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Abstract: Obtaining reliable wind information is critical for efficiently managing air traffic and airport
operations. Wind forecasting has been considered one of the most challenging tasks in the aviation
industry. Recently, with the advent of artificial intelligence, many machine learning techniques have
been widely used to address a variety of complex phenomena in wind predictions. In this paper,
we propose a hybrid framework that combines a machine learning model with Kalman filtering
for a wind nowcasting problem in the aviation industry. More specifically, this study has three
objectives as follows: (1) compare the performance of the machine learning models (i.e., Gaussian
process, multi-layer perceptron, and long short-term memory (LSTM) network) to identify the most
appropriate model for wind predictions, (2) combine the machine learning model selected in step (1)
with an unscented Kalman filter (UKF) to improve the fidelity of the model, and (3) perform Monte
Carlo simulations to quantify uncertainties arising from the modeling process. Results show that
short-term time-series wind datasets are best predicted by the LSTM network compared to the other
machine learning models and the UKF-aided LSTM (UKF-LSTM) approach outperforms the LSTM
network only, especially when long-term wind forecasting needs to be considered.

Keywords: unscented Kalman filter; long short-term memory; wind nowcasting

1. Introduction

According to the Federal Aviation Administration (FAA), the FAA’s air traffic orga-
nization served more than 44,000 flights and 2.7 million airline passengers daily in over
29 million square miles of airspace before the COVID-19 pandemic [1]. This is already a
large number of flights and passengers; however, the FAA expects the United States (U.S.)
domestic carrier passenger growth to average 1.8 percent per year over the next 20 years [2].
As aviation traffic continues to grow, most airport operators are concerned about ground
delays directly related to operating costs [3]. Among various factors that affect the ground
delays, accurate wind information around an airport is the most significant factor in evalu-
ating the efficiency of airport operations [4]. Wind forecasting has recently been recognized
as one of the most challenging tasks in the aviation industry [5].

Many research groups have been dedicated to developing numerical weather models
to predict weather patterns. The two best known numerical weather models are the
Global Forecast System [6] developed by the the National Oceanic and Atmospheric
Administration (NOAA) and the European Centre for Medium-Range Weather Forecasts [7]
developed by the European Centre, which are called the American model and the European
model, respectively. While numerical weather models have been widely used in the aviation
industry, it is worth mentioning that numerical weather models have some limitations in
predicting wind patterns due to aleatory uncertainty. Recently, many machine learning
techniques have been used along with a myriad of data-driven approaches to enhance the
level of understanding of various complex phenomena in nature such as wind predictions.

Aerospace 2021, 8, 236. https://doi.org/10.3390/aerospace8090236 https://www.mdpi.com/journal/aerospace

https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-8762-6991
https://orcid.org/0000-0003-0755-9635
https://doi.org/10.3390/aerospace8090236
https://doi.org/10.3390/aerospace8090236
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/aerospace8090236
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace8090236?type=check_update&version=1


Aerospace 2021, 8, 236 2 of 17

In this paper, we propose a hybrid framework that combines a machine learning model
and a Kalman filtering technique for a wind nowcasting problem in the aviation industry.
More specifically, this research has three goals as follows: (1) compare machine learning
models (i.e., Gaussian process (GP), multi-layer perceptron (MLP), and long short-term
memory (LSTM) network [8]) to identify the most suitable model for wind predictions in
Section 3.5, (2) combine the machine learning model selected in step (1) with an unscented
Kalman filter (UKF) [9] to improve the fidelity of the model in Section 3.6, and (3) perform
Monte Carlo simulations (MCSs) to quantify uncertainties arising from each modeling
process in Section 3.7.

For the data-driven wind nowcasting approach proposed in this paper, we uti-
lize the Modern-Era Retrospective analysis for Research and Applications-2 (MERRA-2)
dataset [10] provided by the National Aeronautics and Space Administration (NASA)
given that the MERRA-2 wind dataset is widely used in the aviation industry. For example,
the Aviation Environmental Design Tool [11] developed by the FAA utilizes MERRA-2
wind data to calculate fuel consumption in a simulation environment. However, even
though the MERRA-2 dataset contains reliable wind information, it is important to note
that the MERRA-2 wind dataset is not adequate for wind speed predictions as it is basically
historical data. The main purpose of this research is to develop a hybrid framework (i.e.,
combination of a machine learning algorithm and Kalman filtering technique) that uses the
MERRA-2 wind dataset for wind nowcasting in the aviation industry. The remainder of this
paper contains the following sections: literature review (Section 2), proposed methodology
(Section 3), results and discussion (Section 4), and conclusion (Section 5).

