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Abstract: One of the core technologies in lightweight structures is the optimal design of lami-
nated composite stiffened panels. The increasing tailoring potential of new materials added to the
simultaneous optimization of various design regions, leading to design spaces that are vast and
non-convex. In order to find an optimal design using limited information, this paper proposes a
workflow consisting of design of experiments, metamodeling and optimization phases. A machine
learning strategy based on support vector machine (SVM) is used for data classification and inter-
polation. The combination of mass minimization and buckling evaluation under combined load is
handled by a multi-objective formulation. The choice of a deterministic algorithm for the optimiza-
tion cycle accelerates the convergence towards an optimal design. The analysis of the Pareto frontier
illustrates the compromise between conflicting objectives. As a result, a balance is found between
the exploration of new design regions and the optimal design refinement. Numerical experiments
evaluating the design of a representative upper skin wing panel are used to show the viability of the
proposed methodology.

Keywords: multi-objective optimization; stiffened panels; composite wing; layout optimization;
sizing optimization; buckling

1. Introduction

The development of lightweight structures is of great importance in the aeronautical
and space sectors, and is progressively becoming more important in all fields of engineer-
ing due to the increasing life cycle costs related to raw materials and energy. Composite
materials play an important role in lightweight design, and when compared to metallic
parts, offer more design freedom. However, they require better optimization methods to
find optima, and have additional challenges related to finding optimum material distri-
butions. In the case of thin-walled laminated composite structures, finding this material
distribution translates into finding the optimum number of composite layers and their
respective orientations. Moreover, the design of composite panels requires finding the
optimum number of stiffeners, the optimum geometry for stiffeners and the optimum
laminated composite layouts that constitute the skin and stiffeners.

The use of design schemes coupling machine learning techniques with optimization
algorithms is not new. Fu et al. [1] combined neural networks (NN) with genetic algorithms
(GA) using mixed continuous-discrete variables, constraining the axial stiffness during the
pre- and post-local buckling of the skin panels, and ultimate load. The NN was trained
using the finite element method simulating at 266 sampling points. The global optimum
was found using the NN coupled with the GA, and the final results were verified against
the finite element model. Ehsani and Dalir [2] also proposed an NN-GA coupled approach
to handle mixed continuous-discrete design variables with four continuous variables
related to the width and thickness of angle-grid rib-stiffeners, and four discrete variables
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related to the number and geometric orientation of those stiffening elements. The NN
training took 1060 simulations using a Ritz approach. The same authors proposed pure GA
optimization [3] for another gird-stiffened plate with eight continuous and three discrete
design variables. In addition, 250 GA generations were used as the stopping criterion,
thereby requiring thousands of evaluations to reach a converged solution.

According to the modeling and simulation perspective, an effective way to reduce
the time spent on model evaluation is through the use of surrogate techniques, such as
response surface and metamodeling tools. A surrogate is included in the optimization
cycle in order to approximate the response of a more expensive finite element analysis.
Thole and Ramu [4] proposed a modified self-organizing map algorithm to identify re-
gions of interest (RoI) in the design space. This proposition is useful in the context of
building metamodels with limited computational costs. Self-organizing maps are used
as a visualization technique for design space exploration that allows the identification
of regions of interest. A modified version enabled the identification of the RoI and the
addition of new sampling techniques to be used within a Kriging metamodel scheme that
supported the optimization cycle. Despite the clear reduction in computational load, the
quality of the approximation showed to be highly dependent on the quantity and quality of
the data used in the training phase, which is also valid for accelerated Kriging metamodels,
recently used by Wang et al. [5,6] for finding optimal variable-stiffness layouts of compos-
ite filament-would cylinders. Therefore, for a given computational cost, a better overall
optimization result is obtained when extra attention is given to the data generation process.

Branched multipoint approximate (BMA) functions proposed by Chen et al. [7]
and An et al. [8] can also be used to construct approximate responses of real structures.
An et al. [9] proposed the application of BMA functions on the optimization of composite
laminated stiffened panels, successfully achieving optimum designs with discrete variables.

Liu et al. [10] presented a review on adaptive sampling techniques for global metamod-
eling, where the concept of space filling sampling was explained. The authors highlighted
that classic sampling approaches have a long history in the field of design of experiments
(DOE), and that their development was motivated by the design of physical experiments,
and largely applied to numerical experiments. Then, the discussion of single-response adap-
tive sampling and multi-response adaptive sampling techniques was outlined, discussing
aspects related to initial design space points, stopping criteria and trade-offs between local
exploitation and global exploration. The summarized general finding is that adaptive
sampling strategies provide useful feedback about the target function, and that there is not
a specific strategy that always outperforms.

Support vector machine (SVM) is a classification technique belonging to the realm of
machine learning. Among the desirable features are over-fitting avoidance and reduction
in the amount of training data needed when compared with the neural network class of
algorithms, especially for a multidimensional feature space [11]. SVM has as its main
feature the ability to explicitly define complex decision functions that optimally separate
two classes of data samples [12]. Thus, once the coefficient samples are categorized
into two classes, SVM can provide an explicit decision function (the limit state function)
separating the distinct classes. Missoum et al. [13–15] introduced the notion of an explicitly
decomposed design space, whereby the limit state functions are constructed explicitly in
terms of the design variables, using SVM.

In reference [15], the authors introduced an adaptive sampling scheme that reduces
the number of function evaluations. The approach is based on SVM and constructs an
explicit approximation of the domain boundaries with respect to the design variables. The
design space is explicitly decomposed into feasible and infeasible regions. The authors
handled the discontinuity of the response using a clustering technique which provides
the basic classification for the construction of the SVM decision function. In a follow up
study [16], the authors proposed substantial modifications by improving the choice of
samples, and applying a more rigorous convergence criterion and a new technique to select
the SVM kernel parameters.
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Basudhar and Missoum [17] also presented a methodology for constrained global
optimization, where the boundary of the feasible domain is approximated by a single SVM,
and the probability of feasibility is calculated using a new probabilistic SVM model based
on a sigmoid function. Two sample selection levels were used: a first stage dedicated
to the global search of the constrained optimum; and a second stage focused on the
local refinement of the SVM approximating the boundary of the feasible space. Their
study introduced and compared an unconstrained and a constrained formulation of SVM-
based optimization.

