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Abstract: This paper presents a multi-objective coverage flight path planning algorithm that finds
minimum length, collision-free, and flyable paths for unmanned aerial vehicles (UAV) in three-
dimensional (3D) urban environments inhabiting multiple obstacles for covering spatially distributed
regions. In many practical applications, UAVs are often required to fully cover multiple spatially
distributed regions located in the 3D urban environments while avoiding obstacles. This problem is
relatively complex since it requires the optimization of both inter (e.g., traveling from one region/city
to another) and intra-regional (e.g., within a region/city) paths. To solve this complex problem, we
find the traversal order of each area of interest (AOI) in the form of a coarse tour (i.e., graph) with
the help of an ant colony optimization (ACO) algorithm by formulating it as a traveling salesman
problem (TSP) from the center of each AOI, which is subsequently optimized. The intra-regional path
finding problem is solved with the integration of fitting sensors’ footprints sweeps (SFS) and sparse
waypoint graphs (SWG) in the AOI. To find a path that covers all accessible points of an AOI, we fit
fewer, longest, and smooth SFSs in such a way that most parts of an AOI can be covered with fewer
sweeps. Furthermore, the low-cost traversal order of each SFS is computed, and SWG is constructed
by connecting the SFSs while respecting the global and local constraints. It finds a global solution
(i.e., inter + intra-regional path) without sacrificing the guarantees on computing time, number of
turning maneuvers, perfect coverage, path overlapping, and path length. The results obtained from
various representative scenarios show that proposed algorithm is able to compute low-cost coverage
paths for UAV navigation in urban environments.

Keywords: coverage path planning; unmanned aerial vehicle; sparse waypoint graphs; urban
environments; obstacles; area of interest; traveling salesman problem; spatially distributed regions

1. Introduction

Unmanned aerial vehicles (UAVs) are playing a vital role in the realization of smart
cities, smart building, and smart infrastructures with innovative applications. Due to the
rapid developments in the low-cost control methods and the wide range of sensors, UAV
applications in urban areas have significantly increased [1]. UAVs can contribute to improv-
ing the quality of people’s lives. The technological developments such as low-powered
hardware, embedded software, reactive controls, long-range wireless communication,
onboard computation, and other such technologies have enabled UAVs to perform com-
plex missions autonomously. The recent technological developments have significantly
enhanced the UAV endurance, localization, motion accuracy, self-awareness, and the level
of autonomy in the airspace. The use of UAVs is rapidly increasing in many sectors, es-
pecially in urban areas due to their sensing and avoidance (SAA) abilities which allow
them to navigate safely in airspace [2]. UAVs are capable of performing various missions
in an economical and convenient way compared to traditional human-based approaches.
According to the Teal Group Corporation forecasts, the annual spending on UAVs will be
more than USD 12 billion in the coming five years [3]. Furthermore, with the integration of
internet of things and cloud computing technologies, UAVs have become a powerful tool
for data collection [4].
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The real-life practical applications of UAVs such as communication relays [5], building
construction monitoring [6], searching for rescue victims [7], inspection of aging infrastruc-
ture [8], goods delivery [9], air quality monitoring [10], disaster management [11], remote
sensing [12], soybean yield prediction [13], visual tracking [14], content delivery [15],
among others, are the most attractive applications. Besides many real-world applications in
each sector, UAV usage without human onboard control imposes several challenges such as
the co-ordination among UAV and the ground control station (GCS) as this can be affected
by the high distances, limited onboard processing capability, weather conditions, and en-
ergy constraints etc. Moreover, collision avoidance with not only with obstacles, especially
with other drones and, eventually, helicopters in complex 3D urban environments and
payload constraints are noticeable challenge. Beside these challenges, in many practical
applications, a UAV needs an ability to find a collision-free path between two pre-decided
locations which is referred as path planning (PP) or to find a viable path which covers every
reachable point of a certain area of interest (AOI) which is called coverage path planning
(CPP). In this paper, we focus on the CPP problem for a UAV to cover multiple obstacle
surrounded strewn AOIs located in 3D urban environments which has not been solved by
prior studies.

The CPP problem is regarded as the subtopic of the PP where it is necessary to obtain
a viable path that covers an entire free space of a certain AOI with a minimal cost [16].
The coverage path cost can be number of turns, computing time, path length, overlapping,
energy, and smoothness. Every CPP algorithm optimizes one/more cost functions. Due
to the extensive use of the UAVs in recent times, the CPP problem for single and multiple
UAVs has become an active area of research [17,18]. The CPP are divided into two major
categories, global and local CPP based on the information available about workspace. In
global CPP, the path planning is carried out in a fully known environment (i.e., obstacles’
geometries are known). In contrast, local CPP, also known as sensor-based coverage,
is relatively complex because the UAV workspace is mostly unknown [19]. The UAV
employs on-board sensors to acquire workspace data to perform the coverage mission in
real-time. Considering the nature of the problem, single/multiple UAVs can be deployed
to perform the mission. However, deploying multiple UAVs can lead to communication
and co-ordination issues among UAVs.