2. Related Work

With the advent of artificial intelligence (AI), many machine learning techniques have
been widely used to address various and complex phenomena in nature. In particular,
many researchers have proposed new approaches using machine learning techniques to
predict wind speed information at a specific location. As an illustration, for wind speed
predictions, Mohandes et al. [12] used the support vector machine and the MLP and
Kulkarni et al. [13] compared the artificial neural network (ANN) model performance with
several statistical regression methods. Furthermore, Rozas-Larraondo et al. [14] proposed
a new method based on non-parametric multivariate locally weighted regression for wind
speed forecasting in airports and Khosravi et al. [15] conducted a case study to compare
machine learning algorithms for time-series wind speed prediction at a wind farm in Brazil.
Recently, various versions of the LSTM network have been widely used for short-term
wind speed predictions [16–18].

Although machine learning techniques generally outperform traditional approaches
(e.g., numerical weather models) in wind predictions, they do not always provide accurate
wind information due to unpredictable uncertainties. In some cases, machine learning
techniques are combined in a hybrid approach to provide more accurate wind predictions.
For instance, for short-term wind speed predictions, extreme learning machines [19] are
combined with either the nearest neighbors approach [20], the adaptive noise and auto-
regressive integrated moving average approach [21], or the improved seagull optimization
algorithm [22]. Furthermore, Nezhad et al. [23] developed a new combined model that
integrates wind source potential assessment and forecasting using image processing of
satellite data and an adaptive neuro-fuzzy inference system. In 2021, Imani et al. [24]
combined the rough and fuzzy set theory in the LSTM model to enhance accuracy and
reduce data uncertainties.

Although the aforementioned hybrid methods improved the accuracy of short-term
wind predictions, they might not be suitable frameworks for long-term wind forecasting
since they did not use current and in-site measurements unlike Kalman filtering. In other
words, it has been recently found that Kalman filtering [25,26] can improve the fidelity of
machine learning models. As an illustration, Lee and Johnson [27] showed that Kalman
filtering improves the accuracy of machine learning models such as GP regression and Ullah
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et al. [28] proposed a hybrid method combining an ANN and a Kalman filter technique to
improve the performance of a prediction algorithm under dynamic conditions. In addition,
Hur [29] recently presented a wind speed prediction scheme that comprises two stages:
estimation by an extended Kalman filter (EKF) and prediction by a neural network. While
the aforementioned literature survey has demonstrated the capability for wind forecasting,
the proposed methods may not be applicable for the MERRA-2 wind dataset, which is
one of the most commonly used wind datasets in the aviation industry, as the methods
were not trained and developed using the MERRA-2 dataset. It is also worth mentioning
that the methods did not consider a validation process at aviation-related locations such
as cruise points of aircraft. Thus, the main contribution of this paper is to develop a
hybrid framework that combines a machine learning model with Kalman filtering for wind
nowcasting, especially using MERRA-2 wind data.

3. Methodology

This paper aims to develop a framework that performs wind nowcasting by combining
a machine learning model with a Kalman filtering technique. The framework proposed in
this paper consists of four phases as follows: (1) decompose annual wind data into training
and validation samples as described in Section 3.1, (2) compare machine learning models
(i.e., MLP, GP, and LSTM) to identify the most appropriate model for wind predictions
as presented in Section 3.5, (3) combine the selected machine learning model with a UKF
to improve the fidelity of the model as presented in Section 3.6, and (4) perform MCSs
to quantify uncertainties arising from the modeling processes as described in Section 3.7.
Figure 1 delineates an overall flowchart of the proposed framework.

Figure 1. Overall flowchart of the proposed methodology.

3.1. Data Preparation

MERRA-2 contains a set of detailed weather-related properties (e.g., wind, humidity,
and temperature) against longitude, latitude, altitude, and timestamp. Among various
MERRA-2 weather variables, we specifically collected eastward and northward wind speed
data as we wanted to develop a framework that performs wind predictions (e.g., eastward
wind model and northward wind model) with the aim of providing an accurate wind
forecast to the aviation industry. Figure 2 shows an example visualization of the MERRA-2
winds at a certain time and altitude.
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Figure 2. Example visualization of the MERRA-2 winds at a specific time and altitude.

