed on the two weighted Euclidean-based
models. The weighted Euclidean-based model trained for 150,000 iterations resulted in higher
performance for both position and attitude prediction than did the model trained for only 30,000 iterations:
the prediction errors were reduced and the overall accuracy was increased. Computational resources
played no significant role in the model performance. However, the availability of higher-performance
computational resources was convenient during the implementation.
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5. Conclusions

In a spacecraft docking operation, the position and attitude of the target spacecraft must be
determined, and a sensor must exist that can obtain those operational parameters. Currently,
vision-based algorithms have been developed concurrently with image processing using deep learning
algorithms. The goal of this study was to construct a position and attitude estimation model using a
deep neural network. The vision-based detection technique has the advantage that it is applicable for
both cooperative space objects and non-cooperative space objects. In the implementation, the pose
estimation model was constructed based on a state-of-the-art CNN model, which is a modified version
of GoogLeNet that forms a general pose estimation model. Then, the model was trained on a simulated
public dataset of the Soyuz spacecraft. Subsequently, the model was fine-tuned by repeated training
using different mathematical expressions to achieve maximum accuracy. The exponential-based
model resulted in high position estimation accuracy but poor orientation estimation accuracy. Thus,
the pose estimation model was rebuilt using a different loss function and additional training iterations.
With support from the National Astronomical Research Institute (NARIT), we were able to overcome the
computational resource limitations. The final weighted Euclidean pose estimation model successfully
achieves moderately high predication accuracy.

Under the harsh lighting conditions of outer space, the target spacecraft may not be completely
visible in images. Therefore, the vision-based model must detect the target spacecraft with less
consideration of the reflection of directional light and the planet surface. A model’s performance is
strongly dependent on its architecture and on the training procedures. Highly accurate performances
are usually obtained from the pose estimation model based on complex pretrained models. However,
this study indicated that a convolutional neural model with low complexity can perform at moderately
high efficiency when estimating spacecraft position and attitude. Nevertheless, although the complete
model of this research resulted in high efficiency, a real-world spacecraft docking operation requires
greater position and attitude accuracy and reliability from an estimation system.

Future research should target achieving higher prediction accuracy. Such a model could be
constructed using a high-performance pretrained model such as VGG, Inception, DenseNet, or ResNet,
whose architectures include deeper layers of neurons. When computational resource are unlimited,
a position and attitude estimation model can be constructed by repurposing a high complexity
pretrained model. Currently, cluster computing and cloud computing are excellent choices for reducing
the computation time during model construction, but accessing the compute nodes may be costly.
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The auxiliary algorithms are also an excellent choice for reducing the prediction error of a pose
estimation model. Many studies have manipulated the detected points and lines of interest to extract
position and attitude parameters from input images [3,9–12]. These contributions provide ideas for
future work. Point and line detection can be performed with lower complexity than vision-based CNN
algorithms such as OpenCV; then, feature detection can be conducted using an auxiliary deep learning
model. The outputs of those algorithms are numerical data that can be combined with image data into
a mixed form of input.

In an actual spacecraft docking operation, the spacecraft is in dynamic motion rather than static
as in a single 2D image. Moreover, the operation involves both detecting and tracking the spacecraft.
Therefore, a vision-based position and attitude estimation model can be applied to the state estimation
algorithm or available techniques [12]. The principle of state estimation has been widely applied in
the field of spacecraft dynamics and control. For example, the Kalman filter is an elementary state
estimation algorithm that combines state prediction using a physics-based model with measurement
during the update stage. A vision-based estimation system could be used as the measurement model
for spacecraft tracking. Hypothetically, the error of the position and attitude estimation model could
be corrected by the physics-based model during an actual docking operation with spacecraft in motion.

In summary, to satisfy a real docking operation, many auxiliary algorithms are recommended for
future research to increase the performance of the vision-based position and attitude estimation model.
The particular characteristic of the vision-based CNN model is that it is very specific to the environment
of the dataset. For example, the model that was trained with the simulation data will perform a
satisfactory estimation of this synthetic dataset. However, to address the real docking operation,
the constructed model with the knowledge of spacecraft pose estimation can be hypothetically trained
further with the data from actual operation [27]. With this feasibility, the vision-based CNN pose
estimation model could be trained with real photos to be practical and provide reliability to the actual
spacecraft docking in the near future. Moreover, the advanced state estimation algorithm combined
with vision-based detection could be a critical factor in achieving higher efficiency in spacecraft motion
prediction with regard to actual space interactions.
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