Many CPP methods have been reported in the literature for covering a regularly (i.e.,
rectangle, convex polygon) or irregularly (non-convex polygons) shaped AOI with the
visual/thermal sensors mounted on a UAV [20,21]. The basic methodology used by most of
these algorithms is as follows: (i) AOI decomposition into non-overlapping sub-regions, (ii)
finding of the visiting order/sequence of the sub-regions, and (iii) covering decomposed
sub-regions individually in a back and forth (BF) or spiral manner to obtain a coverage path.
The AOI’s decomposition-based methods are promising in achieving perfect coverage of
an AOI. Classical exact cellular decomposition [22], landmark-based topological cover-
age [23], Morse-based decomposition [24], contact sensor-based coverage [25], grid-based
decomposition methods [26], and graph-based methods [27] are well-known decomposi-
tion approaches. There are works in the literature dealing with the CPP problem using
simple geometric flight patterns without decomposing the AOI [28]. Meanwhile, the target
area in such works is of regular shape with less complexity.

The existing CPP algorithms for UAVs do not provide thorough insight into the
coverage of multiple AOIs in complex 3D urban environments with obstacles. They do not
use sensor footprints (SF) as a coverage unit while decomposing the AOI, thereby causing
significant path length degradation and overlapping. Li et al. [29] have explained that most
of the prior CPP algorithms employ the same sweep direction in all sub-regions which
may hinder finding an optimal path. The cost for switching between sub-regions is also
very high. To lower path computing cost, various latest approaches such as viewpoints
sampling [30], mirror mapping [31], optimal polygon decomposition [32], in-field obstacles
classification [33], and context-aware UAV mobility [34] have been developed. Despite the
practical nature of these approaches, in most cases, either computing time is very high, or
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many locations of the AOI are covered repeatedly [35]. Most of the CPP algorithms are
very sensitive to the shape of the AOI [36]. When the shape of the AOI is changed, the
algorithm performance is no longer acceptable. The AOI decomposition is not conducted
in relation to the SFs which can increase the number of turns in the path. To overcome
the above limitations, this study proposes a new CPP algorithm that fulfills the multiple
objectives of the CPP with fewer SF sweeps and a sparse waypoint graph (SWG).

The rest of the paper is organized as follows. Section 2 explains the background and
related work regarding well-known CPP algorithms proposed for singular and multiple
AOI coverage, respectively. Section 3 presents the proposed multi-objective coverage
flight path planning algorithm and explains its principal steps. Section 4 discusses the
experimental results that were obtained with extensive experiments. Finally, conclusions,
limitations, and promising future directions are given in Section 5.

2. Background and Related Work on CPP

This section presents the background and related work about the single AOI and
multiple spatially distributed AOI coverage. Cao et al. [37] defined the six mandatory
requirements for the CPP which are: (i) the UAV must move through all accessible points
in AOI to ensure perfect coverage; (ii) the UAV must cover the AOI without overlapping
paths; (iii) continuous and sequential operations without any repetition of paths are needed;
(iv) the UAV must bypass all obstacles safely; (v) simple motion plans (e.g., straight lines
or circles) should be used; and (vi) a low-cost path under available conditions is desired.

2.1. Single Area of Interest Coverage

In single AOI coverage, only one target area is covered with the assistance of sin-
gle/multiple UAVs. This area can be of any geometry, and it can be located in an urban/non-
urban environment. The CPP problem for the single AOI coverage has been extensively
studied in the past. The detailed background about the types of AOI, decomposition
techniques, geometric flight patterns, coverage types, path optimization algorithms, and
well-known CPP methods are explained in Sections 2.1.1–2.1.6.

2.1.1. Different Types of the Area of Interest Used for the Coverage Missions

The type of the AOI to be covered with the UAV’s sensor/camera can be 3D cubes
(i.e., buildings), a rectangle/square, convex and concave polygon or of irregular shape. The
shape of the AOI is an important factor, and it must be considered in the CPP process. The
CPP algorithms devised for the convex-polygonal-shaped AOI cannot yield feasible results
in an irregular-shaped AOI. The five most widely used AOI types are shown in Figure 1.

Figure 1. Most widely used AOI types in the coverage missions scenarios.

2.1.2. Area of Interest Decomposition Techniques Used in the Coverage Path Planning

The existing CPP methods can be classified into two major categories: cell decomposi-
tion and heuristic-based CPP methods. In the former methods, the AOI is decomposed
into non-overlapping cells of varying shapes and sizes. There exist several kinds of AOI
decomposition techniques [38]. The two most recognized cell-decomposition techniques
are: trapezoidal decomposition [39] and boustrophedon decomposition [40]. Trapezoidal
decomposition divides the AOI into convex trapezoidal cells, performs BF motions, and
uses an exhaustive walk to determine the cells’ exploration sequence to perform coverage.
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In contrast, the boustrophedon decomposition creates non-convex larger cells considering
only obstacle-vertices. The boustrophedon decomposition is superior than the trapezoidal
decomposition in terms of number of cells and path length. The Morse-based cellular
decomposition is an advance form of the boustrophedon decomposition, which is based
on the critical points of the Morse functions [41]. Grid-based decomposition methods
are also used to generate coverage paths for UAVs from grids [42]. Convex decomposi-
tion transforms the irregularly shaped AOI into the regular shaped cells to reduce the
number of turns [43]. In some cases, the concave and convex decomposition both have
been jointly used in the CPP problems. Each decomposition method varies regarding
the cell shapes, cell sizes, degree of complexity, objectives of CPP, and path quality. For
instance, the trapezoidal decomposition has overall time estimation of O(n3) which makes
it unsuitable for complex problems. On the other hand, the heuristic-based methods de-
fine procedures that should be followed during the CPP process [44,45]. These methods
determine a path without decomposing the AOI, and have lower computing complexities
than decomposition-based methods. A pictorial overview of the six most widely used
AOI decomposition techniques is depicted in Figure 2. The selection of the decomposition
technique depends upon the AOI shape, application’s requirement, coverage type, flight
pattern, and objectives of the CPP.

