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Abstract: The scale difference between the real flight vehicle and the experimental model results in
the Reynolds number effect, which makes it unreliable to predict the aerodynamic characteristics of
flight vehicles by wind tunnel testing. To understand the mechanism of Reynolds number effects
on the aerodynamic characteristics of the supercritical wing that is commonly used in transport
aircraft in more detail, surface pressure wind tunnel tests of a transport aircraft reference model
with a wing-body configuration were conducted in the European Transonic Windtunnel (ETW) at
different Reynolds numbers. There are 495 pressure taps in total equipped on the surface of the test
model with the Mach numbers ranging from 0.6 to 0.86 and Reynolds number varying from 3.3 × 106

to 35 × 106. In addition, an in-house developed CFD tool that has been validated by extensive
experimental data was used to correct the wing deformation effect of the test model and achieve
detailed flow structures. The results show that the Reynolds number has a significant impact on
the boundary layer displacement thickness, surface pressure distribution, shock wave position, and
overall aerodynamic force coefficients of the transport aircraft in the presence of shock wave and
the induced boundary layer separation. The wind tunnel data combined with flow fields achieved
from CFD show that the essence of the Reynolds number effect on the aerodynamic characteristics
of transport aircraft is the difference of boundary layer development, shock wave/boundary layer
interaction, and induced flow separation at different Reynolds numbers.

Keywords: transport aircraft; aerodynamic characteristics; Reynolds number effects

1. Introduction

The supercritical wing is commonly used in the design of modern transport aircraft
by virtue of its excellent transonic performance [1–4]. The shock wave and the induced
separation occur on the upper surface of the supercritical wing during the cruise of trans-
port aircraft, whose properties are significantly affected by the Reynolds number. Flow
structures or aerodynamic characteristics of transport vehicles cannot be predicted precisely
by wind tunnel tests if the flight Reynolds number is not simulated [4–6]. Two well-known
examples of transonic Reynolds effect phenomena are the ill-estimated aerodynamic char-
acteristics of C-141 aircraft and C-5A aircraft. The low Reynolds numbers obtained in
C-141 wind tunnel tests led to a huge difference in aerodynamic center location from the
flight tests. The drag divergence Mach number of C-5A aircraft obtained from the wind
tunnel test was 0.02 lower than that obtained in flight. The ill-estimated shock position
and pressure distribution in low Reynolds number wind tunnels introduce significant risk
to the success of the vehicles [7–9]. Large-scale industrial cryogenic wind tunnels like the
National Transonic Facility (NTF) [9] in the USA and European Transonic Windtunnel
(ETW) [10,11] in Germany provide a unique test capability to match the free flight Reynolds
number of modern transport aircraft. However, it is unfeasible to conduct all tests in cryo-
genic wind tunnels due to their high costs and relatively low efficiency. Therefore, for a
considerable period, the traditional wind tunnel will continue to be the dominant ground
test facility for the development of transport aircraft.
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To scale the test data obtained from traditional wind tunnels to free flight, the mecha-
nism of Reynolds number effects on aerodynamic characteristics of flight vehicles should
be understood. Elsenaar [12] discussed the variation of airfoil and high aspect ratio wing
aerodynamic characteristics (lift, pitching moment, drag, drag divergence, and buffet
boundaries) as a function of Reynolds number based on wind tunnel results and sum-
marized that the Reynolds number effects could be categorized into direct and indirect
Reynolds number effects. The direct Reynolds number effects are the ones associated with
a constant pressure distribution while the indirect Reynolds number effects are associated
with a change in pressure distribution for varying Reynolds number. Based on the NTF
cryogenic wind tunnel facility, Curtin et al. [8,13] investigated the impact of Reynolds
number on a Boeing 777 and compared the full-flight Reynolds number wind tunnel data
to that from free flight tests. The experimental results showed that the drag and the cruise
angle decreased, and the drag divergence Mach number increased with the increase of
Reynolds numbers. Additionally, the comparison of aerodynamic data from flight tests
and data from the cryogenic wind tunnel were in good agreement, but the CFD and
wind tunnel correlation was not very satisfying. Clark, R.W. and Pelkman, R.A. [14] from
The Boeing Company tested an advanced transport aircraft wing in the NTF facility at
Reynolds numbers of 6, 30, and 40 million. They found that the aft loading on the airfoil
sections increases due to the reduction in viscous “de-cambering” caused by the presence
of the wing boundary layer as the Reynolds number increases, which would lead to an
increased nose-down pitching moment. However, the further increase to 40 million results
in a significant increase in pitching moment as the outboard wing is unloaded due to the
aeroelastic effects. Several other references [15–17] can also be found, which investigated
the Reynolds number effects on transport aircraft. However, generally speaking, high
Reynolds number wind tunnel results and the extrapolation techniques related to the
aerodynamic characteristics of Reynolds number effects of transport aircraft have seldom
been published, as they provide significant cost and time advantages over a competitor.
For providing more detailed and accurate experimental data to investigate the mechanism
of Reynolds number effects on aerodynamic characteristics of the transport aircraft and
develop Reynolds number effect extrapolation techniques, a transport aircraft model with
a typical supercritical wing was tested in an ETW facility at Reynolds numbers of 3.3, 6.6,
15, 25, and 35 million. Wing deformation was measured using the stereo pattern tracking
technique [18,19] to evaluate the pseudo-Reynolds number effect caused by aeroelasticity
of the large aspect ratio wing. The influence of transition mode (free transition and fixed
transition) was also investigated.