In terms of time-series data preparation, we retrieved the MERRA-2 wind dataset (i.e.,
three-hour interval dataset) from January to December in 2018 at a point of interest. To
specify the point of interest, we collected the previous Delta Airlines 2638 flight trajectory
information through the FlightAware flight tracking data platform [30]. We then selected
one of the points consisting of the cruise phase of the flight (i.e., altitude = 34,000 feet).
As the next step, we collected wind information at the point of interest from January to
December in 2018 and generated a CSV file that includes information with respect to date
and wind speed. Additionally, we decomposed the time-series dataset into a training (84%)
phase (i.e., from January to October) and a validation (16%) phase (i.e., from November to
December) for a holdout validation purpose. Figure 3 shows how the MERRA-2 annual
wind datasets are decomposed into training and validation phases.

Figure 3. Decomposition of the MERRA-2 annual (2018) wind data into training (January–October)
and validation (November–December) phases.

Mathematically, given N number of data samples, we generated a dataset of N − 1
input and output pairs by shifting each data point for one-step-ahead forecasting; thus,
the inputs become x1:N−1 and their corresponding outputs are x2:N . Here, subscript 1 : N
means the history of the data from discrete time 1 to time N. In a nutshell, given the set
of training data D = 〈x1:N−1, x2:N〉, a machine learning model identifies the relationship
between input xi−1 and output xi by predicting output xi+1 with new input point xi. Here,
we model wind speed information with one-step-ahead forecasting because the overall
framework proposed in this paper includes the Kalman filter technique that generally
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follows one-step-ahead propagation [25]. The discrete dynamic equation of each wind is
defined as follows:

xi = f ( xi−1, ηi−1), (1)

where f (·) is wind dynamics that will be modeled by a machine learning technique and
η is white noise. Here, x is an accessible ground-truth value (i.e., MERRA-2 wind data in
this paper) in training and validation phases. It is important to note that we concentrated
only on the point of interest to validate the applicability of the proposed methodology and
further investigations may be conducted at other locations in U.S. territories (e.g., weather
stations) when necessary.

3.2. Gaussian Process (GP)

A GP, which is also known as Kriging, was originally introduced by Matheron [31] as
a geostatistical estimation method. The GP has been widely utilized in general regression
problems because of the advantage that its prediction is probabilistic in such a way that
it provides uncertainty bounds of the predictions. In this paper, we implemented the GP
to create a nonlinear probabilistic regression model of MERRA-2 wind data. Given N
input and output pairs, the hyper-parameters of the kernel were optimized during the GP
regression process by maximizing the log marginal likelihood of the outputs. Additional
details are summarized in Appendix A.

3.3. Multi-Layer Perceptron (MLP)

We implemented the MLP to create a nonlinear regression model of MERRA-2 wind
data with the aim of finding the best weight parameters to minimize errors between
predicted and target values. To find the best weight parameters in the model, we utilized
the Adam algorithm that is an extended version of the stochastic gradient descent method.
The MLP-based wind regression model entails the following fully-connected layers: (1) an
input layer to receive MERRA-2 wind data, (2) an output layer with the linear activation
function that makes a prediction, and (3) two hidden layers with the sigmoid function.
Figure 4 shows the diagram of the MLP model structure used for this paper. To isolate the
free hyper-parameters of the MLP wind regression model, we formulated the design of
experiment (DoE) with respect to a number of hidden layers, a number of hidden nodes,
learning rate, regularization penalty parameter, and batch size. The effective MLP model
was finally determined by the choice of hyper-parameters tabulated in Table 1.

Figure 4. Diagram of the MLP structure used in this paper.
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Table 1. DoE results for the hyper-parameters of the MLP model.