Figure 2. Most widely used AOI decomposition approaches for the coverage path planning.

2.1.3. Geometric Flight Patterns Used in the Area of Interest Coverage

There are eight commonly used geometric flight patterns for the CPP. Ander-
sen et al. [46] compared various types of the geometric flight patterns used for the
CPP problems. The flight patterns are chosen based on the shape of the AOI, UAV
mobility constraints, application requirements, and coverage type. For example, the
BF pattern is suitable when the AOI is large in size and is in a rectangular shape. In
Figure 3, eight well-known geometric flight patterns are presented graphically.

Figure 3. Flight patterns used in the coverage path planning to fully cover the target area.
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2.1.4. Coverage Types Employed in the Practical Scenarios with Unmanned Aerial Vehicle

Generally, there are two well-known types of the coverage for the practical scenarios.
Both coverage types with examples are explained below.

• Simple coverage: In this type of coverage, the AOI is covered only once. The example
of this type of the coverage are imagery, sprays, surveillance, and scans etc.

• Continuous coverage: In this type of coverage, the AOI is covered multiple times. The
example of this type of coverage is objects/events detection in the AOI, and periodic
readings collection from different parts of the AOI.

2.1.5. Overview of Path Optimization Algorithms Used in the Coverage Path Planning

After AOI decomposition and graph modeling from each sub region, an optimization
algorithm is employed to find a coverage path. The existing studies used several types
of path optimization algorithms for CPP. The most promising optimization algorithms
are the genetic algorithm [47], the ACO algorithm [48], the A∗ algorithm [49], particle
swarm optimization [50], the theta∗ algorithm [51], the wavefront algorithm [52], and their
improved versions. Furthermore, in some cases, two different optimization algorithms
can also be employed simultaneously for the inter and intra-region coverage [53]. This
work uses an ACO algorithm [48] for computing the traversal order of AOI and sweeps,
respectively.

2.1.6. State-of-the-Art Coverage Path Planning Methods

Finding a low-cost coverage path to ensure the perfect coverage of an AOI is an
attractive topic for research. Öst [54] proposed a CPP algorithm for a concave shape AOI
with sharp edges without sacrificing the guarantees on the perfect coverage. It employs
convex decomposition to transform the complex shape AOI into smaller regular cells. BF
and SP patterns are jointly used to fully cover the given AOI. It has an ability to handle
the complex shaped AOI with only marginal loss in the solution quality. Xu et al. [55]
proposed an optimal CPP algorithm for a fixed wing UAV with minimum overlapping and
complete coverage guarantees. It employs boustrophedon decomposition to decompose
the AOI into a set of non-overlapping cells. Later, the adjacency graph is generated from
the cells, and each cell is swept using the BF flight patterns. The order of the cells visit
follows the Eulerian circuit concept with the start and end at the same vertex of the cell.
It guarantees the complete coverage of the given AOI. However, in some cases, it may
perform additional sweeps when an obstacle’s geometry is complex by not considering
the SF as the coverage unit, and thereby the path length can be degraded. Jiao et al. [56]
devised an exact cellular decomposition-based approach for the concave area coverage.
Initially, the concave-shaped AOI is decomposed into the convex subareas using minimum
width sum approach [57], and then the BF flight pattern is employed to completely sweep
the AOI. Table 1 summarizes state-of-the-art CPP methods.
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Table 1. Description of the state-of-the art coverage path planning approaches used in single AOI coverage.

Decomposition Type Shape of the AOI
Detailed Comparison of State-of-the Art Coverage Path Planning Approaches

Evaluation Criteria CPP for Approach Agent Type Representative Methods

No decomposition

Polygonal
3D Topology

Regular Grids
Rectangular
Rectangular

Flight time
Energy consumption

Energy consumption and Mission time
Coverage rate and time

Flight time

Single UAV
Single UAV
Single UAV

Multiple UAVs
Multiple UAVs

Back and forth CPP
Three-stage Energy-aware CPP

E-MoTA e I-MoTA
Dynamic programming

MILP approach

Fixed wing
Rotary wing

Both
Fixed wing
Fixed wing

Coombes et al. [58]
Li et al. [59]

Artemenko et al. [60]
Ahmadzadeh et al. [61]

Forsmo et al. [62]

Exact cellular
decomposition

Polygonal
Irregular

Polygonal
Irregular

Rectangular

Number of turns and path length
Path length and coverage time
Number of turning maneuvers

Interval of visits and information latency
Target detection and search time

Single UAV
Single UAV
Single UAV

Multiple UAVs
Multiple UAVs

Back-and-Forth CPP
Back-and-Forth CPP
Back-and-Forth CPP

One-to-one coordination
Line Formation-based CPP

Rotary wing
Fixed wing

Both
Both

Rotary wing

Torres et al. [63]
Xu et al. [64]
Li et al. [29]

Acevedo et al. [65]
Vincent et al. [66]

Approximate cellular
decomposition

Irregular/Regular Grid
Regular Grid

Square
Square

Polygonal
Rectangular
Regular Grid

3D cube (building)