On the other hand, numerical simulation can complement wind tunnel testing and
enable thorough investigation of flow topology and the corresponding Reynolds number ef-
fect mechanism. A number of studies on Reynolds number effects on aerodynamic character-
istics of transport aircraft have been conducted numerically [20–26]. Yuma Fukushima et al. [21]
conducted wall-modeled large-eddy simulations at realistic high Reynolds numbers
(Rec ≈ 107) to investigate the Reynolds number effect on the flow fields of a supercritical
airfoil. The authors also investigated CFD methods for predicting the Reynolds num-
ber effects of supercritical airfoil [26,27]. However, it is still challenging to predict the
Reynolds number effects of three-dimensional supercritical wings and transport aircraft.
Karl Pettersson et al. [28] conducted CFD calculations by solving the RANS equations on
an unstructured grid for a transport aircraft with and without twin sting booms at different
Reynolds numbers. It was concluded that the pitch-up moment would have to be corrected
as a function of Reynolds number in order to estimate free flight conditions. However, their
study focused on the Reynolds number effect trends and the influence of the twin sting
boom. The mechanism of Reynolds number scaling effects on aerodynamic characteristics
was not analyzed. Several RANS solvers, such as object-oriented software elsA of ONERA
and unstructured RANS Solver TAU from DLR were developed for accurately predicting
lift, drag, and moments of transports aircraft [29,30]. However, most previous CFD studies
focused on how to improve the predicting accuracy of aerodynamic properties of transport
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aircraft. Systematic studies of Reynolds number effects on aerodynamic characteristics of
the transport aircraft and their corresponding mechanism are limited in public literature.

In this paper, an in-house developed CFD tool that has been validated by extensive
experimental data is used to correct the wing deformation effect [31] and achieve the
detailed flow structure over the transport aircraft model. Closely combining with cryogenic
wind tunnel test results, the Reynolds number scaling effects on aerodynamic characteristics
of transport aircraft and their mechanism are analyzed in this paper. The detailed model
configuration and the corresponding experimental and numerical setups are introduced in
Section 2. Thereafter, Reynolds effects on the surface pressure distribution, shock wave
location, trailing edge pressure recovery, boundary layer characteristics, and aerodynamic
coefficients of the supercritical wing are discussed systematically based on the wind tunnel
results and numerical flow structures in the case of the Reynolds number ranging from
3.3 × 106 to 35 × 106. These results are beneficial to understanding the mechanism of
Reynolds number effects of transport aircraft, which are briefly analyzed in this paper and
also are conducive to developing Reynolds number effect extrapolation techniques, which
is the priority of our next research.