Hyperparameter Lower Bound Upper Bound Final Choice

Number of hidden layers 1 2 2
Number of hidden nodes 10 100 50

Learning rate 0.01 0.00001 0.0001
Regularization penalty parameter 0.01 0.00001 0.001

Batch size 1 400 200

3.4. Long Short-Term Memory (LSTM) Network

While the MLP is widely used for nonlinear regression problems, it is important
to note that the MLP-based regression method may not be robust for solving complex
problems that frequently appear in nature. For this reason, many AI researchers have
been committed to developing deep learning (DL) models that are generally defined with
more than two hidden layers without losing the key idea of the MLP technique. The
recurrent neural network (RNN), which is one of the DL models devised by mimicking
the sequential processes of the human brain, has been introduced to particularly deal with
time-series prediction tasks by allowing information to persist in network loops. However,
one potential issue is that the RNN may not be capable of handling long-term dependencies,
indicating that it only works well if the gap between previous and present information is
small. In response to this concern, the LSTM network [8] was introduced to specifically
handle long-term dependencies. The LSTM network typically has a memory block (i.e.,
output gate, input gate, forget gate) interacting in a very special way in modules. In this
paper, we implemented the LSTM network, one of the popular DL models especially for
time-series predictions, to handle sequential MERRA-2 wind data. That is, the LSTM
network models true wind dynamics f (·) described in Equation (1), resulting in fLSTM(·)
as follows:

x̂i = fLSTM( xi−1 ), (2)

where xi−1 is the ground truth value at time (i − 1) and x̂i is a predicted value at time
i. In particular, we used the Keras LSTM library [32] to perform wind predictions with
MERRA-2 data. The LSTM model structure used for this paper was constructed with the
following properties as tabulated in Table 2.

Table 2. LSTM network structure used in this paper.

Parameter Value

Number of layers 6
Number of nodes 30
Number of epochs 100

Learning rate 0.001
Dropout rate (hidden layer) 0.2

3.5. Model Evaluation and Comparison

To identify the most appropriate machine-learning-based time-series wind prediction
model, we computed the coefficient of determination (i.e., R-squared), root-mean-square
error (RMSE), and mean absolute error (MAE) [33] with respect to the validation dataset.
The error metrics used in this paper are defined as follows:

RMSE =

√
1
M

ΣM
i=1|xi − x̂i|2

MAE =
1
M

ΣM
i=1|xi − x̂i|,
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where M is the number of data for this validation phase. The results are tabulated in
Table 3. We also calculated the prediction errors (= x̂i − xi) and uncertainty bounds of the
models as shown in Figure 5. The results from Table 3 and Figure 5 indicate that time-series
wind datasets are best predicted by the LSTM network (e.g., smallest RMSE and MAE)
compared to the other machine learning models (i.e., GP and MLP).

Table 3. Comparison of machine-learning-based time-series wind prediction models.

Model
Eastward Wind Prediction

RMSE (m/s) MAE (m/s) R-Squared

LSTM 3.9193 2.9354 0.9525
MLP 6.7425 5.1157 0.8593
GP 4.2414 3.1051 0.9433

Model
Northward Wind Prediction

RMSE (m/s) MAE (m/s) R-Squared

LSTM 4.4486 3.2335 0.9410
MLP 4.9947 3.4274 0.9257
GP 4.9538 3.4926 0.9269
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Figure 5. Performance evaluation of the machine learning prediction models to the validation phase
datasets (2018 November–December).

3.6. UKF-Aided LSTM (UKF-LSTM) Approach

The most widely used algorithm for estimating the state variables of a dynamic system
is a Kalman filter [25,26]. The Kalman filtering framework consists of two steps: (1) time
update and (2) measurement update. In the step of time update (i.e., state propagation),
it predicts state variables (e.g., wind speed in this paper) from one discrete-time k to
next time (k + 1), like the one-step-ahead prediction in Equation (1). Once measured
sensor data at time (k + 1) are incoming, the measurement-update step occurs. In the
measurement update step, the filter corrects the predicted state value using predicted
uncertainty based on RMSE minimization and recursive Bayesian estimation. In addition,
to run the Kalman filter, the dynamic model and measurement model of the system are
required to be known. When the model of the dynamic system is unknown or hard to
be known (e.g., wind speed), we are able to use machine learning techniques to learn
it. In fact, the machine learning community has applied machine learning techniques
to both controls and estimation processes in the past. Estimation methods have ranged
from Bayesian filtering with machine learning to nonlinear Kalman filtering with machine
learning [27,34,35].