Coverage time
Path length

Total distance of the coverage
Total distance of the coverage

Path length
Mission completion time

Coverage rate and coverage ratio
Computing time

Single UAV
Single UAV
Single UAV
Single UAV
Single UAV

Multiple UAVs
Multiple UAVs

Single UAV

Gradient-based CPP
Simulated annealing

Hilbert space-filling curves
BFS, DFS, and SH
Genetic Algorithm

Multi-Objective CPP with GA
Chaotic ACO algorithm

TOGVF transition

Rotary wing
Rotary wing
Rotary wing
Rotary wing
Rotary wing
Rotary wing
Rotary wing

Both

Valente et al. [67]
Xiao et al. [68]
Sadat et al. [69]
Sadat et al. [70]

Trujillo et al. [71]
Hayat et al. [72]
Rosalie et al. [73]

Yao et al. [17]
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The CPP algorithms devised to solve the AOI coverage problem are mostly concerned
with the planning phase to find a complete path while optimizing certain performance
metrics. However, a considerable attention is required when planning a coverage path for
the fixed-wing UAVs, as these UAVs cannot make the abrupt directional changes. Hence,
the CPP algorithm must also consider the motion constraints of such UAVs during the
pathfinding process [36,74]. Some studies devised application-specific methods such as
CPP for interesting and non-interesting zones [69,70]. The interesting zones need careful
observation at higher resolution, so the UAV scans such area/zones with relatively lower
altitudes. In contrast, the non-interesting zones are covered from higher altitudes with
decreased resolutions to reduce the overall path cost.

2.2. Spatially Distributed and Multiple AOI Coverage

In many practical applications, the UAV needs the ability to cover multiple spatially
distributed regions located in urban environments. For example, when a disaster occurs,
multiple spatially distributed regions may need damage assessment, and the UAV is a
low-cost tool for this purpose. Furthermore, in search and rescue (SAR) missions, spatially
distributed region coverage is often required to find the targets or to collect data. The CPP
for covering spatially distributed regions is also needed in many other applications such as
room cleaning, lawn mowing, and infrastructure inspection. Bouzid et al. [75] proposed
an optimal CPP approach for the several points of interest (POIs) for coverage with a
quad rotor UAV. Their approach consists of two steps; firstly, the cost to visit the adjacent
POI is calculated, and then the sequence of POIs visit is determined aiming to reduce the
global path length. They formulated the POI visits problem as TSP, and solved it with a
genetic algorithm. The proposed approach can generate the closed path of shortest length
while visiting each POI only once. A few studies focused on the CPP to cover spatially
distributed regions. Xie et al. [76] proposed an optimal CPP algorithm for UAVs to cover
multiple regions. The approach makes use of advanced dynamic programming to solve the
integrated problem of TSP and CPP. Jincheng et al. [77] proposed an online CPP algorithm
for multi-region surveillance with no more than one turn while covering several AOIs. It
performs better than the zig-zag path planner. Huang et al. [78] presented a comprehensive
study regarding several typical problems in designing an internet of flying robots (IoFR)
for practical applications. They classified the coverage into three types: camera coverage,
charging coverage, and communication coverage, and discussed the CPP for each category.
Vasquez et al. [79] proposed an algorithm for surveying the disjoint areas with UAVs.
Xie et al. [80] devised a generic method for covering multiple spatially distributed regions.
However, these approaches are not suitable for use in urban environments inhabited by
multiple obstacles.

2.3. Major Contributions in the Field of UAV CPP for Spatially Distributed Regions Coverage

The major contributions of this research are summarized as follows: (i) it proposes
a new multi-objective CPP algorithm that has the potential to obtain a flyable path that
ensures the perfect coverage of the multiple spatially distributed regions located in urban
environments, with reduced path length, coverage time, turning maneuvers, and path
overlapping, something that previously proposed CPP algorithms based on the similar
principles could not do; (ii) it finds a low-cost traversal order for the multiple areas’ visits in
the form of a directed graph that is optimized afterwards based on environment complexity;
(iii) it introduces a new sensor’s footprints sweeps (SFSs) fitting method by exploiting
the obstacle geometry information in such a way that all the free spaces of an AOI can be
swept with as few SFSs as possible; (iv) it constructs a sparse waypoint graph (SWG) by
joining the footprint sweeps’ endpoints with their neighbors’ sweeps by taking into account
the optimization objectives and global and local constraints; (v) it proposes a lightweight
mechanism to switch between regions while avoiding collision with obstacles; (vi) to the
best of our knowledge, this is the first work that solves the spatially distributed region
coverage problem in urban environments with obstacles.
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3. The Proposed Multi-Objective Coverage Flight Path Planning Algorithm

The SFS fitting and a SWG-based CPP algorithm is proposed to resolve the time
performance, number of turns, path length, and path overlapping issues stemming from
the computationally expensive decomposition techniques used for the coverage missions in
obstacle-rich urban environments. The proposed algorithm not only ensures the complete
coverage of a single AOI; it also computes the shortest length path between spatially
distributed AOI to allow the UAV to cover multiple AOIs successfully without sacrificing
guarantees on the target objectives. It computes a coverage path with reduced cost, and
it enables the UAV to sweep all target areas fully in one round. This section explains the
conceptual overview of the proposed multi-objective CPP algorithm and outlines its key
steps. Figure 4 presents the conceptual overview of the proposed algorithm.

Figure 4. Conceptual overview of the proposed multi-objective coverage flight path planning algorithm.

