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Abstract: Advances in the trusted autonomy of air-traffic management (ATM) systems are currently
being pursued to cope with the predicted growth in air-traffic densities in all classes of airspace.
Highly automated ATM systems relying on artificial intelligence (AI) algorithms for anomaly de-
tection, pattern identification, accurate inference, and optimal conflict resolution are technically
feasible and demonstrably able to take on a wide variety of tasks currently accomplished by humans.
However, the opaqueness and inexplicability of most intelligent algorithms restrict the usability
of such technology. Consequently, AI-based ATM decision-support systems (DSS) are foreseen to
integrate eXplainable AI (XAI) in order to increase interpretability and transparency of the system rea-
soning and, consequently, build the human operators’ trust in these systems. This research presents a
viable solution to implement XAI in ATM DSS, providing explanations that can be appraised and
analysed by the human air-traffic control operator (ATCO). The maturity of XAI approaches and their
application in ATM operational risk prediction is investigated in this paper, which can support both
existing ATM advisory services in uncontrolled airspace (Classes E and F) and also drive the inflation
of avoidance volumes in emerging performance-driven autonomy concepts. In particular, aviation
occurrences and meteorological databases are exploited to train a machine learning (ML)-based
risk-prediction tool capable of real-time situation analysis and operational risk monitoring. The
proposed approach is based on the XGBoost library, which is a gradient-boost decision tree algorithm
for which post-hoc explanations are produced by SHapley Additive exPlanations (SHAP) and Local
Interpretable Model-Agnostic Explanations (LIME). Results are presented and discussed, and consid-
erations are made on the most promising strategies for evolving the human–machine interactions
(HMI) to strengthen the mutual trust between ATCO and systems. The presented approach is not
limited only to conventional applications but also suitable for UAS-traffic management (UTM) and
other emerging applications.

Keywords: explainable AI; machine learning; XGBoost; risk analytics

1. Introduction

In traditional air-traffic management (ATM), artificial intelligence (AI) has been used
to enhance air traffic and airspace operational efficiency for decades [1–4]. A significant
contemporary challenge is the integration of the unmanned aircraft system (UAS) into
both current and future ATM contexts [4], as the current ATM systems are unable to cope
with the envisaged increase in air traffic densities, especially in low-level operations and in
urban environments. Within the same unit of airspace volume considered, the magnitude
of information that UAS-traffic mangement (UTM) needs to exchange, process, and track is
much higher than that of conventional ATM. If not properly addressed, these conditions
will compromise the safety of airspace operations whenever unforeseen perturbations in-
troduce major deviations from the nominal flight plans [5]. Thus, computationally efficient
optimisation algorithms are needed to deal with the increasing amounts of exchanged and
processed data, constraints, and objectives characterising future ATM/UTM paradigms.
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In this context, future ATM and UTM decision-support systems (DSS) are expected to
significantly rely on artificial intelligence (AI), which allows moving away from the limited
flexibility of algorithmic logics typically found in declarative automation [4]. Increases in
automation complexity and in the amount of processed information are eliciting further
research in human–machine interactions (HMI) towards improving human–machine coor-
dination and teaming [6]. ATM DSS have progressively evolved to enhance the support
provided to the ATM operator’s decision-making process [7–9]. Since each task has unique
objectives and constraints, the ATM system needs different types of analytics and reasoning
techniques for different tasks. Nonetheless, utilising complex AI inference with charac-
terised by a black-box behaviour could lead to a lack of transparency and a consequent
loss of the operator’s trust and situation awareness. The black-box model only presents the
final solution to the operator without showing the rationale behind [10], which challenges
human ability to verify and understand the suggested solution. However, this verification
is crucial, specifically for applications where systems need to be traceable for safety-critical
operations [11]. Therefore, emerging ATM/UTM applications of AI is expected to elicit an
evolution of design and certification methodologies to ensure the ongoing acceptance and
trust by end-users. The research community is developing the optimal formats to present
an explanation in a manner that the machine will be more likely trusted by human operator
to the appropriate level, minimising both unwanted overtrust and distrust. State-of-the-art
eXplainable AI (XAI) approaches are also being evaluated in terms of their support to
integrated human-autonomy decision making, enhancing understandability and trans-
parency [12]. However, the maturity of XAI algorithms and their presentation are currently
limited in aerospace applications [13,14]. This paper focuses on the development of a viable
solution to introduce XAI in the ATM DSS based on machine-learning (ML) inference.

With the current popularity of ML applications, various commonly used algorithms
have been made available as open-source libraries. This allows researchers to rapidly inte-
grate all the components from freely available libraries, thereby simplifying the prototyping
of software and reducing barriers to access [15,16]. The paper reviews and investigates
the most suitable and efficient open-source ML model that not only offers high predic-
tion accuracy but also can be comprehended by the operator. The study investigates the
feasibility and maturity of the proposed interpretable AI framework and focuses on the
development of a ATM DSS functionality based on open-source algorithms and datasets.
In particular, aviation occurrences and meteorological databases, which are both publicly
available, are exploited to support the design of a hypothetical risk-prediction tool, which
could support both present day ATM—as in the case of air-traffic advisory service in uncon-
trolled airspace—as well as future, performance-based autonomy concepts—for instance,
by driving the inflation of avoidance volumes. The verification case study presented in
this paper is restricted to conventional air-traffic data due to limited availability of UAS
traffic data; however, the framework can be applied directly to UTM and urban air mobility
(UAM) applications as soon as mature datasets become available.