2. Wind Tunnel and Experimental Setup
2.1. Wind Tunnel

The tests were conducted in the European Transonic Windtunnel (ETW). The ETW
facility (Figure 1) is a high Reynolds number transonic wind tunnel adopting nitrogen as
the test gas. High Reynolds numbers can be achieved by testing at cryogenic temperatures
down to 115 K and at pressure levels ranging from 115 up to 450 kPa. The Mach number
of this wind tunnel ranges from 0.13 through the high subsonic speeds representative for
cruise conditions of modern transport aircraft, up to 1.3 for supersonic aircraft or space
vehicles. The test section size in conjunction with the available pressure and temperature
ranges represented the best combination of parameters to achieve, with full span models
(spans up to 1.56 m), a Reynolds number of 50 × 106 at cruise conditions, and up to
90 × 106 with vertically mounted semi-span models.
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2.2. Model Configuration and Test Campaigns

As shown in Figure 2, a transport aircraft reference model with a wing-body configura-
tion was adopted. The supercritical wing with a 25-degree leading edge sweep has a taper
ratio of 0.28. The test model is made of maraging steel 200, a metal material applicable in
cryogenic conditions.
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Figure 2. Model configuration and distribution of orifice taps.

There are 495 pressure taps in total equipped on the surface of the test model, among
which 18 pressure section taps with 416 pressure orifices were distributed along the super-
critical wing full span. There are 9 pressure sections located on the upper surface of the
port wing, and the other 9 are located on the lower surface of the starboard wing. The boat
tail of the transport aircraft test model is equipped with 79 orifice taps for evaluating the
Reynolds number effect on flow properties over the boat tail. Pressure taps are connected
to the PSI8400DTC electronic scanning valve system. The accuracy of the surface pressure
measurement system is in the range of 100–200 Pa depending on the range of the pressure
scanner used (45, 30, 15 psi). The pressure scanners were referenced to the base pressure
that was measured in the sting boss with an accuracy of around ±100 Pa. In practice, the
accuracy obtained for the pressure scanners is the combination of the base pressure and
pressure scanner accuracy, which was examined during check calibrations before each test
block and was found to be better than ±250 Pa.

The balance and model misalignment, model dead weight, and the model elastic angle
under aerodynamic forces are all corrected. The test Mach number varies from 0.6 to 0.86,
and the Reynolds number ranges from 3.3 million to 35 million.

The surface pressure coefficient is calculated by

Cpi =
pi − p∞

q∞
, i = 1, 2 . . . n (1)

Aerodynamic force and moment coefficients of test model are obtained by pressure
coefficient integration:

Cn = −
∮

CpdxCa =
∮

CpdyCL = Cn cos α − Ca sin αCm,c/4 = (
∮

xCpdx +
∮

yCpdy)− 1
4

∮
Cpdx (2)

To evaluate the influence of boundary layer transition fixing on Reynolds number
effects, Ballotini grit strips with diameters from 0.075 to 0.09 mm were attached at the
position of 7% local chord on the upper and lower wing surface in the case of Reynolds
number lower than 15 × 106. The supercritical wing was tested without the roughness
band when the Reynolds number is higher than 15 × 106. During the whole wind tunnel
test campaign, Ballotini grit strips with diameters from 0.1 to 0.125 mm were attached to
the model fuselage 25 mm away from the fuselage nose for transition fixing. The grit size
and distribution were determined according to the ETW standard wind tunnel procedure
and criterion. Typically, grit strip height and grit density are 2 mm and 4%, respectively.
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The grit strip is stuck at the position of 7% local section chord along the wingspan and at
the position of 10% model body length from the nose.

To evaluate the wing deformation effect and obtain a pure Reynolds number effect, an
SPT system of ETW with a sampling frequency of 5 Hz and a sampling cycle of approximate
8 s was applied to measure the wing deformation. As illustrated in Figure 3, 40 markers
were attached along the wing surface with a sparse distribution near the wing root and
with increasing density toward the wing tip. SPT images were recorded at each angle of
attack. Then, the marker recognition and corresponding displacement calculation were
conducted via specialized software.
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Figure 3. SPT markers on the supercritical wing.

In practice, wing cross-section was assumed to be a rigid body, and the wing deforma-
tion was usually twist and bending. Twist angle θ and bending deformation ∆z in local
coordinate system would be calculated as follows:[

xd
zd

]
=

[
cos θ − sin θ
sin θ cos θ

][
x0
z0

]
+

[
∆x
∆z

]
In the above formula, x0, z0 and xd, zd represent the coordinate values of the feature

points on the section before and after the wing deformation. The accuracy of ETW SPT
system was 0.1◦ and 1 mm.