The Kalman filter is a linear quadratic estimator; thus, it performs only in linear
systems. For handling nonlinear systems such as wind speed forecasting, we need to design
nonlinear filters (e.g., EKF [36,37] and UKF [9]) modified from the linear Kalman filter.
In this paper, we chose a UKF for the LSTM network selected for wind speed dynamics
in Section 3.5. Since the LSTM network has no exact expression of analytical governing
equations, obtaining the Jacobian of the LSTM network is challenging. Whereas an EKF
requires computing Jacobian matrices, UKF does not since it is a more straightforward
statistical approach. Moreover, theoretically, a UKF is more accurate than an EKF in
nonlinear systems since the UKF has no linearization errors [38]. Although the UKF



Aerospace 2021, 8, 236 9 of 17

typically requires a high computational cost, the UKF has been selected for this research
because the computational cost can be systematically manageable especially in the aviation
domain. Mathematically, fLSTM(·) modeled in Equation (2) is used in the time update step
as follows:

x̂−k+1 = fLSTM( x̂k ), (3)

where subscript k represents the k-th time step in the testing phase (i.e., long-term fore-
casting phase) and hat “ˆ” denotes an estimate; state estimate x̂ := E[x]. Superscript −
represents an a priori estimate. Unlike Equation (2), ground truth is not accessible in the
long-term forecasting phase, so the input of fLSTM(·) in Equation (3) is not x but x̂. Initial
condition x(0) = x0 is given from the last point of the validation data (i.e., 21 UTC on
December 31, 2018). In the step of measurement update:

x̂k+1 = x̂−k+1 + ∆ x̂k+1 (4)

∆ x̂k+1 = Kk+1( z̃k+1 − x̂−k+1 ), (5)

where optimal Kalman gain K is computed using predicted uncertainty and tilde “ ˜ ”
denotes a measurement by a sensor. This measurement-update step is performed only when
measurement data z̃ are available in the filter. In other words, if there is no measurement
in time (k + 1), there is no measurement-update step in Kalman filtering. That is, without
a measurement at time (k + 1), there is no correction ∆ x̂k+1 = 0, and an a priori estimate is
assigned to the final nowcasting at time (k + 1) (i.e., x̂k+1 ⇐ x̂−k+1). For implementation, we
used an open-sourced package of a UKF [39]. For more details of the UKF, see Appendix B.

Although it is possible to obtain more accurate data by averaging outputs from
multiple high-accuracy sensors if the given time is not constrained, this is not practical. In
practical applications in the aviation industry, a real-time sensor reading process typically
generates random noise because the sensor is a cheap and easy-to-implement sensor.
Hence, it is inevitable to fuse real-time noisy measurements into the estimate values
especially when a wind nowcasting analysis is performed. In fact, we use simulated noisy
measurements in this paper to focus on testing our UKF-LSTM framework since we do
not have an actual sensor that measures real-time wind speed at a certain location for our
experiments. In this paper, we assume that the simulated sensor rate is as fast as the time
rate of the learned LSTM network. That is, whenever the time-update step in Equation (3)
is performed, the measurement-update step (i.e., correction) in Equations (4) and (5) is
assumed to be performed.

Figure 6 shows an overview of our methodology proposed in this paper. The proposed
methodology consists of three phases (i.e., training, validation, and nowcasting) to predict
wind speed information. We first decompose annual wind data points into N training
and M validation samples. With N data points, we generate x1:N−1 input and x2:N output
pairs by one-time shifting each point for preparing the training process. The training phase
generates the LSTM network structure represented in Table 2. Next, the validation phase
evaluates the performance of the trained LSTM model as illustrated in Table 3 and Figure 5.
Once the LSTM model is validated, the nowcasting phase utilizes the UKF with sensor
measurements (e.g., simulated noisy measurements in this paper) to improve the fidelity
of the LSTM network. With the collaboration of the LSTM network and the UKF (i.e.,
UKF-LSTM), it eventually nowcasts wind values at each (k + 1) timestamp.
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Figure 6. Overview of the UKF-aided LSTM method framework.