The remaining parts of this section present a review of predictive models, XAI, and
ATM HMI evolutions, whereas Section 2 introduces the theory underpinning the selected
AI-prediction and explanation models. Section 3 describes the proposed implementa-
tion, datasets, model-training process, and performance metrics. The performance of the
adopted AI inference engine is presented and discussed in Section 4. The explanation
results and the proposed ATM HMI concept are presented in Sections 5 and 6, respectively.

1.1. Predictive Methods

Traditional predictive methods are divided into two types: deductive methods based
on governing theory (e.g., physics, mathematics) and inductive methods based on data
analytics. Deductive methods strictly require the availability of theoretical models. More-
over, high degrees of realism and/or long forecast periods require high computing powers
and/or time often beyond the available resources [17]. On the other hand, inductive
methods include both statistical methods and ML methods. Statistical methods are de-
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rived strictly according to mathematical methods, meaning that the overall phenomenon
is modelled by characterising the correlation between estimators and variables [18]. For
instance, the time-series model, one of the most commonly used quantitative methods,
only captures the patterns and temporal evolution based on the data without considering
the causal structure of the occurrence [19]. As an example, Jaimyoung [20] proposed a
linear regression model to predict the highway driving time from a few minutes to an hour
in the future. These statistical models are mainly used for reasoning and estimation. Some
assumptions and restrictions need to be introduced before model development, such as
fixed algorithms and features that need to be manually identified and extracted.

Contrastingly, the structure of the ML algorithm is flexible, as it needs to assume that
the input data can be very limited. Hence, it is very suitable to deal with complex and highly
nonlinear relationships [21]. Ensemble learning is one of the most popular and promising
ML algorithms. Its fusion methods include boosting, bagging, and stacking [22]. Ensemble
learning not only explains the interaction between input variables and predictive models
but also identifies the relative importance of the key factors. Gradient-Boosted Decision
Tree (GBDT) is an integrated learning method based on the Decision Tree (DT). Unlike a
traditional DT, the advanced modification enables GBDT to iteratively train a series of weak
learners and strategically generate the best tree set to improve prediction accuracy [23].
Ramon [24] adopted the GBDT model to predict the take-off time, which provided more
accurate prediction results than the Enhanced Tactical Flow Management System (ETFMS).
The open-source model XGBoost, developed based on the GBDT framework, is adopted in
this paper. This library has many advantages in processing nonlinear data and can extract
features from variables containing noise and redundant information [25]. As an example,
Gu et al. [26] proposed a lane-changing decision system for autonomous vehicles based on
the XGBoost model. By making full use of large-scale dataset training, the XGBoost model
has much better performance and practicability than conventional lane-changing systems.
Global analysis of the features’ importance can explain the results of the XGBoost model to
a certain extent.

1.2. Explainable AI (XAI)

Most ML models lack the explainability of the algorithm itself and the output results,
which then challenges the operator to understand and accept such a solution. Henceforth,
post-hoc explanations models are considered in this research to enhance the explainability
of the results. According to Arrieta et al. [13], the XAI method is systematically analysed,
and its importance is divided into two-step classification, as shown in Figure 1.

The first classification is between interpretable models and post-hoc explainability
XAI approaches and is based on the distinction between models that are inherently trans-
parent and models for which a post-hoc explaination can be constructed. In particular,
when the ML model does not inherently offer a transparent explanation, a particular
method is needed to explain its decision so an additional classification can be encountered.
Model-agnostic post-hoc explanation methods can be applied to any ML models, whereas
model-specific methods are developed only for a specific ML model and will not work in
conjunction with other techniques. Generally, black-box AI models will require a post-hoc
explanation method. There are two types of explanation: global and local. The local
explanation divides the complex model into simple individuals while also analysing the
individuals’ relationship. The global explanation offers an overall understanding of the
model, aiming to make the entire decision-making process completely transparent and
comprehensive. Usually, it is necessary to utilise these two explanation methods simultane-
ously to satisfactorily explain the ML algorithm, which can effectively reduce the potential
skew and uncertainty affecting a single method.
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Due to the opacity of the black-box model, the post-hoc explanation model is used to
interpret the prediction model and its results. However, a single explanation method limits
and biases the interpretation and understanding of the black-box model. Therefore, two
different explanation models are used to simultaneously explain a black-box algorithm and
prediction results, thereby enhancing the interpretability of XGBoost incident and accident
prediction. The mature and freely available post-hoc explanation models considered in this
study are SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic
Explanations (LIME). SHAP is a visual local explanation method for tree models. While
assigning the weight and value to each feature, the local explanation is extended to capture
the features’ interaction directly, and a large number of local explanations are used to
understand the global structure. Besides, its built-in visual components can intuitively
display the influence of complex variables [27]. The LIME model, on the other hand, is
completely independent from the prediction model itself and only attempts to explain its
results. In other words, LIME can explain any black-box prediction without inspecting the
model. These two XAI methods are supported by XGBoost that aims to further explain the
prediction results in more detail and highlight the driven factors of the results.