Wing deformation effect is corrected with CFD technique after the wing configuration
has been reconstructed according to SPT measurements.

3. Computational Setup
3.1. Computing Platform and Simulation Methods

In-house developed computational fluid dynamics software was used to evaluate and
correct the wing deformation effects and investigate the detailed steady flow structures over
a large range of Reynolds numbers. The central, ROE, and LU-SGS schemes were adopted
to discretize the convective, viscous, and time items, respectively, for the finite volume flow
solver. A non-reflective boundary condition was used as the far-field boundary condition.
All aircraft surfaces were dealt with as no-slip viscous boundaries.

Numerical results obtained by several common turbulence models, including the
one-equation Spalart–Allmaras (SA), two-equation k-ε, and two-equation SST models were
compared with experimental results obtained from wind tunnel tests. Overall, simulation
results based on the k-ω SST model have better correlation with the experimental results,
especially for predicting the shock wave strength and position. Therefore, turbulence
closure in the present study is given by the k-ω SST model.
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3.2. Grid Generation

Multi-block structured grid technology was applied to generate the grids of the
surfaces, inner field, and far field. The viscous boundary layer regions were resolved with
y+ ≈ 1. To verify the mesh dependency, 4 sets of grids were generated with the same y+

and O-H topology. Table 1 presents the parameters of the 4 sets of grids. By comparing
the aerodynamic coefficient convergence curves of the 4 sets of grids, only the coarsest
mesh (2 M) does not run to monotonic convergence and the densest mesh (20 M) has the
best gird convergence. However, considering the results of medium grid (10 M) were close
to the convergence solution and can meet the requirements for engineer application with
much less calculation amount, the medium mesh (10 M) was used in the current study.

Table 1. Parameters of the 4 sets of grids.

Grid Quality Flow Direction Wingspan Direction Normal Direction Leading Edge Grid Quantity
(Million, M)

Coarsest 141 73 69 9 2
Coarser 191 99 73 13 4
Medium 297 129 105 17 10
Densest 359 175 113 21 20

4. Results and Discussion
4.1. Wing Deformation Effect

Figure 4 illustrates the lift coefficient and pitching moment curves under different
dynamic pressures. When the dynamic pressure increases from 40 to 92 kPa, the lift coeffi-
cient curve slope decreases, and the pitch moment coefficient curve slope also decreases.
At higher dynamic pressure, effective angles of attack at the local section are reduced by
twist deformation along the wing. This causes its aerodynamic center to move toward
the leading edge along the chord, which leads to the pitch moment coefficient curve slope
decrease as the lift coefficient curve slope decreases. Specific increments of the lift and
pitching moment coefficients caused by dynamic pressure variation at different angles of
attack are given in Figure 5. At the same angle of attack, the lift and the pitching moment
coefficients are reduced about 0.01 and 0.0022, respectively.
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The influence of wing deformation on pressure distribution at different test conditions
is shown in Figures 6 and 7. It can be seen from Figure 6 that the wing deformation has
little impact on the pressure distribution in the case of α = 0◦ and M = 0.76 because the
aerodynamic load is relatively low and the flow over the wing keeps attached. With the
increase of the angle of attack, shock wave appears on the upper wing surface and the
pressure distribution and corresponding shock wave location changes to some extent due
to the higher aerodynamic load and larger wing deformation (Figure 7). Specifically, the
shock wave moves toward the leading edge along the local airfoil chord due to the negative
wing twist (local airfoil leading edge nose down). Additionally, the variation of pressure
distribution becomes more severe from the wing root to the wing tip because of the larger
wing deformation at the wing tip.
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The wing deformation effect on the flow structure of the model was calculated by
in-house developed CFD software using an advanced RANS-based turbulence model.
Figure 8 demonstrates the flow structures of the rigid model and deformed model. As
shown in Figure 8, compared to the rigid model, the separation region on the upper surface
of the deformed wing tip is smaller because the local angle of attack decreases due to the
negative wing twist.
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α = 4◦): (a) rigid model; (b) deformed model.