Song et al. [18] used linear and nonlinear virtual SVM in optimization problems
with up to 12 variables with dynamic Kriging, finding that SVM can accurately build the
decision function for the purpose of reliability-based analysis, and that SVM becomes more
efficient than Kriging for high-dimensional problems.

In classification tasks, based on an independent and distributed training dataset, SVM
aims at finding a discriminant function that can predict labels for new instances. From a
geometric perspective, computing a classifier is equivalent to finding the equation for a
multidimensional surface that best separates the different classes in the feature space. The
regression problem is a generalization of the classification problem, in which the model
provides a continuous-valued output.

The present paper proposes a new methodology to obtain optimal designs of compos-
ite stiffened panels. The panel consists of a representative segment of a wing’s upper skin,
whereby the local loads are calculated considering the global wing behavior. The design
parameterization considers the number of stiffeners, the geometry of the stiffeners and the
composite layup for the stiffeners and the skin. During the optimization, the number of
high fidelity samples to be evaluated is guided by a design of experiment (DOE) based on
the Latin hypercube algorithm [19]. The DOE data supports a SVM model that is able to
classify between feasible and infeasible designs.

The main scientific contributions of the paper are:

• Use a limited and pre-determined number of high-fidelity finite element evaluations
based on the DOE requirements;

• Use multiple objectives of continuous optimization (in opposition to integer op-
timization), whereby interpolation and classification objectives are built utilizing
SVM models;

• Generate a Pareto frontier that discusses the contributions of mass and feasibility
(buckling constraint) to the optimal design.

The paper is organized as follows. Section 2 presents the wing model, load idealization
and buckling analysis. The methodology is presented in Section 3, addressing design
parameterization, optimization workflow and data analysis. Section 4 shows the numerical
results. Conclusions are presented in Section 5.

2. Structural Modeling

In the present study, only a single up-bending load case was considered, and it was
assumed that the distributed load over the wing could be in equilibrium with a bending
moment (BMX) and a transverse shear load (SLZ) at the wing root, as illustrated in Figure 1.
These design loads were determined by assuming the wing to be a cantilever beam and
subjected to an idealized elliptical lifting load distribution along the half span. The resultant
load was derived considering the aircraft maximum take-off weight and maximum flight
load factors, resulting in BMX = 215 kNm and SLZ = 80 kN for the current study case.
Note that the contributions from the wing weight on the bending, the torsion moments
and the in-plane bending moment caused mainly by drag forces were ignored.

In order to evaluate the structural response at the wing root, a finite element (FE) model
was constructed based on a representative cell of a double half-bay model, as proposed by
Fenner [20], which is a stringer-skin assembly consisting of two halves of adjacent wing
bays separated by a middle rib, where the nodes have zero normal displacements. Note
that any cross-section other than the wing root could have been selected, and the present
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study focused on the wing root. The representative cell is a fraction of the entire panel
and includes one longitudinal stiffener segment attached to the skin. The skin width was
equal to the spacing between adjacent stiffener segments. The length of the representative
cell extended longitudinally from one adjacent mid-bay to the other, as delimited by
the red box region shown in Figure 2. The representative cell approach is convenient
during a preliminary design phase where only few design characteristics are completely
defined and frequent design modifications require a rapid tool for concept validation.
Machado et al. [21] coupled this modeling scheme for the optimization of stiffened panels
using genetic algorithms.

Figure 1. Wing model, coordinate system and idealized loads at the wing root. SLZ: shear load in the
z direction. BMX: bending moment about the x direction.

Figure 2. Schematic definition of the representative unit cell of the stiffened panel, depicted by the
red dashed line. The width of the panel bay W is a given geometric parameter.

The FE model of the representative cell is based on general-purpose quadrilateral
plate elements with bi-linear displacement interpolation within the element domain. In
Nastran, these elements are known as CQUAD4 [22], having four nodes and six degrees-of-
freedom per node, being the translations parallel to x, y, z, and the three respective rotations
about these three axes. The symmetric boundary condition is used in the four edges, as
depicted in Figure 3. The edges perpendicular to the chord-wise direction are constrained
in translation along the y direction and rotations with respect to the x and z-axes. The
edges perpendicular to the span-wise direction are constrained in rotation with respect
to the y and z-axes. Moreover, nodal translations are constrained at the bottom edge in x
direction, and the rib placed in the middle of the representative cell creates a support in the
z direction, such that the corresponding nodes are constrained for normal translations.

The longitudinal stringer is composed of a pair of L-shaped stringers joined in their
shared mid-plane to form a T-shape or blade-type stringer, making the laminate at the
stringer web symmetric over the mid-plane. Hence, the laminate at the stringer foot is
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allowed to be asymmetric. With the default setting, MSC Nastran® [22] calculates the
thickness of the plate element with respect to the reference plane determined by the nodes
within the element, creating a symmetrical thickness distribution profile shown in the
laminate cross-section. However, the symmetric thickness distribution about the mid-
plane is not consistent with the manufacturing of these panels. Thus, in order for the FE
model of Figure 3 to correctly represent the as-manufactured cross-section of Figure 4,
the shell elements representing the skin and stiffener’s base regions must be offset from
the reference plane by a value tsk/2 + tstr/4, with tsk and tstr being the local skin and
stiffener’s thicknesses. Note that the thickness of the stiffener’s base laminate, i.e., the
region connected to the skin, is tstr/2.

𝐹𝑖𝑛𝑖𝑡

Figure 3. Double half-bay symmetric FE model for the representative unit cell. Force Funit represents
the unitary compressive load applied for the first linear buckling analysis.

Figure 4. Cross-section of the blade-type stiffened panel representative cell.

The properties for carbon-epoxy unidirectional plies used in the present study are
extracted from Kassapoglou [23] E1 = 137.88 GPa, E2 = 11.72 GPa, ν12 = 0.3, G12= 4.825 GPa,
ρ = 1600 kg/m3 and tply = 0.1524 mm.