To find a coverage path Γ that covers an entire free space of a multiple AOI,
{Q1, Q2, Q3, . . . , Qn} located in a 3D urban environment of completely known geome-
try, we used the seven key steps, (i) modeling of the UAV operating environment from
a raw urban environment map; (ii) locating AOIs on a modeled map; (iii) computing
the low-cost traversal order of the AOI visits in a directed graph form; (iv) finding intra-
regional path from an AOI based on the UAV initial location, using six key steps described
in Sections 3.4.1–3.4.6; (v) determining the next AOI to switch from the current AOI with
low-cost; (vi) switching to the next AOI by formulating and solving it as a PP problem; and
(vii) repeating the intra-inter regional pathfinding process until the completion of last AOI
(i.e., Qn). Brief discussion about each key step with formalization is below.

3.1. Modeling of the UAV’s Operating Environment from a Real Urban Environment Map

After obtaining the required information related to the coverage mission, the proposed
CPP algorithm models and the UAV operating environment (i.e., workspace). Generally, it
refers to the classification of the free spaces (Q f ree), and obstacle regions (Qobstacles). The
Qobstacles refers to the non-traversal parts of the AOI Q because the UAV cannot fly in these
parts due to the presence of obstacles. In contrast, Q f ree refers to those parts of the Q where
UAV can operate safely and the probability of collision with obstacles is zero. The obstacles
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present in the operating environment are modeled with the help of geometrical shapes (i.e.,
cubes, squares, and circles, etc.). In this paper, UAV’s operating environment from a raw
urban environment map containing the elevation data about the apartments, trees, and
buildings, etc. was modeled with a set of 3D convex obstacles. This is done by calculating
the convex hull of the elevation data. Each modeled obstacle has random geometry (i.e.,
width, length and height) depending upon the real object geometry present in an urban
environment. Each convex obstacle has six faces and eight vertices. The obstacle vertices v
in the modeled map can be represented with three co-ordinates values, v = (x, y, z). An ith
obstacle vertex along with their numerical values can be mathematically expressed as the
matrix given below.

Oi =


xmin ymin zmax; xmin ymin zmin

xmin ymax zmax; xmin ymax zmin

xmax ymin zmax; xmax ymin zmin

xmax ymax zmax; xmax ymax zmin

 =


573 919 245; 573 919 0

573 1038 245; 573 1038 0

653 919 245; 653 919 0

653 1038 245; 653 1038 0


where min and max refer to minimum and maximum values of the respective axis, re-
spectively. The UAV source (i.e., depot) and mission completion locations are represented
with 3D points vs and vc, respectively. In some studies, vs and vc are the same as the UAV
returns to the initial location after completing the whole mission. In this work, we consider
the alternate case in which UAV does not return to the vs after finishing the mission due to
the power issues. The objective of the proposed CPP algorithm is to find a coverage path Γ
for a UAV mission. The path Γ consists of several nodes which have two characteristics, (i)
Γ ∈ Q f ree and (ii) Γ ∩Qobstacles = ∅.

3.2. Locating All Areas of Interest on a Modelled Map

The proposed CPP algorithm locates all AOIs on the 3D modelled map based on their
geometry information specified in the inputs. The AOI Qi can be represented with the
sequence of p vertices, {p1, p2, p3, . . . , pn}. Each Qi vertex pi has three co-ordinates values
(px(i), py(i), pz(i)), where pz(i) = 0. Let pi be the initial vertex of a Qi; the next vertex
to pi can be represented as pnext(i), where next(i) = i(mod n) + 1. The line ei connecting
two vertices pi and pnext(i) has length li. The Qi boundary (i.e., combinations of vertices
and edges) can intersect with the obstacles. The four practical cases in this regard are: (i)
the Qi vertices and edges do not intersect with obstacles at all, (ii) the Qi vertices can lie
within obstacles, (iii) the Qi edges intersect with obstacles, and (iv) combinations of (ii) and
(iii). When the Qi boundary hits obstacles, boundary simplification is then applied in the
intra-regional path computation considering the nearby obstacles. In some scenarios, the
Qi can contain many no-fly zones (NFZ) of distinct geometries, and our algorithm locates
those NFZs in the respective AOI at this stage.

3.3. Computing Low-Cost Traversal Order of the Area of Interests in the Form of a Graph

After locating all AOIs on the modeled map as per their geometries, the next step is
to compute the low-cost traversal order (e.g., process of passing across) of the AOIs for
computing the global path. To do so, the centroids of each AOI were determined initially.
To find the center CQi of an ith AOI which is in rectangular form with four vertices (p = 4),
we applied the following procedure to find the Qi center. The four vertices values are given
which are: p1 = (800, 40, 0), p2 = (800, 1000, 0), p3 = (1000, 40, 0), p4 = (1000, 1000, 0). We
find the two unknown vertices p5 and p6 with the help of Equations (1) and (2).

p5 = (px(1),
py(1) + py(2)

2
, pz(1)). (1)

p6 = (px(3),
py(3) + py(4)

2
, pz(3)). (2)
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In Equations (1) and (2), the x-axis and z-axis values were fixed. One can fix the y-axis
and z-axis values, and can find the unknown points using x-axis values. After finding the
p5 and p6 points values, the CQi value can be determined using (3).