It could be found from the above analysis that the wing deformation effect has to be
corrected to obtain pure Reynolds number effects. In this study, the model deformation
measured by the SPT technique and CFD are used in combination to correct the aeroelastic
effect. Displacements along the wing measured by the SPT system reconstruct the deformed
model configuration.

Figure 9 shows the comparison of surface pressure distribution data from CFD with
an advanced RANS-based turbulence model and data from ETW wind tunnel tests. As
illustrated in Figure 9, the shock wave position and the pressure distribution calculated
by CFD are consistent with those from wind tunnel test, proving that the CFD methods
used for aeroelastic effect correction in this study are reliable. It is worth mentioning that
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aerodynamic data used for evaluating Reynolds number effects in this paper are based on
the rigid model without wing deformation.
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4.2. Influence of Transition Strips on Reynolds Number Effects

The flow structure and aerodynamic characteristics of supercritical wings are very
sensitive to the boundary condition development. Due to the high Reynolds number
during the real flight, the boundary layer on the wing transits near the leading edge
and the flow over the wing is nearly fully turbulent. However, in wind tunnel tests, a
wider laminar flow region is commonly achieved because of the much lower Reynolds
number. Generally, the fixed transition by transition strips is adopted to simulate the flight
boundary layer transition. However, the transition band should be removed when the
test Reynolds number is approaching the flight Reynolds number. To establish a feasible
Reynolds number effect correction method, it is significant to investigate Reynolds number
dependencies with and without the transition band.

Figure 10 illustrates the pressure distributions with and without transition band under
different Reynolds numbers. As shown in Figure 10, the transition fixing mainly affects the
pressure distribution of the upper wing surface. The shock wave position with the transition
band moves towards the leading edge up to 20% of the local chord and its strength is
reduced to some extent at a low Reynolds number test condition (Re = 3.3 × 106). The
envelope area of the pressure distribution curve with fixed transition is smaller than that of
free boundary layer transition. When transition grit strips are attached, the boundary layer
becomes thicker, which is similar to the boundary development state at a lower Reynolds
number. The thicker boundary layer can induce boundary layer separation early and the
shock wave moves to a new position ahead of the flow separation accordingly. As the test
Reynolds number increases, the boundary transition will occur ahead of the grit strips
and the thickness of the boundary layer will mainly be impacted by Reynolds numbers,
which makes the difference of the pressure distribution between the fixed transition mode
and free transition mode smaller. However, the difference can be neglected when the
Reynolds number is above 15 × 106. Based on the above analysis, it can be concluded
that the transition strip can simulate the flight transition location but cannot simulate the
boundary layer thickness and development on the supercritical wing surface. The shock
wave location and pressure distribution with transition fixing at a low Reynolds number
are significantly different to those in flight conditions. The transition band is mainly used in
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low Reynolds number wind tunnel tests to make the experimental data steadier. However,
it can be removed when the test Reynolds number is high enough. For the supercritical
wing employed in this research, the transition band is removed when the Reynolds number
is higher than 15 × 106.
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Figure 10. Pressure distributions with and without transition band under different Reynolds numbers (M = 0.76, α = 4◦,
η = 72.36%): (a) Re = 3.3 × 106; (b) Re = 6.6 × 106; (c) Re = 15 × 106.

4.3. Reynolds Number Effect on the Pressure Distribution of Supercritical Wing

Figure 11 illustrates the pressure distributions under different Reynolds numbers at
M = 0.76 and α = 0◦. It can be seen that there is no shock wave in this condition and the
pressure coefficient curve area that links to the lift coefficient becomes larger slightly as
the test Reynolds number increases from 3.3 × 106 to the flight Reynolds number 35 × 106.
However, the variation of pressure coefficient distribution is not generally apparent.
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Figure 11. Pressure distributions under different Reynolds numbers (M = 0.76, α = 0◦): (a) η = 54%; (b) η = 72.36%.

As the angle of attack increases, the shock wave forms on the upper wing surface.
Figure 12 shows the pressure distributions at different angles of attack and Reynolds
numbers (M = 0.76). It can be found that the Reynolds number has a significant impact
on the shock wave position. The pressure coefficient of the trailing edge becomes slightly
more negative and the shock wave pushes downstream up to 10% of the local chord when
the test Reynolds number increases from 3.3 × 106 to the flight Reynolds number 35 × 106.
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Figure 12. Pressure distributions at different angles of attack and Reynolds numbers (M = 0.76, η = 54%): (a) α = 2◦;
(b) α = 4◦.