2.1. Load Idealization

In a preliminary design, it is desirable to have a rapid and accurate method to calculate
loads for a representative cell of the panel. A structural idealization of the wing root cross-
section was employed according to Megson [24], where the longitudinal stiffeners were
treated as concentrated areas carrying only axial stresses, whereas the idealized skin carried
the shear stresses. The bending stresses were determined by:
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σy =

(
Mz Ixx −Mx Ixz

Ixx Izz − I2
xz

)
x +(

−Mx Izz −Mz Ixz

Ixx Izz − I2
xz

)
z

(1)

where Mx = BMX of Figure 5; Mz = 0 in the present work; Ixx, Izz, Ixz are second moments
of area calculated using the idealized cross-section. The design loads BMX = 215 kNm and
SLZ = 80 kN previously mentioned were used in the wing bay optimization process. The
shear flow distribution over the idealized wing section qs was determined by Equation (2)

qs = qb + qs,0 (2)

where qb is the shear flow induced in an equivalent virtually opened section and qs,0 a
correction shear flow. For any given section, qb was calculated by virtually crating a cut
that opened the closed section, and using the concentrated areas Br with their respective
positions in the idealized section, as per Equation (3):

qb = −
(

Sx Ixx − Sz Ixz

Ixx Izz − I2
xz

) n

∑
r=1

Brxr −(
Sz Izz − Sx Ixz

Ixx Izz − I2
xz

) n

∑
r=1

Brzr

(3)

The term qs,0 in Equation (2) is determined from the equilibrium of moments given in
Equation (4)

Sxη0 − Szε0 =
∮

qb pds + 2A qs,0 (4)

where the equilibrium is taken from an arbitrary axis. The left-hand side represents the
moment of the external shear forces Sx and Sz, which are offset from the moment axis by η0
and ε0, measured, respectively, in the z and x axes. The closed integral on the right-hand
side represents the moments generated by the shear flow distribution qb, calculated per
Equation (3); and the area A corresponds to the area enclosed by the idealized section.

Figure 5. Load idealization. Top: bending moment (BMX) and shear force (SLZ) equilibrium on a
single bay. Bottom: modified boom method to obtain the distributed loads of each representative cell.

The idealized cross-section discretization and calculation of local axial and shear
stresses are particularly interesting in the present study, as the actual wing bay section
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had to be discretized into booms to determine stress acting on the skin, based on the
geometrical parameters from the skin and stiffener. In the optimization problem, the
design variables within each individual evaluated by the genetic algorithm define a unique
skin-stringer assembly, with a given geometry and skin and stringer thicknesses that
automatically determines the configuration of the booms, but also determines the most
stressed skin-stringer assembly within a wing bay. The peak stress in the upper skin panel
was used to define the compression state for the entire upper panel by simply multiplying
the acting stress by the skin-stringer assembly cross-sectional area. With this approach,
each individual stiffener, with the adjacent skin pockets, carries the correct load with
consistent compressive stresses generated thereof, all as a function of the optimization
design variables.

2.2. Buckling Analysis

Combined shear and compression buckling will be used to evaluate the wing panels.
This is implemented in MSC Nastran by means of two linear buckling analyses performed
on each evaluated individual along the optimization. MSC Nastran’s SOL 105 Lanczos
Eigensolver is used to obtain the critical buckling loads. The first linear buckling analysis
aims at determining the critical compressive force of the panel Fcr, with the pre-buckling
state created using a unitary force Funit = 1 N distributed in the front edge by means of
a rigid element with a single master node, as illustrated in Figure 3. The critical load is
calculated with Fcr = λ1Funit, where λ1 is the first eigenvalue of the first analysis. The
second linear buckling analysis evaluates the critical in-plane shear distributed force, or
shear flow, of the panel qcr, with the pre-buckling state created assuming a unitary in-plane
shear flow qunit = 1 N/m. This unitary shear force is translated into nodal forces and
distributed over the FE model, as illustrated in Figure 6, with the nodal forces calculated
using the lengths of the representative cell in x and y directions, given by `x, `y, and the
number of nodes along the edges in each direction, Nnodesx, Nnodesy, as per Equation (5).
The critical shear force is calculated with qcr = λ2qunit, where λ2 is the first eigenvalue of
the second linear buckling analysis.

Fshearx = qunit `x
Nnodes x−1

Fsheary =
qunit `y

Nnodesy−1

(5)

𝑁
𝑛
𝑜
𝑑
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Figure 6. Detailed representation of the distribution of shear loads on the representative cell.

The design constraint is the margin of safety for combined shear and compression
buckling. The interaction curve suggested by Kassapoglou [23] was adopted, as given
in Equation (6), coupling the compression and shear effects. In this formulation, σy and
τxy correspond to the current compression and shear stresses, whereas σcr and τcr are the
critical buckling stresses for compression and shear. With the combined stress state, the
panel buckles when the inequality presented in Equation (6) is not satisfied.
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σy

σcr
+

(
τxy

τcr

)2
≤ 1 (6)

In the FE model the pre-buckling state is created by means of applied forces, and hence
it is convenient to rewrite Equation (6) in terms of the acting compression force Fy = σy A
and the shear flow qs = τxy/tsk, where A is the cross-sectional area of the skin-stringer
assembly and tsk is the skin thickness. Hence, the failure index for combined buckling of
one representative cell FIcell is:

FIcell =
Fy

Fcr
+

(
qs

qcr

)2
(7)

and to prevent failure, FIcell must be constrained such as:

FIcell ≤ 1 (8)

The acting force Fy is determined with the actual compressive stress due to bending σy,
calculated for the entire cross-section using Equation (1) for a idealized wing box section, as
illustrated in Figure 7a. Similarly, the shear flow qs over the wing box section is calculated
using Equation (2), as illustrated in Figure 7b. In order to determine the most stressed
representative cell, the interaction curve equation is evaluated for all possible combinations
of the ith stringer in the panel with the adjacent jth skin pocket. Conservatively, the
stiffened panel bay is sized based on the most critical representative cell within the entire
bay. The critical failure index for combined buckling, Icr, is calculated considering the FIcell
calculated for every cell, such that:

FIcr = max(FIcell) (9)

(a) (b)

Figure 7. (a) Axial stress distribution due to bending loads; and (b) shear flow distribution due to
shear loads.