1.3. Human–Machine Interactions

Current developments of the ATM system and interface technology are aimed at
accommodating denser traffic. A number of HMI innovations have been proposed for
ATM implementation supported by system evolutions [28]. The two common design
streams are visualisation [29–31] and control function improvements in DSS [7–9]. With the
increasing AI exploitation in decision-support tools, the air-traffic controller (ATCo)/air-
traffic control operator (ATCO)’s concerns when working with highly automated systems
have not diminished but instead have been exacerbated [32]. Experienced human operators
tend to be reluctant to adopt suggested solutions from highly autonomous DSS if these
are not trustworthy, traceable, and interpretable, especially in very complex situations [14].
Hence, DSS are required to adopt XAI to increase the understandability and trust of human
operators. One emerging concept that aims to enhance the cognitive states of the human
operator in real time during the complex and time-critical operations with a high level of
automation is Cognitive Human–Machine Interfaces and Interactions (CHMI2) [33,34]. A
human cognitive state monitoring/enhancement by machine prevents cognitive overload
and human oversight when increasing the level of autonomy in decision-support systems.
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The CHMI2 framework is comprised of three main modules: sensing, inference, and
adaptation. Similar to other proposed HMI concepts in the literature, the CHMI2 sensing
module also uses advanced neurophysiological sensors, which are, however, used to collect
the responses in real time. The collected and pre-filtered data are passed through the
inference module to estimate the cognitive state of the operator. This inferred cognitive
state is the key driver to dynamically adapt the HMI formats/functions and automation
behaviour [35].

2. Prediction and Explanation Models

This section introduces the theory underpinning the predictive AI algorithm adopted
in this study and subsequently the post-hoc explanation methods that were implemented.
The first part introduces the rationale and equations of the XGBoost predictive model to
describe its operating principle. The second part explains the operating principles and
equations of two different interpretation models, which are LIME and SHAP.

2.1. XGBoost

XGBoost is a library developed from the GBDT algorithm to combine multiple weak
learners through the boosting method [36]. The basic algorithm is based on the Classifica-
tion And Regression Trees (CART), which has high performance in both interpretability
and transparency [37]. XGBoost has seven main hyper-parameters that can be adjusted to
improve the algorithm’s progress and robustness and also to reduce overfitting. The set of
hyperparameters include:

• Learning rate: in order to prevent overfitting, a shrink step is used in the update
process. Each time the weight of a leaf node is updated, the learning-rate coefficient
is multiplied to avoid excessive step sizes. A small learning rate can improve the
robustness of the model;

• Maximum depth: this value is the maximum depth of branching of the tree, which is
also used to avoid overfitting. The larger the value, the easier it is for the model to
learn more specific and local samples;

• Minimum child weight: this parameter represents the minimum sample weight
required to generate a child node. When the sum of the weights of all samples on the
leaf node is less than the set value, the construction process will stop splitting. This
parameter is used to avoid over-fitting. When the value is large, it can prevent the
model from learning local anomalies in the training data;

• Maximum number of iterations: this is the maximum number of trees generated and
also the maximum number of iterations. The higher the number of trees, the better the
performance, and more computing time is required;

• Lambda regularisation: this is used to control L2 regularity. It is the coefficient in front
of the score of the leaf node in the objective function;

• Alpha regularisation: This is used to control L1 regularity. It also speeds up the
algorithms in very high dimensions;

• Gamma value: in order to further split the leaf nodes of the tree, the minimum loss
reduction must be set. In other words, the split is determined by observing whether
the loss has decreased;

• Sub-sample: this parameter controls the proportion of random sampling for each tree;
too large or too small a value will lead to over-fitting and under-fitting of the model.

Equation (1) illustrates the basic CART formula, where K is the number of trees, F
represents all possible CART trees, and xi represents a specific CART tree.

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (1)

The training of the model is essentially additive training. Figure 2 illustrates an
example of a CART prediction model. The algorithm also classifies the missing values of
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each node. The number in the leaf is the value of f . The detailed mathematical formulation
of the XGboost algortithm is presented in Appendix A.
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2.2. Post-Hoc Explanation Model

The global explanations of prediction results from XGBoost can be enhanced by
adopting two post-hoc local explanation models: SHAP and LIME. These two models are
supported by XGBoost with the aim of explaining the prediction results in more detail and
highlighting the factors driving the results. Table 1 summarises the differences between
LIME and SHAP.

Table 1. The features and differences between LIME and SHAP.

LIME SHAP

Features

Local Explaination Method;
Does not interface with the algorithm

inside the black box;
Independently generates new samples

based on each feature.

Local Explaination Method;
Based on game theory;

Calculates the importance of additive
features for each specific prediction.

Advantage
Model-Agnositc method; even if the

prediction model changes, LIME is able
to make the local explanation.

Supports multiple explain plots;
Allows comparative studies between

features;
Can quickly implement and explain

tree-based models.

Disadvantage
The explained results are not stable
enough, and different interpretation

models will produce different results.

Long calculation time, slower
interpretation production speed.

2.2.1. LIME

The LIME method is used to explain the prediction of any classifier or regression
model [38]. It does not interface with the algorithm inside the black box but randomly
generates input data to collect aggregate outputs. The feature importance is obtained
by comparing the prediction results between the artificially perturbed data and original
example, thereby generating an explanation for each single prediction of any ML models.
Out of the various possible explanations, LIME selects the explanation ξ(x) to be presented
to the human operator based on the following minimisation problem [38]:

ξ(x) = argming∈GL( f , g, πx) + Ω(g) (2)
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where f represents the black-box model that needs to be explained; g and G are, respectively,
the explanation model and the collection of potentially interpretable models; πx is the
distance between data x in the new dataset and the original data instance; L defines the
model fidelity, which is a measure of how unfaithful the explanation is in approximating
the original model around πx; and Ω is the complexity of the model, which shall be low
enough to be interpretable by the human operator.