The flow structures in different Reynolds numbers and free stream conditions are
simulated numerically based on the in-house developed CFD software to understand the
Reynolds number effect on the aerodynamic properties of the supercritical wing in more
detail. The numerical results show that the Reynolds number variation has little impact on
the flow structures and the surface streamlines when shock wave and flow separation do
not appear. When the Mach number and angle of attack are high enough to form a shock
wave and/or the induced separation, the flow structures are quite sensitive to the Reynolds
number. Figure 13 displays the numerical flow structures at Re = 3.3 × 106 and 35 × 106

in the case of M = 0.76, α = 4◦. As illustrated in Figure 13, the shock wave and separation
bubble appear near the outer part of the upper supercritical wing surface. As the Reynolds
number increases from 3.3 × 106 to 35 × 106, the shock wave and the separation are pushed
downward and the size of the separation bubble is reduced significantly, resulting in the
stronger span flow behind the separation bubble. Figure 14 illustrates the numerical flow
structures at Re = 3.3 × 106 and 35 × 106 in the case of M = 0.76, α = 6◦. As the angle of
attack increases from 4◦ to 6◦ at M = 0.76, the flow separation becomes much more severe
and crossflow appears in the most domain of the upper wing. When the Reynolds number
increases to 35 × 106, the size of backflow behind the shock wave is significantly reduced
and the crossflow near the wing root becomes much weaker.
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4.4. Reynolds Number Effect on Shock Wave Position

The shock wave position (designated by non-dimensional parameter, Xsh) affects the
separation type and size of the boundary layer, the surface pressure distribution, and the
overall aerodynamic forces of the supercritical wing. Figure 15 shows the variation of shock
wave position with the logarithm of the Reynolds number obtained from ETW wind tunnel
tests. It is worth mentioning that the discrete surface pressure data from wind tunnel tests
are fitted and the shock wave positions are determined based on the method proposed
by J. F. Cahill and P. C. Connor [5]. As can be seen from Figure 15, the shock wave moves
towards the trailing edge along the local airfoil chord when the Reynolds number increases,
and the shock wave position varies linearly with the logarithm of the Reynolds number. In
the case of M = 0.76, α = 2◦, the shock wave position moves towards the trailing edge along
the local airfoil chord up to 7% of the local chord as the Reynolds number increases from
3.3 × 106 to 35 × 106 at a location of 72.36% of the wingspan. It seems that shock wave
positions at the flight Reynolds number might be extrapolated from experiment results
obtained in conventional wind tunnels with a relatively low Reynolds number range.
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4.5. Reynolds Number Effect on Trailing Edge Pressure Recovery

The trailing edge pressure recovery can be used to analyze the flow recovery character-
istics behind the shock wave or the induced separation, which is related to the shock wave
position and strength. Typical results of the trailing edge pressure coefficient measured
from ETW wind tunnel tests are shown in Figure 16. As can be seen from Figure 16, the
trailing edge pressure coefficients show an increase trend as the test Reynolds number
increases. In the case of M = 0.76, α = 2◦, the trailing edge pressure increases 0.02 as
the Reynolds number increases from 3.3 × 106 to 35 × 106 at a location of 43.72% of the
wingspan. Additionally, an approximate linear growth of the trailing edge pressure with
the logarithm of the Reynolds number can be found, which is consistent with the trend of
shock wave position variation.
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4.6. Reynolds Number Effect on Boundary Layer Thickness

The Reynolds number that relates to the ratio of inertia force to viscous force is one
of the most crucial similarity parameters in flight vehicle aerodynamics. Its direct impact
on flow characteristics is the development of the boundary layer, which affects the shock
wave position and strength. To understand the mechanism of the Reynolds number effects
on aerodynamic characteristics of the supercritical wing, the boundary layer displacement
thicknesses under different Reynolds numbers are numerically simulated based on in-
house developed CFD software. The displacement thickness of the boundary layer is
calculated by