3. Methodology for the Design and Optimization
3.1. Design Parameterization

The parameters controlling the design are separated into geometric and stiffness
variables. The geometric variables are shown in Figure 4: tstr and h, the thickness and
height of the stiffener’s web, respectively; bstr, the width of the stiffener’s base; and tsk and
b, the thickness and width of the skin segment, respectively. Note that the longitudinal
length of the representative cell was assumed to be constant and equal to 800 mm.

The design variables and respective SI units are:

1. Width of the representative cell [m]: b;
2. Stringer height [m]: h;
3. Stringer base width [m]: bstr;
4. Number of skin plies at 0◦: nsk

0◦ ;
5. Number of skin plies at 45◦: nsk

±45◦ ;
6. Number of skin plies at 90◦: nsk

90◦ ;
7. Number of stringer plies at 0◦: nstr

0◦ ;
8. Number of stringer plies at 45◦: nstr

±45◦ ;
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9. Number of stringer plies at 90◦: nstr
90◦ ,

grouped in vector:

xxx = [b, h, bstr, nsk
0◦ , nsk

±45◦ , nsk
90◦ , nstr

0◦ , nstr
±45◦ , nstr

90◦ ]
T . (10)

The width of the skin segment b is the representative cell width, or the stringer
spacing, directly related to the number of stringers in the whole bay panel. In the proposed
optimization scheme, the acting force of Figure 3, F, is a function of the design variables
xxx, and consistently calculated for each individual configuration of the stiffened panel
representative cell for a given stringer spacing, stringer height and thickness distribution.

Table 1 gives the discrete values for all optimization variables. The discrete val-
ues for the stringer spacing b are obtained assuming that a minimum of 5 and maxi-
mum of 8 stringers can be used. For bstr, the minimum dimension is determined based
on minimum fastener spacing guidelines [25]; and for h the range is chosen based on
arbitrary values that render profiles of proportional dimensions. The variables defin-
ing the composite laminates are given by the numbers of unidirectional plies oriented
at 0◦, ±45◦ and 90◦ for the skin and stringer, named, respectively, nsk

0◦ , nsk
±45◦ , nsk

90◦ and
nstr

0◦ , nstr
±45◦ , nstr

90◦ . Assuming a laminate ply thickness of tply = 0.1524 mm, the skin thick-

nesses is calculated using tsk = tply

(
nsk

0◦ + nsk
±45◦ + nsk

90◦

)
, and the stringer web thickness

using tstr = 2 tply
(
nstr

0◦ + nstr
±45◦ + nstr

90◦
)
. Note that at least one layer in each orientation is

required, and for ±45◦ the layers are changed in pairs to keep the designed laminates
balanced. The stacking sequence is ignored in the present approach, meaning that the
composite mechanical representation ignores the terms related to shear-extension coupling,
bending-twist coupling and bending-extension coupling [26].

Table 1. Design variables and discrete values.

Design Variable Discrete Values

b 105, 120, 140, 168 mm
h 40, 50, 60, 70, 80 mm

bstr 30, 40, 50, 60, 70 mm

nsk
0◦ 1, 2, · · · , 10

nsk
±45◦ 2, 4, · · · , 20

nsk
90◦ 1, 2, · · · , 10

nstr
0◦ 1, 2, · · · , 10

nstr
±45◦ 2, 4, · · · , 20

nstr
90◦ 1, 2, · · · , 10

3.2. Optimization Pipeline

The computational model previously described was used to evaluate the stability
behavior by means of the combined margin of safety for buckling, presented in Equation (7).
With no further information about the problem under consideration, evolutionary methods
such as genetic algorithms or simulated annealing are alternatives that have an effective
strategy for enumerating good designs. However, these approaches require a large number
of objective evaluations, especially the genetic algorithms [21].

In our analysis of mixed continuous-discrete variables, the authors noted a high
sensitivity of the linear buckling eigenvalue with the design variables. The optimization
process uses a nonlinear programming algorithm and continuous design variables. The
optimal design is rounded off to the nearest integer. Furthermore, aiming at reducing the
estimate error, an SVM model is used to classify a new design value as feasible or infeasible
according to Equation (7).

Motivated by the possibility to reduce the number of FE evaluations while still obtain-
ing the design region of global optimality, the present study proposes a new strategy for
the design enumeration, evaluation and optimization. It is hypothesized that only a pre-
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determined and fixed number of m + n FE evaluations is required, where m is the number
of initial design samples, and n is the number of optimization problems generated. The
workflow of the proposed design framework, illustrated in Figure 8, can be summarized
as follows:

1. Generate the design of experiments (DOE) x0x0x0 ∈ Rm×9 for the design variables;
2. Compute the failure index as per Equation (7) for each of the m FE models in the

x0x0x0 designs;
3. Compute the mass index, feasibility index and feasibility classification at x0x0x0, as

described next;
4. Find the optimal design x1x1x1 by the optimization of the objective (step 3) starting at x0x0x0;
5. Evaluate the FE model at the n optimal designs x1x1x1;
6. Compute the mass of the structure at the feasible designs points;
7. If new investigation is required, add information generated by x1x1x1 designs in step 5 to

the initial set x0x0x0 and go to step 3; otherwise, stop.

Step 7 consists of a feedback trigger that guides to the evaluation of new design points,
usually conducted if further investigation of the transition between feasible and infeasible
designs is desired. In this case, a new DOE will be established in the vicinity of the current
optimal design. Thus, the final step can be understood as a trigger for restarting the process,
in which case a new analysis will be carried out taking into account all the knowledge
generated so far. In case the analysis is carried out only to evaluate the compromise
between mass and feasibility, step 7 of the workflow mentioned above is not necessary.