CQi = (
px(5) + px(6)

2
, py(5), pz(5)). (3)

In Qi, the four vertices’ geometry values are fully known, hence the CQi value is
CQi = (900, 520, 0). With the help of a similar procedure, the centroids of each AOI
are determined. Meanwhile, if the AOI’s shape is not regular, then it is converted to
the regular shape (i.e., square/rectangle) first with sufficient accuracy by computing the
convex-hull. Later, the midpoints are determined using the relevant axis values. The
computed centroids information is stored in set CQ, where CQ = {CQ1 , CQ2 , CQ3 , . . . , CQN}
for further processing. Once, the centroids of all AOIs are determined, we formulate the
traversal order computation problem as a traveling salesman problem (TSP) (i.e., each
AOI must be visited only once), and the ACO algorithm is employed to solve this TSP.
Before computing the traversal order, the UAV depot location vs is added in set CQ, and
CQ = {vs, CQ1 , CQ2 , CQ3 , . . . , CQN}, as it assists in determining the first AOI to be visited as
per the UAV initial location.

Given the N-point set CQ originally determined from the AOI’s vertices, these points
are used to calculate a close path that visits each AOI’s center exactly once. We specify
the required parameters of an ACO algorithm such as the number of iterations (yitr),
the number of ants (`), the number of points (i.e., centroids, and UAV location) (n), the
parameter to regulate the influence of pheromones (α), the parameter to regulate the
influence of visibility (sight) among two centroids (β), and the pheromone evaporation rate
(ρ), where ρ ∈ [0, 1] values are based on the set CQ size. After specifying the parameters’
values, the distance and sight matrix are computed between centroids. Then, ` ants are
deployed on random points, and the computation process is started for the pre-specified
iterations yitr. During this process, each ant `i determines a tour T`i

by remembering the
points (i.e., AOI’s centroids) which have already been explored, and choosing the nearby
points from its current location based on the action choice rule, formalized in Equation (4).
The probability p that point CQj will be visited by an ant `i which is currently at point CQi
can be computed from the following equation.

p`i
CQi

CQj
=


[τCQi

CQj
]α[ηCQi

CQj
]β

∑
s∈allowed`i

[τCQi
CQj

]α[ηCQi
CQj

]β
, CQj ∈ allowed`i

,

0, otherwise,

(4)

where τCQi
CQj

represents the intensity of the pheromones trial between point CQi and CQj ,

α is a parameter used to regulate the influence of τCQi
CQj

, the variable ηCQi
CQj

represents

the visibility between point CQj and CQi , which is computed as 1/dCQi
CQj

(where dCQi
CQj

is

the Euclidean distance between two points computed from Equation (5)), β is a parameter
used to regulate the influence of ηCQi

CQj
, and allowed`i

represents the points that have not

been visited by an ant `i yet, respectively.

dCQi
CQj

=
√
(xCQi

− xCQj
)2 + (yCQi

− yCQj
)2 + (zCQi

− zCQj
)2 (5)

At the start, ` ants are deployed to the n points randomly. After that, each ant makes
the decision to choose the next point based on the transition probability p`i

CQi
CQj

given in

Equation (4). After the yitr of this full process, every ant finds a complete tour by visiting
each point once. It is necessary to re-enforce good solutions, and the ant with the shortest
tour should deposit more pheromones to find a low-cost solution compared to the other
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ants. Thus, the trail levels are updated, and each ant leaves a quantity of pheromones
given by X/l`i

, where X is constant, and l`i
is the length of the optimal tour. Meanwhile,

the pheromones’ quantity will decrease with the passage of time. Hence, the update rule of
the τCQi

CQj
can be written as follows:

τCQi
CQj

(χ + 1) = (1− ρ)τCQi
CQj

(χ) + ∆τCQi
CQj

, (6)

∆τCQi
CQj

=
`

∑
`i=1

∆τ
`i
CQi

CQj
, (7)

∆τ
`i
CQi

CQj
=

{
X/l`i

, i f ant `i travels on the edge (CQi .CQj),

0, , otherwise,
(8)

where variable χ in Equation (6) represents the iteration counter, the parameter ρ is used to
regulate the influence of τCQi

CQj
, ∆τCQi

CQj
shows the total increase in trial level on a partic-

ular edge (CQi CQj), and ∆τ
`i
CQi

CQj
represents the increase in trial level on the two respective

edges (CQi CQj) caused by an ant `i. While determining the AOI’s visiting order, we do not
consider the obstacles’ effect to find the optimum length global tour. Meanwhile, the obsta-
cles’ effects are taken into account during switching between the AOIs and intra-regional
path finding. With the help of ACO algorithm, we can obtain the low-cost traversal order
modeled as a directed graph G. For the sake of simplicity, we store the traversal order as ma-
trix ξ, where ξ = {(vs, n0), (Q1, n1), (Q2, n2), (Q3, n3), . . . , (Qn, nn)} of the AOI’s visiting
order that will be used during the coverage mission. In set ξ, the ni refers to the traversal
order of a particular AOI. For example, five AOI given as, Q1, Q2, Q3, Q4, Q5 and the UAV
depot location vs can be processed via the ACO algorithm, and the low cost traversal order
in the form vs⇒ Q1⇒ Q2⇒ Q3⇒ Q5⇒ Q4 can be obtained. Accordingly, the information
in matrix ξ will be saved in the form, ξ = {(vs, 0), (Q1, 1), (Q2, 2), (Q3, 3), (Q5, 4), (Q4, 5)}.
Through extensive experiments, we found that the traversal order computed with the ACO
algorithm is suitable when all AOIs are well apart from each other. Moreover, when the
distance between AOIs is not significantly large (e.g., less than 10 km), the order computed
at this stage may not yield the optimal results. Hence, in such cases, we re-evaluate the
traversal order in combinations with the intra-regional paths in order to find a low-cost
coverage path.