δ∗ =

δ∫
0

(1 − vx

U
)dy (3)

where δ∗ is boundary thickness, U is the flow velocity.
Figure 17 illustrates the numerical boundary layer displacement thicknesses of the

upper wing surface at different Reynolds numbers in the case of M = 0.76, η = 0.35. As
seen in Figure 17, there is no shock wave on the upper wing surface in the case of M = 0.76,
α = 0◦ and the boundary layer displacement thickness becomes significantly thinner as the
Reynolds number increases from 3.3 × 106 to 35 × 106. To be specific, the boundary layer
displacement thickness is reduced by 0.07 mm at the location of 20% of the local chord and
0.25 mm at the location of 80% of the local chord when the Reynolds number is increased
from 3.3 × 106 to 35 × 106. By contrast, the shock wave appears on the upper surface in
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the case of M = 0.76, α = 4◦. In this condition, the displacement thickness of the boundary
layer increases rapidly around the shock wave foot, but it still decreases with the growth in
Reynolds number. In addition, the starting location of the boundary layer displacement
thickness has a dramatic increase that corresponds to the shock wave position moving
toward the trailing edge along the local chord as the Reynolds number increases, which
is consistent with the trend obtained from the experimental surface pressure distribution
discussed in Section 4.4.
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4.7. Pure Reynolds Number Effect on Aerodynamic Characteristics of the Transport Aircraft

Figure 18 illustrates typical lift coefficient curves of the test model obtained by surface
pressure integration at different Reynolds numbers. As shown in Figure 18, the lift coeffi-
cient increases and the zero-lift angle is reduced at a higher Reynolds number. Moreover,
the lift coefficient slope becomes larger as the test Reynolds number increases but the
impact of Reynolds number on the lift coefficient becomes smaller when the Reynolds
number exceeds 25 × 106. The curves of lift coefficient increment (∆CL) curves versus the
logarithm of the Reynolds number are given in Figure 19. It can be seen that the curve of
the lift coefficient increment versus the logarithm of the Reynolds number is approximately
linear, but the change in ∆CL starts to be less steep when the test Reynolds number is higher
than 25 × 106. The effect of the Reynolds number on the pitch moment coefficient (Cm)
and the polar curve (Cm-CL) is shown in Figure 20. As the Reynolds number increases,
extra nose-down pitch moment is produced and the critical angle of attack for the pitching
instability is postponed, resulting in an extended linear segment of the pitch moment
curve. On the other hand, the wind tunnel results show that the aerodynamic center keeps
approximately unchanged when the Reynolds number varies from 3.3 × 106 to 35 × 106

and the Mach number is less than 0.79. However, while the aerodynamic center moves
toward the trailing edge of the local airfoil to some extent when the Mach number is larger
than 0.79. For example, the aerodynamic center position change is about 3.88% of the mean
aerodynamic chord in the case of M = 0.82.
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4.8. Analysis of the Mechanism of Reynolds Number Effect on Flow over the Supercritical Wing