Considering the vector with all design variables xxx given in Equation (10), there are
lower xlxlxl and upper xuxuxu bounds for the design variables, defined as:

xlxlxl = [105, 40, 30, 1, 2, 1, 1, 2, 1]T (11)

and
xuxuxu = [168, 80, 70, 10, 20, 10, 10, 20, 10]T (12)

Furthermore, a mass index, feasibility index and feasibility classification are computed
for each design xxx using the FE model data. The mass index is defined as:

O1(xxx) ∈ R+ (13)

and the feasibility index is:
O2(xxx) ∈ R+ (14)

For the case O2(xxx) ≤ 1, the design is feasible, and for O2(xxx) > 1, it is infeasible. Thus,
the feasibility classification index can be written as:

O3(xxx) ∈ {0, 1} (15)

with the design being feasible when O3(xxx) = 0, and infeasible when O3(xxx) = 1. Those
indices are used to build the objective function, as discussed in the next sections.
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Figure 8. Optimization workflow.

The Latin hypercube sampling (LHS) method [19] was used to establish the si sample
points, i = 1, . . . , 1000. The FE model was then evaluated for those si designs. Mass and
feasibility values obtained from this evaluation are represented in Figure 9. A feasibility
value greater than 1 indicates that the structure failed in operation. Therefore, the corre-
sponding design is infeasible from the mechanical perspective. According to Figure 9, 35%
of the designs provided by the DOE led to infeasible configurations.



Aerospace 2021, 8, 328 12 of 26

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0

2
4

6
8

Design Of Experiment

Feasibility

M
as

s

Figure 9. Mass and feasibility indices for the first DOE.

3.3. SVM Formulation

An interesting characteristic of machine learning algorithms is their ability to general-
ize the training experience and provide an unexpected output that best fulfills the objective
function, thereby predicting future events or scenarios that are not explicitly mapped in the
training process. They can therefore reach results that are unexpected and non-intuitive.
Among a myriad of alternatives for implementing a learning strategy, a comprehensive
overview of popular strategies and resources was presented in [27].

The standard SVM is formulated as a classifier whose decision function is represented
by a hyperplane that maximizes the distances of separated samples from different classes.
Using the hyperplane, the unknown outputs are estimated by an appropriate interpolation
of the evaluated designs, according to the DOE used for training. Therefore, a limited
number of m FE evaluations is pre-determined and fixed before the optimization. The
exploration of the design space is conducted by the optimization algorithm using the
hyperplane approximation, which implies a significant reduction of the computational cost
required to evaluate the design space during the optimization. Once the optimal design
is obtained, the mass and feasibility indices are updated by using the FE model. Given a
labeled training dataset {xi, yi}, where xi ∈ RN and yi ∈ {−1, 1}, and a nonlinear mapping
φ(·), the method solves:

min
w,ξ,b

(
0.5 ‖ w ‖2 +C

n

∑
i=1

ξi

)
(16)

subject to:
yi(〈φ(xi), w〉+ b) ≥ 1− ξi, ∀i = 1, ...m (17)

where:
ξi ≥ 0, ∀i = 1, ...m (18)

with w and b defining a linear classifier in RN . In the present study, N = 9 was the number
of design variables and m = 1000 was the number of design samples. Equation (16)
minimizes the norm of the model weights and the committed errors. An appropriate choice
of the nonlinear mapping leads to transformed samples that are more likely to be linearly
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separable in the higher dimensional feature space. The regularization parameter C controls
the generalization capability of the classifier.

The methodology ultimately finds a linear combination of features that characterizes
or separates two or more classes of objects or events (as described by yi). Since the convex
optimization problem is solved by a deterministic algorithm, for a specific input dataset
the same optimal hyperplane parameter is obtained, as a solution of Equations (16)–(18).
The SVM method automatically determines the model complexity by selecting the number
of support vectors, as expressed by the parameter C in Equation (16). A detailed discussion
about the SVM method and variants can be found in Awad and Khanna [11] and Salcedo-
Sanz and Rojo-Álvarez [28].

4. Numerical Results
4.1. Metamodel Comparison

An investigation was conducted to compare the performance of the SVM algorithm
with those of neural network architectures. SVMs and neural networks each consist of
a set of methodologies, and several implementations are available in each category. The
present study used the SVM implementation provided by the liquidSVM library [29]. The
multi-layer perceptron neural network (MLPNN) [30] and radial basis function neural
network (RBFNN) [31] were used via the Stuttgart Neural Network Simulator [32].

A set of m = 1000 sample points was randomly divided into two groups. The training
set consisted of 700 points, and the testing set contained 300 observations. The metamodel
was calibrated using the training set. Then the error was computed by using the information
of the testing set.

Table 2 shows the metamodel error in mass estimation. The table columns display the
following statistics: minimum, first quantile, median, mean, third quantile and maximum
error values. The mean error of the SVM was 2.18× 10−2. The mean error of RBFNN was
0.21. The mean error of MLPNN was 0.65. The dispersion of the data followed a similar
trend. SVM showed the best performance.

Table 2. Metamodeling error in mass computation.

Metamodel Min. 1st Qu. Median Mean 3rd Qu. Max.

SVM 1.004× 10−5 7.243× 10−3 1.487× 10−2 2.187× 10−2 3.152× 10−2 1.717× 10−1

RBFNN 0.00032 0.06771 0.14846 0.21802 0.28282 1.94824
MLPNN 0.06726 0.59707 0.67307 0.65497 0.72852 0.86448

Table 3 shows the metamodel error in the feasibility estimate. The average error of
the SVM metamodel was 2.00, that of RBFNN metamodel was 2.05 and that of MLPNN
was 2.09. There are small differences among the errors of the metamodels, although SVM
performed slightly better. The relatively high error levels confirm the fact that estimating
the feasibility index is a challenging task.

Table 3. Metamodeling error in feasibility index computation.

Metamodel Min. 1st Qu. Median Mean 3rd Qu. Max.