2.2.2. SHAP

SHAP is an alternative method for local ML explanation. It is a method based on the
concept of game theory to calculate the importance of additive features for each specific
prediction [39]. Similar to the feature correlation explanation, the method describes the
function of the opaque model by ranking or measuring the impact, relevance, or importance
of each feature in the prediction output. Lundberg et al. [27] developed TreeExplainer
based on SHAP, which is a visual local explanation method. While assigning the weight
and value of each feature, the local explanation is extended to capture the interaction of
the features directly, and a large number of local explanations are used to understand the
global structure. It calculates the Shapley value or attribution value of each feature and
then measures the impact of the feature on the final output value [40,41]:

g
(
z′
)
= φ0 +

M

∑
j=1

φjz′j (3)

where g represents the explanation model; M is the number of input features; z represents
whether the feature exists; and φ is the attribution value of each feature (Shapley value).

The output S of the decision tree conditioned on the feature subset is defined as fx(S).
The SHAP value is based on game theory to average all possible conditional expectations.
For a certain feature j, it is necessary to calculate the Shapley value for all possible feature
combinations (including different orders) and then weighted summation:

φj = ∑
S∈N{j}

|S|!(p− |S| − 1)!
M!

[ fx(S ∪ {i})− fx(S)] (4)

where S is a subset of the features used in the model; x is the vector of feature values of the
sample to be explained; and p is the number of features.

The working principle is to average the marginal contribution of all sequences. In
other words, by entering all the sequences, the marginal revenue generated by each feature
is obtained, and then all the gains are averaged, and finally, the Shapley value is calculated
for each feature.

The SHAP methodology supports various types of explanation plots. In this paper,
two plots are chosen to analyse and explain the results of model predictions: summary plot
and dependence plot. The models fulfil the gap that other models cannot provide, which
is to present how each feature matters and its effect distribution. It is vital for operator
decision making when further reasoning is required. The summary plot shows the potential
interactions between various features, allowing the global features to be interpreted through
this local explanation. The dependence plot also explains the contribution of a single
variable to the predicted value and analyses individual features in more detail.

3. Model Implementation and Verification Methodology

This section describes the AI explanation model implementation as well as the ver-
ification methodology. The first part explains the overall framework of prediction and
explanation model integration followed by dataset selection and data preparation. Lastly,
the performance metrics are discussed for model performance evaluation.
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3.1. Prediction Framework

The implemented prediction framework is illustrated in Figure 3. In the initial stage,
a trained XGBoost model is generated by inputting labelled training data. Successively,
testing data are fed into the trained model to obtain representative prediction results. The
accuracy of the prediction model is assessed by comparing the prediction results with
actual labelled values. The system integrates the SHAP model and the LIME model to
obtain two post-hoc explanations. The SHAP model requires testing data and the trained
model, while the LIME model requires the input of testing data and forecast results. These
models provide the explanation of the trained model and the explanation of the specific
parameters. Finally, the two explanation modes and forecast results are integrated and
displayed through the interaction module. In the verification case study presented in
the following section, the XGBoost library is trained to predict the risk of incidents and
accidents based on meteorological data, which allows to implement a real-time situation-
assessment tool for air-traffic advisory services of the kind provided in present day ICAO
airspace Classes D, E, and F. The same risk-assessment functionality can also be exploited
to drive the inflation of avoidance volumes in emerging performance-based ATM/UTM
concepts involving autonomous separation assurance and collision-avoidance services.
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The adopted development environment to implement and test the prediction model
is Python 3.7.8, with four computing libraries, which are Numpy 1.18.5, Pandas 1.0.5,
Scikit-learn 0.23.1, XGBoost 1.3.0., LIME 0.2.0.1, and SHAP 0.36.0. NumPy (Numerical
Python) is an extended library of the Python language. In this particular activity, the
main function is to process the N-dimensional array generated when inputting data and
handle abnormal values. Pandas is a tool based on Numpy, which mainly solves input
data analysis and exploration tasks. Usually, NumPy and Pandas are used together. Scikit-
learn and XGBoost are Python ML models. In this research, XGBoost mainly provides
core algorithms, while Scikit-learn mainly provides pre-processing of input data and data
analysis of output results.

3.2. Datasets

In this case study, due to the limited availability of publicly available traffic datasets,
open-source databases of meteorological and aviation incidents and accidents have been
adopted in the verification case study are collected from the Bureau of Meteorology [42]
and ATSB (Australian Transport Safety Bureau) national aviation occurrence database [43].
The collected data are separated into two periods from 1 April 2018 to 31 March 2019 and
from 1 July 2019 to 30 November 2019. The data location is in a 15 km radius of Melbourne
Airport (latitude: 37.67 S, longitude: 144.83 E). The meteorological data comes from the
Melbourne Airport site, numbered 086282. The data consist of daily comprehensive data:
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observation data at 9 a.m. and 3 p.m. The entire dataset is divided into five channels,
as follows:

• ID and date
• Synthetic daily data
• Observation data at 9 a.m.
• Observation data at 3 p.m.
• Incidents and accidents report

To display the data and feature labels effectively, the feature names are simplified;
for the operation of the model, the data of wind direction is converted from characters to
numerical values; the incidents and accidents numerical value is translated into 0 and 1,
corresponding to False and True, respectively. Table 2a details the full names corresponding
to the abbreviations. Table 2b the codes corresponding to the wind-direction characters.