The boundary layer thickness of the supercritical wing is thicker at low Reynolds
numbers. The relatively thick boundary layer develops along the chord and the correspond-
ing trailing edge boundary thickness increases, resulting in a reduced effective trailing
edge camber. By contrast, the effective camber near the trailing edge increases with the
Reynolds number, which can improve the lift force and decrease the zero-lift angle. This
effect becomes more apparent at higher Mach numbers, in particular when shock wave
appears. When the Mach number is low and there is no shock wave on the upper wing
surface, the lift increase in the case of a higher Reynolds number is mainly induced by
the aforementioned effective camber increase. However, when the Mach number is high
enough and the shock wave forms, the lift coefficient increases because of the shock wave
downward movement in combination with the effect of the effective trailing edge camber
increase. It can be concluded that Reynolds number has a significant impact on aerody-
namic characteristics of the supercritical wing when shock wave appears and the essence of
the Reynolds number effect is the variation of shock wave/boundary layer interaction and
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the induced boundary layer separation at different Reynolds numbers. The shock wave
can interact with two types of boundary layers: the laminar boundary layer and turbulent
boundary layer. In the case of the laminar boundary layer with a poor ability to resist the
negative pressure gradient, the flow is more likely to separate. For the turbulent boundary
layer, there are three types of boundary layer separations: the initial flow separation just
behind the shock wave, the shock wave induced separation bubble and the full flow sepa-
ration behind the shock wave. At a small angle of attack, the shock wave moves toward
the trailing edge along the local chord and the tendency of flow separation is weakened
with a higher Reynolds number. Figure 21 demonstrates the numerical flow structures of
the supercritical wing at different Reynolds numbers in the case of M = 0.76, α = 6◦. As
shown in Figure 21, the full flow behind the shock wave separates and a strong vortex
forms around the trailing edge in the case of Re = 3.3 × 106. When the Reynolds number
increases to 35 × 106, the flow separation is significantly weakened, the strong vortex is
replaced by a separation bubble and the full separation flow behind the shock wave is
replaced by the reattached flow behind the separation bubble.
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In the presence of a shock wave, the flow ahead of the shock wave is supersonic, and
the flow velocity reduces from supersonic to zero within the boundary layer. On the other
hand, the shock wave is terminated by a sonic line in the boundary layer. The pressure
dramatically increases behind the shock wave and the higher pressure is transmitted
downward through the subsonic layer underneath the sonic line, resulting in a strong
pressure gradient. The kinetic energy of the boundary layer is constantly lost because
of the flow viscosity. When its kinetic energy is not strong enough to resist the negative
pressure gradient, the backward flow and flow separation appear, which can induce more
severe energy loss. At high test Reynolds numbers, the relative flow viscosity decreases
with a thinner boundary layer and the effective camber of the supercritical airfoil increases,
which makes the shock wave move toward the trailing edge along the local chord. From
the perspective of the boundary layer, the energy loss caused by flow viscosity is reduced,
and the boundary layer can remain attached in a longer distance under the same negative
pressure gradient, which weakens the separation to some extent.

5. Conclusions

Due to the complex flow phenomena during the cruise of transport aircraft including
shock wave, shock/boundary layer interaction, flow viscosity effect, boundary layer devel-
opment and separation, the variation in the Reynolds number can result in an apparent
change of the flow structure and overall aerodynamic forces. Reynolds number effects
on aerodynamic characteristics of a transport aircraft are investigated in detail based on
cryogenic wind tunnel tests and CFD tools. The ETW wind tunnel results show that the
aeroelastic deformation of the supercritical wing in wind tunnel tests has a considerable
impact on aerodynamic characteristics in the presence of shock wave, which might even
exceed the effect of the Reynolds number. Furthermore, the transition band can improve
the stability and repeatability of the wind tunnel data and simulate the in-flight transition
location to some extent; however, it cannot simulate the boundary layer thickness and
development on the supercritical wing surface. In this study, the wing deformation effect is
corrected through in-house developed CFD software that has been validated by the wind
tunnel data and the transition band is removed when the test Reynolds number is higher
than 15 × 106. Combining the ETW wind tunnel test data and numerical results from CFD,
it can be concluded that the Reynolds number has a weak impact on the aerodynamic
characteristics of the supercritical wing when the shock wave does not appear, but dramatic
Reynolds number effects can be found in the presence of the shock wave. Reynolds number
effect on aerodynamic characteristics over the supercritical wing are essentially a kind of
mutual interference among boundary layer, shock wave, and induced flow separation.
The lift coefficient and the slope of lift curve become larger as the test Reynolds num-
ber increases; however, the impact of Reynolds number on the lift coefficient becomes
smaller when the Reynolds number exceeds 25 × 106. Moreover, as the Reynolds number
increases, extra nose-down pitch moment is produced when the Reynolds number varies
from 3.3 × 106 to 35 × 106 and the Mach number is less than 0.79. The results obtained in
this study can be used to develop Reynolds number effect correction and extrapolation
methods for conventional wind tunnel test data.
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Nomenclature

Ca axial force coefficient
CL lift force coefficient
Cm pitching moment coefficient taking the center point of the fuselage at the location of 1

4 of
the mean aerodynamic chord as the reference point

Cn normal force coefficient
Cpi surface pressure coefficient of the orifice tap i
Cpte tailing edge pressure coefficient
M Mach number
pi surface pressure of the orifice tap i
p∞: static pressure of the free stream
Q, q∞ dynamic pressure of the free stream
Re Reynolds number
U flow velocity
Xsh shock wave location (non-dimensional) along the span
α angles of attack
η relative location of local airfoil along the span
δ boundary thickness
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