3.4. Finding an Intra-Regional Coverage Path from an AOI Located in Urban Environments

After finding a low-cost traversal order for each AOI, the intra-regional CPP is carried
out to find the coverage path from the AOI which comes first in the order. While finding
an intra-regional coverage path represented as ζ that covers all traversal parts of this AOI
with UAV sensor/camera footprint, the objective is to optimize the stated assertions to
the greatest extent possible. To find ζ from each AOI, we applied five main steps stated in
Sections 3.4.1–3.4.6.

3.4.1. Multi-Criteria-Based Free Space Geometry Information Extraction from an AOI

Free space geometry information from an AOI can be extracted by a using multi-
criteria-based method. Firstly, the obstacles’ existence checks are performed in an AOI
by the line rotation method (i.e., a line lr is drawn from one vertex pi of an AOI to its
nearest adjacent vertices pi+1 and rotate it to all p vertices). Due to these checks, the AOI
can be classified into three categories, (i) obstacle-inhibiting environment, (ii) obstacle-free
environment, and (iii) area boundary obstacles only. In the third case, an AOI’s boundary
is simplified by considering the nearby obstacles that intersect with the AOI vertices/edges
or lying in very close proximity to it. The AOI’s boundary is modified by shrinking the
AOI’s actual boundary inward, considering the UAV size and obstacles with whom UAV
can possibly collide during the coverage mission. Later, the simplified environment is used
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for the coverage mission. The working of the multi-criteria-based free space geometry
information extraction method is shown in Figure 5.

Figure 5. Flowchart of multi-criteria-based free spaces geometry information extraction method.

If no obstacles intersect with the lr, then the AOI is regarded as the obstacle-free
environment, and coverage can be performed with ease (i.e., second case). Meanwhile,
if the obstacles exist in an AOI, the obstacles’ expansion (i.e., enlarging the obstacles’
intersections by a Dsa f e value out of the obstacles) is carried out to avoid collision with
obstacles. The nearby obstacles are clustered which overlap each other due to Dsa f e
addition. Furthermore, we cluster the obstacles which become very close to each other
such that a UAV can possibly collide with them. The Dsa f e is an integer number whose
value can be determined/adjusted considering the operating environment, UAV size, and
obstacles’ shapes. We apply the Hmin (where Hmin = minimum UAV altitude limits) to
filter the obstacles that fall below the Hmin, and the UAV can go over safely. Through the
above-mentioned multi-criteria-based free space geometry information extraction method,
the AOI can be classified into non-traversable and traversable parts. Subsequently, we fit
the UAV’s sensor/camera footprints’ sweeps only in the traversal parts for the coverage
missions after choosing the appropriate coverage direction(s).

3.4.2. Choosing the Appropriate Coverage Direction(s) by Exploiting Available Free Space
Geometry Information and Analyzing the Geometrical Characteristics of the AOI

Choosing the best coverage direction(s) has a range of advantages in coverage sce-
narios such as it lowers the turning maneuvers in a flight path to save the UAV resources.
The turning maneuvers are very costly in terms of the energy consumption, coverage
time, and path length because the UAV has to perform three actions for each turning
maneuver such as (i) reducing the current speed, (ii) taking the turn, and (iii) increasing
the speed again. Figure 6 demonstrates the overview of the coverage path obtained from
the Q1 with two different coverage directions. From the Figure 6b,c, it can be observed
that coverage direction has a significant impact on the turning maneuvers, and it requires
detailed knowledge regarding the underlying AOI in order to reduce the turns. The ζ in
Figure 6b has only three turns while the ζ in Figure 6c has eleven turns.
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Figure 6. Overview of the coverage path ζ obtained through two alternate sweep directions.

In this paper, the best coverage direction (s) is determined by exploiting traversable
parts’ geometry information, and analyzing the span W of the AOI to be covered with
a UAV. In regular-shaped AOIs, we find the values of both the vertical span Wv and
horizontal span Wh of the AOI for the best coverage direction selection. Furthermore, the
AOI’s traversable parts’ geometry knowledge is exploited to select the most appropriate
coverage direction (s). Meanwhile, the coverage direction is mostly chosen parallel to the
maximal span axis and considering the tendency of free spaces. We employ single/multiple
coverage directions depending upon the given AOI complexity to reduce the number of
turns. Moreover, if an AOI is not in the regular shape, we transform it to a regular
shape by the using convex-hull concept for the span calculation and, accordingly, the best
coverage direction selection. If Wv = Wh, then the appropriate coverage direction can be
chosen considering the obstacles placement and next AOI. In addition, by utilizing the
global information of the AOI, and following the practical procedure explained above, the
proposed CPP algorithm has the ability to find the best coverage direction, which in turn
yields a smaller number of turning maneuvers in ζ.