Table 2. (a) Full names to the abbreviations. (b) Wind direction codes.

(a) Full Names to the Abbreviations

Abbreviation Full Name Abbreviation Full Name

M Month 9DW 9 a.m. wind direction
MinT Minimum temperature (◦C) 9DW2 9 a.m. wind direction (index)
MaxT Maximum temperature (◦C) 9SW 9 a.m. wind speed (km/h)

Rf Rainfall (mm) 9MSL 9 a.m. MSL pressure (hPa)
E Evaporation (mm) 3T 3 p.m. Temperature (◦C)
Ss Sunshine (hours) 3H 3 p.m. relative humidity (%)

DGW Direction of maximum wind gust 3CA 3 p.m. cloud amount (oktas)
DGW2 Direction of maximum wind gust (index) 3DW 3 p.m. wind direction
SGW Speed of maximum wind gust (km/h) 3DW2 3 p.m. wind direction (index)

9T 9 a.m. temperature (◦C) 3SW 3 p.m. wind speed (km/h)
9H 9 a.m. relative humidity (%) 3MSL 3 p.m. MSL pressure (hPa)

9CA 9 a.m. cloud amount (oktas) IA Incident and accident (Binary)

(b) Wind Direction Codes

Code Wind Direction Code Wind Direction

1 N 9 S
2 NNE 10 SSW
3 NE 11 SW
4 ENE 12 WSW
5 E 13 W
6 ESE 14 WNW
7 SE 15 NW
8 SSE 16 NNW

3.3. Model Preparation

The segmentation of the dataset is critical for the prediction model. The ratio of the
train-test split directly affects the entire prediction model. If the testing set’s size is too
small or too large, it causes insufficient model accuracy or lack of generalisation ability. If
the training set is too large, this increases the risk of overfitting. The conventional data-split
strategy in many research activities is a ratio of 80% training to 20% testing. In this research,
the split ratio is 67% to 33%: two-thirds of the training set and one-third of the testing
set. The purpose is to ensure that the model has enough data for training while reducing
overfitting and increasing its generalisation ability. The total input data is 518 days, and
the system randomly selects 347 days of data as the training set and 171 days of data as the
test set. To obtain a better prediction accuracy, the test sets up three hyperparameters to
compare the results: learning rate, maximum depth, and minimum child weight. The main
purpose of these three hyperparameters is to prevent overfitting but in different ways:
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• The learning rate helps to adjust the iteration step size, improving the model’s overall
robustness by reducing the weight of each step;

• The maximum depth adjusts the number of specific samples and local samples that
the model can obtain to avoid overfitting;

• The minimum child weight determines the sum of the minimum leaf node sample
weights, thereby preventing the model from learning local special samples.

The learning rate ranges from 0 to 1. For the test, 1, 0.1, 0.01, and 0.001 were taken.
The maximum depth range is from 0 to unlimited. In the test, 3, 5, 8, and 10 were taken. For
minimum child weight, it will lead to insufficient fitting if the value is too high. Therefore,
four values were chosen in the test, which are 1, 3, 4, and 7. The remaining hyperparameters
are set to be fixed values, and no adjustments were made in this experiment, as shown
below:

• Maximum number of iterations: 800
• Lambda regularization: 1
• Alpha regularization: 0.85
• Gamma value: 0.2
• Sub-sample: 0.85

The hyperparameter adjustment process has two main objectives. The first purpose
is to optimise the Xgboost algorithm performance for the particular problem at hand,
typically by adjusting the hyperparameters to maximise prediction accuracy. The other
objective is to evaluate the influence of different hyperparameters on the prediction results.
Some problems have good prediction results under certain hyperparameter settings, but
once the hyperparameter settings are changed, the accuracy of the prediction results drops
sharply. Therefore, by comparing the prediction results under different hyperparameter
settings, it is possible to improve the versatility and usability of the system.

3.4. Performance Metrics

In regression problems, performance metrics like Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Coefficient of Determination (R2) are commonly adopted.
In this study, the accuracy of the predicting model is calculated based on Equation (5), where
PError means the sum of the differences between each predicted value and its corresponding
actual value. NTest is the total number of test sets.

Accuracy = 1− PError
NTest

(5)

Area under the curve (AUC) is a binary model evaluation index that refers to the area
under the receiver operating characteristic (ROC) curve. Equation (6) is the calculation
of AUC.

AUC =
∑insi∈positivieclass rankinsi −

M×(M+1)
2

M× N
(6)

In Equation (6), ∑
insi∈positivieclass

is the sum of all positive sample numbers, rankinsi is

the serial number of the sample i, and M and N are the number of positive samples and
the number of negative samples, respectively.