3.7. Monte Carlo Simulation (MCS)-Based Uncertainty Quantification

It is important to quantify the various uncertainties arising from input data (e.g.,
aleatory uncertainty) or modeling processes (e.g., epistemic uncertainty), especially if there
is a need to generate a predictive model using a supervised machine learning algorithm.
An uncertainty bound is generally defined as an interval that consists of probabilistic
upper and lower bounds on the estimate of outcomes generated from the predictive model.
The uncertainty bound for a linear regression method can easily be calculated with given
equations (i.e., prediction/confidence interval) [40]; however, it is challenging to compute
an uncertainty bound for nonlinear regression techniques such as the MLP. While the GP
can provide meaningful uncertainty bounds along with the training process where both the
mean and covariance are designed to be computed (Appendix A), it is not possible for the
LSTM network to directly calculate an uncertainty bound. For this reason, we performed
the MCS, a technique used to illustrate the impact of uncertainty in forecasting models, to
quantify uncertainties that could arise from the UKF-LSTM modeling process.

Even if a machine learning technique trains the same dataset, the hyper-parameters
for the learned model could be different at each time due to the model uncertainty. For
uncertainty quantification of the machine learning technique, we ran ten Monte Carlo
trials. In other words, we generated ten machine learning models by applying one machine
learning technique to the same data ten times and then we computed the mean and variance
of the ten models. The mean and variance became the outcomes of the MCS as shown in
Figure 5.

Since it was assumed that the UKF in the proposed framework uses an easy-to-
implement sensor that typically generates random noise, we employed the Gaussian
random walk to generate simulated measurement data in this paper. In other words,
as the actual sensor hardware does not exist in the experiment of this study, within the
scope of only validation of our framework, our sensor model used in the UKF comprised
ground-truth values plus random noise. That is, in Equation (5), z̃k+1 = xk+1 + ζk+1, where
ζ is the Gaussian random measurement noise for the simulated measurement. Likewise,
the simulated direct measurements were randomized, so we ran the MCS to quantify the
uncertainty of our UKF-LSTM approach. More specifically, we conducted the following
procedures to estimate an uncertainty bound of the UKF-LSTM process: (1) optimize hyper-
parameters of the LSTM network, (2) generate ten distinct simulated measurements using
ground truth (i.e., MERRA-2 wind), (3) run the UKF-LSTM ten times with the isolated
hyper-parameters, and (4) compute the mean and variance to quantify an uncertainty
bound. Figure 7 shows a notional sketch of the MCS-based uncertainty quantification
process flowchart.
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Figure 7. Notional sketch of the MCS-based UQ process flowchart.

4. Results and Discussion

We went through the goodness-of-fit procedure for three different machine learning-
based time-series wind prediction models that include the GP, the MLP, and the LSTM
network to identify the most appropriate model for time-series wind forecasting. Figure 5
presents the following implications: (1) the prediction results from the LSTM network are
much closer to the ground truth data (i.e., MERRA-2 wind data) than those from the other
machine learning models (that is, the modeling error of the LSTM is the smallest), and
(2) the uncertainty bound of the LSTM network is also smaller than the other uncertainty
bound generated by the GP. In other words, the red solid line is more accurate than the
black dashed line or the blue dash-circle line, indicating that the LSTM network is the most
suitable machine learning technique that models the time-series wind dataset. It is worth
mentioning that the validation process utilized validation datasets (i.e., MERRA-2 wind
data) as an input for the models. After identifying the best model for time-series wind
predictions (i.e., LSTM network) among three machine learning models, we combined the
LSTM network with the UKF to improve the fidelity of the LSTM network. To compare the
UKF-LSTM approach with the LSTM network, we utilized a testing dataset (i.e., January
2019) as the ground truth. In the testing phase, the ground-truth values are not accessible,
and they are used only for evaluating the performance of the proposed framework. As
shown in each top side of Figure 8, it was observed that UKF-LSTM provided a better wind
prediction compared to the LSTM network, especially when long-term wind forecasting
needs to be considered, while the LSTM network generated wind forecasts that are valid
only for short-term predictions. Moreover, as shown in each bottom half of Figure 8,
the errors of the UKF-LSTM are smaller than those of measurements represented as red
asterisks, indicating that our approach is more accurate than measured values from a
cheap sensor.