SVM 0.00054 0.65989 1.58148 2.00729 2.87262 11.59350
RBFNN 0.00025 0.46714 1.10598 2.05893 2.72801 24.07796
MLPNN 0.00380 0.44705 1.11403 2.09116 2.75163 24.93674

In the present case, the neural network models used size = 300 as the number of units
in the hidden layers and maxit = 1000 as the maximum iterations to be learned. On the
other hand, SVM used the parameters max_gamma = 3125 and min_lambda = 2.4× 10−9.
All three methodologies support the selection of different kernel methods, and a myriad of
parameter combinations. As a result, the comparison of metamodels can lead to different
results if fine-tuning is performed for each methodology.
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Due to the good results provided by the SVM methodology in the default configura-
tion, it was used in the analysis that follows.

4.2. Data Analysis

The arrangement of SVM models as performance indices is detailed in the following.
Three SVM models are proposed. The first model, named f1, computes a mapping of
the design vector xxx (Equation (10)), the input data, to the mass of the structure O1(xxx)
(Equation (13)), the output data. The second model, f2, computes a mapping of the design
variables (input data) to the feasibility index O2 (Equation (14)), the output data. The third
model, f3, performs a binary classification task, mapping the design variables (input data)
to a feasibility classification O3 (Equation (15), 0 for feasible designs and 1 for infeasible
designs). The liquidSVM library [29] was used for numerical computation, as provided by
the R software [33]. In summary:

f1 is the metamodel of mass index f1 : xxx → O1, (19)

f2 is the metamodel of feasibility index f2 : xxx → O2, (20)

and
f3 is the metamodel of feasibility classification f3 : xxx → O3. (21)

A comparison between the mass values obtained through FE evaluation and the
estimates provide by the metamodel is presented in Figure 10.
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Figure 10. Mass values computed by FE and the metamodel.

The absolute value of the difference between the mass computed by FE and the
estimate is

∆1(xxx) = |O1(xxx)− f1(xxx)| (22)

and a comparison of error against mass is shown in Figure 11. An histogram of the error
∆1 representing the difference between the mass computed by the FE model and the mass
estimated by Equation (13) is computed using Equation (22), and shown in Figure 12.

The results obtained from the FE and the estimates of the metamodel are similar, and
the mass value was estimated with accuracy, as shown in Figure 10. Figure 13 shows
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a comparison between the feasibility values obtained through FE evaluations and the
estimate provided by the metamodel.

The difference between the feasibility index computed by FE and the estimate is

∆2(xxx) = |O2(xxx)− f2(xxx)| (23)

whose absolute value is plotted against feasibility, as shown in Figure 14.
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Figure 11. Mass values computed by FE and the metamodel.
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Figure 12. Histogram of the error ∆1.
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The histogram of the error ∆2, as per Equation (23), is presented in Figure 15.
Figure 13 shows that there is no clear trend between the design variables and the

feasibility index; that is, some estimates are not representing the value obtained from FE
with accuracy. This training phase required 1 second to calibrate the mass estimate and
218 s for the feasibility index. Given the poor correlation with the feasibility index, a
more robust method is needed to classify the feasibility of the stiffened panel designs. A
new feasibility classification is proposed to improve the success rate in obtaining optimal
feasible designs. The step function ( f3(xxx) = 0 for feasible designs and f3(xxx) = 1 for
infeasible designs) was an effective improvement for the optimization formulation. The
preference of mass or feasibility improvement is addressed by the parameter α ∈ [0.05, 0.95].
The multi-objective optimization formulation is written as

F(xxx) =
(

α · f1(xxx)2
)
+ [(1− α) · ( f2(xxx) + f3(xxx))]. (24)
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Figure 13. Feasibility index values computed by FE and the metamodel.

The design variables are box constrained (Equations (11) and (12)) by

xlxlxl ≤ xxx ≤ xuxuxu. (25)

Due to the discontinuous nature of the problem created mainly by the layout design
variable b, the computation of gradients is difficult, and the authors aimed to avoid gradient
evaluations using finite differences. The aforementioned discontinuity leads to non-smooth
behavior that fits better to an optimization method that does not require explicit gradient
evaluations. It is estimated by a quadratic approximation on the BOBYQA algorithm [34],
which is adequate for the bound-constrained minimization in the absence of gradient
information, and was used as implemented in the NLopt library [35].

A discussion about the error between estimated and FE values follows. Figure 16
shows the mass against the feasibility index. Those values were obtained from DOE designs.
The abscissa has valued of log(O2(xxx)) and the ordinate represents the mass index O1(xxx).
The color palette represents the ∆1 error level. Designs with a small error are plotted in
green, whereas designs with large errors are plotted in red. Larger errors were found in the
range of infeasible designs O2(xxx) > 1 and in the range of high mass values O1(xxx) > 5 kg.
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Figure 14. Feasibility index values computed by FE and the metamodel.
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Figure 15. Histogram of the error ∆2.

Figure 17 shows the error of the feasibility index. The abscissa has values of log(O2(xxx)),
and the ordinate represents the mass index O1(xxx). The error log(∆2) is in green for small
values and red for large values. Larger errors were found in the range of infeasible designs
log(O2(xxx)) > 0, that is, where O2(xxx) > 1.

The presence of an SVM-based classification index in the objective function enabled
a deterministic optimization method to obtain the optimal design, yet with the ability to
provide insight about the improvement obtained when mass and feasibility have different
priorities, controlled by the weighting parameter α. The change in priority of mass value
against feasibility leads to distinct optimal designs, addressing the compromise of feasibility
when the mass is reduced. As a result, insights are provided on how the change in
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design values affected the structural performance. The exploratory aspect of the design of
experiments provides an overview about promising design values and a good initial guess
for the optimization process.
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Figure 16. Mass error level |∆1| at several mass and feasibility values.
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Figure 17. Feasibility error level log(|∆2|) at several mass and feasibility values.
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4.3. Sensitivity of Parameters

Aiming to evaluate the effects of on mass and feasibility, the weighting parameter α
was investigated within the range α ∈ [0.05, 0.95]. Furthermore, the effects of weighting
feasibility index and feasibility classifier are discussed here.