4. Model Performance Evaluation

The prediction performance of XGBoost is analysed by comparing the results from
different hyperparameter combinations, as detailed in Section 3.3. Simultaneously, without
resorting to other explanation methods, XGboost explains globally the trained model
through its feature correlation analysis and feature importance analysis.
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4.1. Prediction Outcomes

The accuracy of all models exceeds 85%, and the highest accuracy is 92.40% where
the learning rate is 0.001, and minimum child weight is 7. Besides, the lowest accuracy
is 86.55% when the learning rate is 1, the maximum depth is 5, and the minimum child
weight is 1 and 3. The correct classification rate is high. AUC (area under the curve) is used
to measure the robustness of the estimated model against overfitting. In the test, the lowest
AUC value is 0.69 when the learning rate, minimum child weight, and maximum depth are
1, 1, and 3, respectively. Additionally, the highest values are 0.82 when the learning rate and
minimum child weight are 0.1 and 5 and the maximum depth is 3, which shows that the
prediction model has high robustness and high accuracy. Regardless of the hyperparameter
setting, reliable accuracy and good robustness are obtained as a result. Therefore, the
hyperparameters used in the training model are a learning rate of 0.001, minimum child
weight of 7, and maximum depth of 3. All detailed test results of the XGBoost model
trained according to different hyperparameters are shown in the Supplementary Data.

4.2. XGBoost Global Explanation

To be able to comprehend the model, the analysis of data features is crucial. The
correlation between variables (features) in the input data can be observed in Figure 4. The
highest positive correlation between two variables is 0.98, while the highest negative is
−0.69. Temperatures in each period and MSL pressure are the most relevant features in the
study. Remaining features have no close correlation among themselves.
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XGBoost produces its inferences based on a tree model different from linear models;
tree models are naturally robust to related variables [44]. For XGBoost, the existence of
relevant variables will only increase the calculation time, but it will not significantly impact
the accuracy of the model. When preparing the data in this experiment, the relevant
variables were not screened because there were less than 20 types of variables.

Figure 5 shows the calculated importance of input variables in the adopted dataset.
The graph provides a global explanation, and its calculation factors are weight, gain, and
coverage (WG&C). Weight counts the number of times a variable is used as a division
variable in all trees. For example, as the highest value in this calculation method, SGW
(speed of maximum wind gust) was used to divide the tree a total of 245 times. As shown
in Figure 5, all variables can be divided into five echelons. The three variables of the first
echelon—SGW, 3H and 9SW—are used as important features for tree division. Gain refers
to the average value of the gain brought by the existence of a feature split node in all trees.
For example, the average gain of 9SW (9 a.m. wind speed) ranked second in all trees is
3.864103. The larger the gain value, the smaller the loss function for the node and the model
complexity in the subsequent round. In Figure 6, all variables can be divided into three
echelons: the first and second echelons are SGW and 9SW, respectively, and the remaining
variables are the third echelon. Figure 7 shows the coverage of each variable in the model,
which refers to the average of the number of samples covered by this variable in all trees
when a feature exists as a split node. For example, the third-place 3SW (3 p.m. wind speed)
covers an average of 31.736 samples. It can be divided into two gradients; the first gradient
is SGW and 9SW, the average value of which is much higher than the other values. The
remaining variable is the second gradient.
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Figures 8 and 9, respectively, present the total gain brought by the gain calculation
method and the total number of samples obtained by the coverage calculation method. In
summary, under the three calculation methods, the two variables SGW and 9SW play a
very critical role in the prediction results. Therefore, it can also be seen that the occurrence
of incidents and accidents mainly depends on wind speed. Other variables, such as 3H, E,
and 9MSL, have a higher importance in some calculation methods. It can also be concluded
that in some cases, the occurrence of incidents and accidents is also highly sensitive to
humidity, evaporation, and MSL pressure.
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5. Post-Hoc Local Explanation Generation

In this chapter, the XGboost model and prediction results are explained through SHAP
and LIME explanations models, which, in addition to providing strong explainability
and legibility, also provide an explanation of the trained predictive model and specific
predictive target, local explanation, and global explanation.
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5.1. SHAP Explanation

All variables in the model are considered as contributors. The importance of the SHAP
value is to assign predicted values to all contributing features. To have a better global
understanding of the features in the model, the summary plot is usually analysed first. The
summary plot provides a visual ordering of the results by colour and coordinate axes, as
presented in Figure 10. A dot in the graph represents each piece of data for each variable.
The redder the colour of the dot, the larger the actual value. Contrarily, the bluer the colour,
the smaller the actual value. The distribution along the Y-axis represents the data’s features,
while the X-axis is the SHAP value composed of the colour system and the data dots. The
jitter overlap of the data dots on the Y-axis combines the distribution of the SHAP value of
each feature. Besides, the features are sorted on the Y-axis. On the X-axis, the model impact
is sorted from high to low. For instance, the maximum wind gust and the wind speed at
9 a.m. greatly influence the forecast results. The higher the wind speed, the greater the
forecast’s positive impact and the higher the SHAP value. Contrastingly, low wind speed
has a negative impact on the result. In addition, the higher the value of sunshine time and
MSL pressure, the greater the negative impact on model prediction, while the lower the
actual value, the higher the SHAP value. Furthermore, it can be seen from the distribution
range of the data on the X-axis that the influence of wind speed on the prediction results is
much stronger than sunshine time and MSL pressure. Therefore, a preliminary conclusion
can be drawn that no matter how high the value of the sunshine time and the average
sea-level pressure are, as long as there is a strong wind, there will be a high probability of
incidents and accidents.
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Figure 10. SHAP explanation of the summary plot.