It is important to note that the LSTM network (i.e., LSTM network model without UKF)
did not perform well for the testing dataset because the model used wind data predicted
by the model in the previous step as an input (i.e., recursively predicted value), which
potentially results in feeding relatively incorrect input data to the model; thus, the model
error sequentially increased over time. In other words, unlike the proposed UKF-LSTM
approach, the LSTM network used a priori estimate x̂− (i.e., values without the correction
step described in Equation (4) as the input of fLSTM(·) in Equation (3). In fact, given that the
MERRA-2 dataset does not provide wind forecasts in a timely manner but focuses more on
providing historical data, this motivated us to develop the UKF-LSTM approach to resolve
the issue by implementing a filtering process into the LSTM network. One may claim that
the LSTM network with a rolling prediction [41] possibly forecasts over the long-term;
however, we did not consider the approach in this paper because it would typically require
a high computational cost, which may result in it not being applicable for wind nowcasting
in the aviation industry.
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Figure 8. Performance comparison of wind nowcasting approaches (i.e., UKF-LSTM vs. LSTM only)
to the test datasets (2019 January).
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To quantify uncertainties arising from the UKF-LSTM process, we performed the MCS
with the isolated hyper-parameters of the LSTM network. As a result, the uncertainty
bounds of the UKF-LSTM were identified, shown in each bottom half of Figure 8. As can
be seen, it appears that the prediction error of the UKF-LSTM is within the uncertainty
bound; thus, this indicates that the filtering process in our approach is well designed and
well performed. However, it seems that the results of the LSTM network are averaged
and its uncertainty is almost doubled compared to the UKF-LSTM approach. Moreover,
the prediction error of the LSTM network is sometimes out of bounds; thus, seemingly
the LSTM network would be too uncertain. Based on the results tabulated in Table 4, the
LSTM network may not be appropriate for wind nowcasting given that next-step wind
information is not provided.

Table 4. Comparison of the proposed approach (i.e., UKF-LSTM) with the LSTM-only approach.

Approach
Eastward Wind Prediction

RMSE (m/s) MAE (m/s) R-Squared

UKF-LSTM 3.2204 2.5828 0.9267
LSTM Only 11.5524 8.9116 0.0567

Approach
Northward Wind Prediction

RMSE (m/s) MAE (m/s) R-Squared

UKF-LSTM 3.3205 2.6763 0.9767
LSTM Only 22.4417 18.1376 −0.0632

5. Conclusions

This research established a framework that combines a machine-learning-based wind
prediction algorithm with a Kalman filter technique with the aim of performing wind
nowcasting in a more accurate manner. Three different machine learning algorithms (i.e.,
Gaussian process, multi-layer perceptron, and long short-term memory (LSTM) network)
were evaluated to identify the most appropriate machine learning model for time-series
wind predictions. The results indicate that the LSTM network performed better than the
other machine learning models for time-series wind forecasts. However, the LSTM network
provided relatively incorrect wind predictions especially when it needed to account for
long-term wind forecasting. This was mainly due to the fact that the LSTM network took
as input the wind value predicted by the model in the previous step (i.e., recursively
predicted value), resulting in sequentially increasing the model error over time. To improve
the fidelity of the LSTM network, we implemented an unscented Kalman filter (UKF) into
the LSTM model, named the UKF-aided LSTM (UKF-LSTM) framework, and performed
Monte Carlo simulations to validate whether the proposed framework generated results
within uncertainty bounds. The results show that the UKF-LSTM approach outperformed
the LSTM network and the prediction errors of the UKF-LSTM approach were within
the uncertainty bounds, indicating that the filtering process in the framework was well
designed. Although this research used the MERRA-2 wind dataset during the development
period, the outcome of this research could be used with other wind datasets such as
ground-based observational wind data. Future work will include further investigation
of the framework developed in this research along with other locations in U.S. territories
such as ground-based weather stations or cruise points of aircraft. This will not change the
complexity of the framework but it will help airport operators improve airport planning
procedures (e.g., runway operations) given that the proposed framework provides better
wind nowcasting at an airport.
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Appendix A. Gaussian Process

Let us consider a case in which we have the observation corrupted with white noise

yi = h(xi) + νi = hi + νi, ∀ i = 1, · · · , N,

where νi ∼ N (0, β−1). Since the white noise is independent of each data point,

p(y1:N | h1:N) = N (h1:N , β−1 IN×N)

p(h1:N) = N (0, K)

⇒ p(y1:N) = N (0, CN),

(A1)

where the definition of covariance matrix CN ∈ RN×N is CN = K + β−1 IN×N . Hence,
every element of covariance matrix C has the form C(xi, xj) = k(xi, xj) + β−1 δi,j. The
most widely used kernel function is the squared exponential, and its form is k(xi, xj) =