The results of the numerical optimization (Equation (24)) are now presented. Table 4
shows the initial and optimal design values, α, changed. As f2 (Equation (20)) was evaluated
by means of a regression strategy and f3 (Equation (21)) was evaluated by a classification
strategy, some discrepancies may occur when comparing f2 and f3 (Equation (24)). Optimal
designs between lines 21 and 29 of Table 4 show f2(x1x1x1) < 1 and f3(x1x1x1) = 1. A contribution
of the present study is the proposition of the classification index f3 as an objective. The
classification index has proven effective at identifying feasible designs. Therefore, any design
is considered truly feasible if f2(x1x1x1) < 1 and f3(x1x1x1) = 0. Otherwise, the design is considered
infeasible. The corresponding optimal designs are presented in Table 5.

Table 4. Initial and optimal objective values.

i α F(x0) F(x1) f1(x1) f2(x1) f3(x1) Time (s)

1 0.050 2.79 0.36 2.68 0.00 0 14
2 0.075 2.88 0.52 2.63 0.00 0 15
3 0.100 2.98 0.57 2.38 0.00 0 13
4 0.125 3.07 0.80 2.52 0.00 0 12
5 0.150 3.17 0.80 2.31 0.00 0 15
6 0.175 3.26 0.99 2.38 0.00 0 12
7 0.200 3.36 1.20 2.45 0.00 0 10
8 0.225 3.45 1.41 2.51 0.00 0 11
9 0.250 3.55 1.41 2.38 0.00 0 11

10 0.275 3.64 1.38 2.24 0.00 0 11
11 0.300 3.74 1.57 2.29 0.00 0 11
12 0.325 3.83 1.70 2.28 0.00 0 12
13 0.350 3.93 1.85 2.30 0.00 0 12
14 0.375 4.02 2.05 2.34 0.00 0 15
15 0.400 4.12 2.07 2.27 0.00 0 10
16 0.425 4.21 2.21 2.28 0.00 0 10
17 0.450 4.31 2.30 2.26 0.00 0 13
18 0.475 4.41 2.52 2.30 0.00 0 10
19 0.500 4.50 2.58 2.27 0.00 0 9
20 0.525 4.60 2.70 2.27 0.00 0 10
21 0.550 4.69 2.17 1.77 0.00 1 13
22 0.575 4.79 3.04 2.30 0.00 0 11
23 0.600 4.88 2.08 1.67 0.00 1 10
24 0.625 4.98 1.47 1.28 0.17 1 9
25 0.650 5.07 1.48 1.26 0.27 1 8
26 0.675 5.17 1.48 1.24 0.37 1 10
27 0.700 5.26 1.49 1.22 0.51 1 10
28 0.725 5.36 1.48 1.19 0.67 1 10
29 0.750 5.45 1.47 1.16 0.87 1 9
30 0.775 5.55 1.46 1.12 1.11 1 9
31 0.800 5.64 1.43 1.09 1.43 1 10
32 0.825 5.74 1.39 1.04 1.84 1 9
33 0.850 5.83 1.34 0.99 2.39 1 10
34 0.875 5.93 1.27 0.93 3.16 1 9
35 0.900 6.02 1.17 0.85 4.27 1 10
36 0.925 6.12 1.04 0.74 5.99 1 9
37 0.950 6.21 0.84 0.60 8.91 1 10

The SVM-based feasibility classifier indicates an infeasible state for 16 designs. The
optimization was performed using real-valued design variables. The data obtained from
the metamodel optimization indicate that the mean value of 2.65 kg is a robust value for
the mass index. The 37 designs shown in Table 5 were rounded to integer values to satisfy



Aerospace 2021, 8, 328 20 of 26

manufacturing constraints. The integer design values were then used to compute the mass
and feasibility indices with the FE model, and the results are shown in Figure 18.

Table 5. Optimal design values.

i b h bstr nsk
0◦ nsk

±45◦ nsk
90◦ nstr

0◦ nstr
±45◦ nstr

90◦

1 140 40 62 1.96 6.85 1.07 8.92 2.77 2.73
2 140 40 58 1.85 7.65 1.05 9.19 1.82 2.51
3 140 40 59 1.82 7.49 1.19 9.11 1.20 1.81
4 168 40 52 2.08 8.92 1.01 8.00 2.40 2.71
5 140 40 61 2.27 6.18 1.79 8.72 1.63 2.17
6 140 40 60 2.38 7.07 1.00 8.74 1.61 1.35
7 168 40 54 2.11 8.83 1.02 7.48 2.97 1.94
8 168 40 52 1.72 9.21 1.14 7.59 2.75 1.72
9 168 40 56 2.91 7.45 1.46 8.88 2.66 1.19

10 168 40 65 1.00 6.79 1.36 8.70 1.70 2.59
11 168 42 61 1.64 4.84 5.29 8.34 1.91 2.29
12 140 40 60 2.68 4.58 3.74 9.66 1.40 1.92
13 140 41 67 1.40 3.49 6.27 9.94 1.15 1.84
14 140 43 61 1.86 5.08 3.53 8.92 1.42 2.41
15 140 40 60 1.72 4.54 5.60 9.54 1.22 1.01
16 140 40 60 1.77 4.40 6.05 9.03 1.26 1.60
17 140 40 62 1.78 4.39 5.34 8.79 2.09 1.00
18 140 40 64 2.51 3.59 6.40 8.97 1.94 1.49
19 168 40 59 2.87 3.44 7.21 8.83 2.04 1.44
20 140 41 60 2.24 4.00 5.57 9.15 2.11 1.00
21 168 44 62 2.63 4.14 4.32 8.78 1.00 1.00
22 140 40 64 2.04 5.50 2.75 8.10 1.98 1.00
23 168 42 66 1.97 5.29 2.99 7.11 1.00 1.00
24 168 45 64 1.00 7.02 1.00 1.00 1.00 1.00
25 168 45 65 1.00 6.89 1.00 1.00 1.00 1.00
26 168 45 65 1.00 6.76 1.00 1.00 1.00 1.00
27 168 45 65 1.00 6.61 1.00 1.00 1.00 1.00
28 168 45 65 1.00 6.45 1.00 1.00 1.00 1.00
29 168 45 66 1.00 6.26 1.00 1.00 1.00 1.00
30 168 45 66 1.00 6.06 1.00 1.00 1.00 1.00
31 168 46 66 1.00 5.83 1.00 1.00 1.00 1.00
32 168 46 66 1.00 5.56 1.00 1.00 1.00 1.00
33 168 46 67 1.00 5.24 1.00 1.00 1.00 1.00
34 168 47 67 1.00 4.86 1.00 1.00 1.00 1.00
35 168 47 68 1.00 4.39 1.00 1.00 1.00 1.00
36 168 48 68 1.00 3.79 1.00 1.00 1.00 1.00
37 168 50 69 1.00 2.96 1.00 1.00 1.00 1.00

The mass index deviation is presented in Figure 19. All points with mass values lower
than 2.0 kg are infeasible from the structural perspective. Precise values are shown in
Table 4.