Figures 11 and 12 are SHAP dependence plots that present feature dependency. Com-
pared with the summary graph, the dependency graph is a more specific local explanation.
It focuses on the impact of a single variable on the overall inference. For each data instance,
a point is drawn with a characteristic value on the X-axis, and a corresponding Shapley
value is drawn on the Y-axis.
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Figure 11 shows the SHAP feature-dependence plot for maximum wind gust speed.
Taking the wind speed of 60 km/h as the dividing line, when the wind gust speed exceeds
this value, the output of the SHAP characteristic value will rise rapidly. However, when
it reaches 70 km/h, no matter how the wind speed value increases, the contribution to
the forecast value will no longer continue to increase. In other words, wind gust speeds
exceeding 70 km/h tend to cause the same hazard to aircraft. Figure 12 shows the humidity
at 3 p.m. The influence of humidity is divided into two trends and three states. The
first trend is that when the humidity is lower than 60%, the contribution to incidents and
accidents is continuously reduced to a negative number. Once this value is exceeded, its
impact will increase rapidly. The three intervals are humidity from 0 to 40%, 40% to 60%
and greater than 60%. When the humidity is 0–40%, there is no impact on incidents and
accidents. when the humidity is 40–60%, the impact is negative. In other words, this
humidity is statistically associated with reduced occurrences of incidents and accidents.
When it is greater than 60%, the risk rises sharply, and when it reaches 70% and higher
values, it will contribute noticeably to the occurrence of incidents and accidents.
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5.2. LIME Explanation

LIME can be used to show the explanation of the output of a single sample.
Figures 13 and 14, respectively, illustrate the predicted probabilities and detailed expla-
nations of samples 42 and 154 in the test set. As shown in Figure 13, the XGBoost model
predicts that the probability of incidents and accidents is 4.6%. LIME’s predicted proba-
bility is 5.2%. The centre plot shows the contribution of the main features corresponding
to the linear model weight to the prediction. When the wind gust speed is greater than
44 km/h and less than or equal to 59 km/h, it will have a negative impact on the probabil-
ity of incidents and accidents. This is also similar to the explanation given by the SHAP
feature-dependence plot.
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The prediction shown in Figure 14 is that incidents and accidents may occur. The
XGBoost model has a prediction probability of 65%, while the LIME linear regression
model has a prediction probability of only 33.3%. It shows that gusts of 74 km/h contribute
the most in terms of relative weight. When 9SW is greater than 28 km/h, it has a positive
contribution to the predicted result. This can also be confirmed with the SHAP explanation.

6. Model-Explanation Interface Concept

This section presents an HMI concept for ATM advisory DSS based on post-hoc
explanation models, i.e., SHAP and LIME. The proposed interface is flexible and applicable
in both ATM/UTM DSS; however, the concepts presented here are specifically designed
for the case-study application documented in this article, which is the hypothetical risk-
prediction DSS for air-traffic advisory services. The proposed graphical user interface (GUI)
to present the explanations to the operator is illustrated in Figure 15. This interface shows a
detailed explanation for both global and local scales. This interface is meant to be displayed
on the secondary monitor and does not clutter the tactical situation display on the primary
monitor. The display layout is divided into three parts, as shown in Figure 16. The red
part illustrates the global explanation of the training model, that is, explaining the weight
and priority of each feature after the model is trained, which is similar to the summary
plot of SHAP. This information can be viewed at any time. Moreover, ATCO can allow the
viewing of more feature information by sliding up and down.

The orange area at the bottom presents the local explanation of the training model
detailing the relative distribution and weight of the specified features in the training model.
The display of this section is not fixed, and ATCO necessitates clicking on the feature list
in the red area. Up to four local feature explanations can be displayed at the same time,
and they are arranged sequentially from right to left, as data can be displayed without
dragging the features.

The green area on the right explains the prediction results in individual cases. Dif-
ferently from the explanation based on the training model, the explanation for individual
prediction is updated in real time. On the upper right of the area is the data sequence.
In addition to the results of the system model, the prediction results of the explanation
model are also given. The prediction results are evaluated through two different algorithm
models. In the data-list section, the feature name and the real-time value of the feature
are provided. The figure on the right shows the weight coefficient of the feature under the
current value.

The proposed interaction mode aims to support ATCO to inspect this new information
without excessively affecting the usage habits and working environment. The design of
this HMI mainly focusses on the following three key points:

• Monitoring of automated processing;
• Awareness of anomalies and abnormal states; and
• Handling of emergencies.