θ0 exp(− θ1
2 ‖xi − xj‖2). Hyperparameters θ = [θ0, θ1, β−1] are learned by maximizing the

log marginal likelihood of the training outputs given the training inputs

θmax = arg max
θ
{ ln p(y1:N | x1:N , θ) }. (A2)

Given the set of training data D = 〈x1:N , y1:N〉, the goal in regression is to predict
output yN+1 for new input point xN+1. From Equation (A1),

p(y1:N+1) = N (0, CN+1),
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where

CN+1 =

(
CN k∗
kT
∗ c

)
.

c = k(xN+1, xN+1) + β−1, and then p(yN+1) = N (0, c). Now we claim the conditional
distribution is a Gaussian distribution with mean GPµ(·) and covariance GPΣ(·) specified
as follows:

GPµ( yN+1 |D, θ ) = kT
∗ C−1

N y1:N (A3)

GPΣ( yN+1 |D, θ ) = c− kT
∗ C−1

N k∗, (A4)

where k∗ ∈ RN and it has elements k(x1, xN+1), k(x2, xN+1), · · · , k(xN , xN+1). For simplic-
ity of presentation, we denote Equation (A3) as yi+1 = GP(yi).

Appendix B. Unscented Kalman Filter

Appendix B.1. Time Update

We use the following time-update equations to propagate the state estimate and
covariance from one measurement time to the next. To propagate from time step k to
(k + 1), we first choose unscented transformation UT(·) to obtain sigma points x̂(i)k with
appropriate changes since the current best guess for the mean and covariance of xk are x̂+k
and P+

k . Error-covariance P := E[ (x− x̂)(x− x̂)T ].

x̂(i)k = UT( x̂+k , P+
k ) ∀ i = 1, · · · , 2n, (A5)

where x ∈ Rn and for more details of UT(·), see ref. [38]. Next, we use nonlinear system
equation f (·) to transform the sigma points into x̂(i)k vectors. That is, x̂(i)k+1 = f ( x̂(i)k ). We

average x̂(i)k+1 vectors to obtain a priori state estimate x̂−k+1 at time (k + 1), and then we
estimate a priori error covariance P−k+1. Here, we add the Qk term to take process noise
such as modeling errors into account.

x̂−k+1 =
1

2n

2n

∑
i=1

x̂(i)k+1 (A6)

P−k+1 =
1

2n

2n

∑
i=1

(
x̂(i)k+1 − x̂−k+1

)(
x̂(i)k+1 − x̂−k+1

)T
+ Qk. (A7)

Appendix B.2. Measurement Update

Now that the time update is completed, we implement the following measurement-
update equations when actual measurement zk+1 arrives at the filter. Similar to Equation (A5),
we generate sigma points x̂(i)k+1 by UT(·) using prior state estimates x̂−k+1 and covariance P−k+1.
Next, we use known nonlinear measurement equation h(·) to transform the sigma points
into ẑ(i)k+1 vectors. That is, ẑ(i)k+1 = h( x̂(i)k+1 ). Similar to Equations (A6) and (A7), we

average ẑ(i)k+1 vectors to obtain predicted measurement ẑk+1 at time (k + 1), and then we
estimate covariance Pz of the predicted measurement. Here, we add the Rk+1 term to take
measurement noise into account.

ẑk+1 =
1

2n

2n

∑
i=1

ẑ(i)k+1

Pz =
1

2n

2n

∑
i=1

(
ẑ(i)k+1 − ẑk+1

)(
ẑ(i)k+1 − ẑk+1

)T
+ Rk+1.
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Next, we estimate cross covariance Pxz between x̂−k+1 and ẑk+1.

Pxz =
1

2n

2n

∑
i=1

(
x̂(i)k+1 − x̂−k+1

)(
ẑ(i)k+1 − ẑk+1

)T

The measurement update of the state estimate is performed using the normal Kalman
filter equations as follows:

Kk+1 = Pxz P−1
z (A8)

x̂+k+1 = x̂−k+1 + Kk+1 ( z̃k+1 − ẑk+1 ) (A9)

P+
k+1 = P−k+1 − Kk+1 Pz KT

k+1, (A10)

where K is called the Kalman gain, and Equation (A10) is the Joseph’s form [42] of the
covariance measurement update, so this form preserves its symmetry and positive definite.
For more details such as optimality and derivation, see refs. [38,43].
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