As shown in Figure 20, several designs are concentrated in the range of lower nsk
90◦

values. Designs with lower mass index are concentrated in the area of lower nstr
±45◦ and

nstr
90◦ values. Optimal feasible designs also have a trend around lower h values. Several

infeasible optimal designs are grouped in the range of lower values of nsk
0◦ and nsk

90◦ .
There is agreement between the optimal mass index found through the metamodeling

and the values obtained by the FE model. The proposed workflow resulted in designs that
are feasible and reduced the mass index. Furthermore, the optimization loop of several
candidate designs gives insight into the sensitivity of the obtained solution. Distinct values
of the α parameter also resulted in designs with different masses. As expected, there is a
clear compromise between mass reduction and infeasibility.

To investigate the sensitivity of the proposed optimization framework to the type of
DOE, a second DOE was created using a more refined discretization of the h and bstr design



Aerospace 2021, 8, 328 21 of 26

variable levels. Next, a new metamodel was trained, followed by optimization at different
α values. Figure 21 shows the optimal mass versus α parameter, with the mass computed
using the FE model and the rounded-off variable values at the optimum designs obtained
with the metamodel. The trade-off of mass and feasibility indices with α = 0.5 is shown in
Figure 22.
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Figure 18. First DOE: optimum mass for different α values calculated by the FE model, after rounding
the variables at the optimal points from the metamodel.
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Figure 19. First DOE: optimum mass for different α values calculated by the metamodel.
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The comparison of Figures 18 and 21 shows agreement of the optimal mass index in both
cases. The mass and feasibility values had no significant change between the first and second
DOEs, as also confirmed by the comparison of Figures 22 and 23. As the mass index decreases,
the feasibility index moves towards infeasibility. As a result, the lower the probability of
obtaining a given mass value, the lower the chance of achieving feasible designs.

Optimal design (FEM)
b h

bs
tr

n0
sk

n4
5s

k

n9
0s

k

n0
st

r

n4
5s

tr

n9
0s

tr

M
as

s

Figure 20. First DOE: parallel coordinate values of optimal feasible (blue) and infeasible (red) designs.
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Figure 21. Second DOE: optimum mass for different α values computed by the FE model.
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Figure 22. Second DOE: Pareto front of the optimum mass for different feasibility indices with
α = 0.5.
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Figure 23. First DOE: Pareto front of the optimum mass for different feasibility indices with α = 0.5.

The exploratory capabilities of the current optimization framework allow browsing
amongst the feasible options. The designer can choose a target feasibility index based on
minimum margins of safety, mass or other requirements. This capability is illustrated in the
Pareto fronts of Figures 22 and 23. When there are no additional constraints, the feasible
design that provides the minimum mass becomes a natural choice. Finally, the results
of new FE evaluations can be added to the metamodel at any time to refine it in new or
existing design regions.
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In design problems with different numbers of variables, or for the current design
problem with variables in different ranges, the new DOE is indirectly affected to handle
the same errors presented here. One relevant factor to determine the necessary number of
samples in the DOE is the ability of the metamodel to represent the interdependence of
the design variables under investigation. More samples are required in cases where this
interdependence becomes stronger, such as in structures where variable stiffness designs
create a nonlinear coupling between the stiffness and geometric variables [6,21,36–40].
A comprehensive discussion about the influence of the number of design variables is
provided by Myers et al. [41].

5. Conclusions

Herein was proposed a new method for optimal design of wing panels consisting of a
framework that combines design of experiments, data interpolation, data classification and
an optimization procedure. The methodology captures valuable information about the de-
sign space, identifying patterns and design trends discovered throughout the optimization
workflow.

The exploitation of promising design regions was conducted using a deterministic
optimization method. As there was no need to explicitly compute the gradient of the
objective function, the method was able to navigate in a relative large area of the design
space to explore the metamodel in the search for optimal alternatives.

A unique feature of the present contribution is the combination of regression and
classification strategies in a multi-objective optimization formulation. Changes in the
weighting parameter of the multi-objective functions proved to be an important feature
for investigating the compromise between minimum mass and feasibility of the structure.
Regression and classification indices in a multi-objective expression led to the effective
exploration of the design space and avoided the premature convergence of the method.

The obtained Paretto fronts can be used to explicitly decide a target margin of safety
for the designed panels, with a known influence on the obtained mass. In a case where no
additional constraints exist and the target margin of safety is null, a natural choice for the
selected design is the one with minimum mass in the entire feasible region.

Another challenging aspect of the present design problem that was well handled by the
optimization framework is the simultaneous existence of discrete and continuous design
variables. Usually, methods for exploring the space of integer solutions are computationally
intensive and slower in convergence.

If information from new FE designs is available after the optimization cycle, the
data obtained by the DOE phase can be supplemented with new information, and a new
metamodeling and optimization cycle is started. It gives insights about how changes in
design values influences the overall design indices.

Due to the applicability of the results found by the present analysis in the context of
lightweight structures, the investigation of problems with greater complexity and more
design variables is seen as the most important next step of the present research. The
inclusion of design indices such as the b-factor in the initial post-buckling analyzes of
imperfection-insensitive shells is also envisioned as an interesting application of the present
optimization framework. There may be concurrency between designs aiming at negative
b-factors and designs targeting higher linear buckling loads.
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