Therefore, the information interaction of the hypothetical risk-prediction DSS is di-
vided into two states and three modes. The two states are Predict Non-Incidents and
Accidents (PNIA) and Predict Occur Incidents and Accidents (POIA). The three methods
are as follows:

• Silent mode: when the prediction of incidents and accidents is below the safety
threshold;

• Prompt mode: when the probability of incident or accident is above the safety thresh-
old; and

• Detailed information mode: this can be viewed regardless of status.
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This state, depicted in Figure 17, is adopted by the system when no significant risks
are predicted, and the advisory DSS is in silent mode. In this state and mode, the system
will display “Predictive Alert: Active” in the information list area (top left of the main
screen) and make predictions periodically. As long as the system predicts that there is
no risk, the DSS will maintain this mode, which is characterised by no specific displayed
information to hinder or distract ATCO’s attention.
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The results of the prediction system are shown in Figure 20. Based on the original
information, the label is extended to include the predicted probability of incident/accident
and the type of incident/accident predicted. At the same time, it also prompts ATCO to
inform the pilot. In order to open the information on the label, the system needs to receive
ATCO control inputs. The input method is the mouse click, which requires ATCO to click
on the label of a single aircraft with the mouse to view more information and end the
flashing and alarm prompts.
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7. Conclusions and Future Research

The foreseen proliferation of conventional air traffic and unmanned aircraft system
(UAS) operations, particularly in low altitude airspace, prompts the need to increase the
level of automation and also exploit the unique strengths of artificial intelligence (AI)
and machine learning (ML). Due to the lack of transparency of the black-box model that
characterises a wide variety of AI/ML algorithms, it is essential to develop strategies
to ensure the explainability of decision-support system (DSS) resolutions. This paper
presented the integration of a relatively conventional ML predictive model, XGBoost, with
both global and local explanations methodologies, SHapley Additive exPlanations (SHAP)
and Local Interpretable Model-Agnostic Explanations (LIME). The proposed solution was
verified through a representative case study addressing an hypothetical, advisory DSS for
real-time risk-prediction in uncontrolled airspace, for which the relative importance of
various weather factors on the probability of accidents and incidents was assessed. Due
to the insufficient availability of UAS-traffic data, the presented verification addressed
conventional traffic in controlled airspace with risk prediction based on meteorological
data. The prediction results of the XGBoost model applied to this particular case study are
well within the acceptable range and show an overall high accuracy, confirming the ML
model’s reliability. The SHAP and LIME algorithms are applied to the trained XGBoost
model and are able to identify and illustrate very clearly the significant correlations in the
dataset and how individual variables affect the prediction both locally and globally.

This research has established a feasible method to improve human-autonomy teaming
by introducing explainability for AI inference processes in DSS for traditional air-traffic
management (ATM) and UAS-traffic management (UTM). However, the methods described
in this article have been so far verified only in the hypothetical DSS for advisory services.
In our future work, we will focus on integrating AI algorithm-interpretation methods into
the development stage of algorithms and systems, extending the proposed interpretation
framework to other applications or use other forms of AI to improve mutual trust between
humans and intelligent systems.
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Appendix A

To prevent overfitting, the algorithm adds L1 and L2 regularisation terms by having
the objective function that sums regularisation L and loss function Ω, while θ is a parameter
trained from a set of given data, as shown in Equation (A1).

obj(θ) = L(θ) + Ω(θ) (A1)

The objective function of the model is presented in Equation (A2). The first part is
the training loss, which represents the difference between the real value and the predicted
value. The second part is the regularisation, which is used to control the complexity of
the tree.

obj(θ) =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (A2)

Equation (A3) is the optimised tree, where t (time iteration) is defined as the sum of
the scores. Equation (A4) is the obtained objective function formula.

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + fk(xi) (A3)

Obj(t) =
n

∑
i=1

L
(

yi, ŷ(t−1)
i + fk(xi)

)
+ Ω( fk) + Constant (A4)

Taylor expansion is performed on the objective function and combines
Equations (A3) and (A4) to get Equation (A5).

Obj(t) =
n

∑
i=1

L
(

yi, ŷ(t−1)
i + gi ft(xi) +

1
2

hi f 2
t (xi)

)
+ Ω( fk) + Constant (A5)

Equation (A6) is the regularisation formula, where γ is the complexity parameter of
each leaf; T is the number of leaves; λ is the parameter to measure the penalty; w is the
vector of scores on the leaves. Equation (A7) defines Gj as the node of the leaf and Hj is the
weight of the leaf, which is the value of the leaf node.

Ω( fk) = γT +
1
2

λ
T

∑
j=1

w2
j (A6)

Ω( fk) = γT +
1
2

λ
T

∑
j=1

w2
j (A7)
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When removing all constant values, Equations (A6) and (A7) are combined to get the
objective function as Equations (A8) and (A9).

Obj(t) ≈
n

∑
i=1

[
giwq(xi)

+
1
2

(
hiw2

q(xi)

)]
+ γT +

1
2

λ
T

∑
j=1

w2
j (A8)

Obj(t) =
T

∑
j=1

∑
iεIj

gi

wj +
1
2

∑
iεIj

hi + λ

w2
j

+ γT (A9)

when Gj = ∑i∈Ij
gi and Hj = ∑i∈Ij

hi, the equation changes to Equation (A10).

Obj(t) =
T

∑
j=1

[
Gjwj +

1
2
(

Hj + λ
)
w2

j

]
+ γT (A10)

To obtain the best value of each leaf node and the corresponding objective function
value, Equation (A10) is optimised by the following Equations (A11) and (A12):

w∗j = −
Gj

Hj + λ
(A11)

Obj = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT (A12)

When CART continues to branch until the tree grows to the maximum depth,
Equation (A13) is then used to determine the stop gain. Equation (A13) comprises four
parts: the score on the new right leaf, the score on the new left leaf, the score on the original
leaf, and the regularised on the additional leaf.

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

+
(GL + GR)

2

HL + HR + λ

]
− γ (A13)
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