3.4.3. Fitting Sensor/Camera Footprints’ Sweeps in All Traversal Parts of the AOI

In coverage missions, a UAV always carries a specific tool which can be a transmitter,
visual sensor, digital camera, or a spray tank depending upon the scenario. This tool is
usually downward facing and mounted on the UAV. This work considers that the UAV
carries a visual sensor/camera to cover the AOI for imagery missions. The attached tools
with a UAV can have different characteristics related to sensing, and varying footprint
sizes depending upon the UAV altitudes. For example, when the UAV altitude is low,
image resolution is very high and footprint size is small, and vice versa. However, these
sensing parameters/characteristics can be adjusted and are usually taken at the start of
the mission. During tests, it is assumed that UAV generally flies at constant altitude while
covering an AOI. However, in some cases, the priorities can be assigned to some parts of
the AOI. The sensor footprint f is of rectangular shape with fixed width fw and length
fl , respectively. The sensor footprint size on the ground can be determined as shown in
Figure 7a, and later N SFSs can be fitted in the traversable parts of an AOI in such a way
that fewer footprints’ sweeps can achieve the coverage of most parts. The N SFSs fitted in
an AOI can be mathematically expressed as set S as shown in Equation (9).

S = { f1, f2, f3, . . . , fN}. (9)

Each SFS has two main parts: one is from a certain height (i.e., the 3D line segment
form) which is also called the flight line and the other on the ground (i.e., the 2D rectangular
form with four vertices (a, b, c, d), and fixed width fw and length fl) similar to the sample
given in Figure 7b.
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Figure 7. (a) Overview of the sensor footprint on the ground and (b) footprint sweep in the AOI.

The 3D line that passes from the middle of the ground footprint is used as an actual
path on which UAV moves during the coverage mission. Considering the SFS as a line
segment, the start point fs and endpoint ft of an ith SFS are given as:

fi = ( f i
s , f i

t ) = ((xi
s, yi

s, zi
s), (xi

t, yi
t, zi

t)). (10)

After fitting the SFSs in all required parts of the AOI, the midpoint of each footprint
line segment part utilizing f i

s and f i
t values are computed. The objective is to find the

visiting sequence of the SFSs by utilizing these midpoints. The midpoint f i
m of the ith

footprint fi can be computed using the respective co-ordinates values of both f i
s and f i

t . A
detailed pictorial overview of a f in a rectangle form and SFS is shown in Figure 7b.

3.4.4. Determining the Visiting Sequence of the Footprints’ Sweeps by Formulating and
Solving It as TSP

After fitting the sensor/camera footprints’ sweeps in the AOI, the next step is to
determine the sequence/order in which the footprints’ sweeps will be connected and
visited to ensure the perfect coverage of the AOI. To find the low-cost footprints’ sweeps
visiting sequence, it is formulated as a TSP, and the ACO algorithm as explained earlier is
employed to compute the visiting sequence. A pictorial overview of the TSP calculated
from the 25 3D points (footprints’ sweeps’ midpoints) in 2D is shown in Figure 8.

Rigorous experiments are performed to verify the computed sequence. Through
this process, a low-cost footprints’ sweeps visiting sequence can be obtained for further
processing. For example, five footprints’ sweeps, f1, f2, f3, f4, f5 can be processed via
ACO and an optimal visiting sequence in the form f1 ⇒ f2 ⇒ f3 ⇒ f5 ⇒ f4 ⇒ f1 can be
obtained. We store the footprints’ sweeps visiting sequence information in set ν, where
ν = {( f1, x1), ( f2, x2), . . . , ( fn, xn)}.. The x values in set ν denote the visiting sequence
value of the respective f . The obtained footprints’ sweeps visiting sequence is used for
SWG construction and coverage pathfinding, respectively.
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Figure 8. Determining the visiting sequence as a closed tour of the SFSs using the ACO algorithm.

3.4.5. Generation of the Sparse Waypoints Graph by Connecting the Endpoint of
Footprints’ Sweeps

An SWG is generated by connecting the SFSs’ endpoints for the coverage pathfinding
from an AOI. Mathematically, the SWG is a double edge graph ω of the reachable locations,
ω = {V, E}, where V represents the set of nodes, and E represents the set of edges.
The V are basically the SFSs’ endpoints, while E are the straight lines for each SFS and
connection from one sweep to another (i.e., circular form). Each sweep is a line segment
with two endpoints fs and ft (i.e., fi = f i

s f i
t ) as shown in Figure 7b. The SFSs’ endpoints are

connected with the coincident (i.e., neighbors) sweeps’ endpoints to form ω. Furthermore,
the ω construction process encounters obstacles that need to be avoided while respecting
the UAV maneuverability constraints. We devised a low cost strategy to avoid obstacles
that hinder sweeps’ connection by evaluating and selecting the three avoidance options
(i.e., left, right, top) as shown in Figure 9a. The footprints’ sweeps can be classified into
two categories: (i) the maximal coverage sweeps, and (ii) partial coverage sweeps. The
former sweeps are the ones which start from one corner of the AOI to the other without
encountering any obstacle. In contrast, the later sweeps encounter obstacles and are not
able to reach to the other end of the AOI. The pictorial overview of the partial and maximal
coverage sweeps is shown in Figure 9b. The green and yellow colours represent the partial
maximal coverage sweeps, respectively. The large number of maximal sweeps can enhance
the convergence rate, and the path can be computed with least turns. Moreover, in obstacle-
rich environments, the number of maximal coverage sweeps can be less and the CPP
requires extensive computing.

Figure 9. (a) Pictorial overview of the three obstacle avoidance options and (b) two types of sweeps.
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Given set S of SFSs, where each sweep is in the form of a line segment with start
point ( fs) and endpoint ( ft), collision-free connections between sweeps are determined to
construct a SWG ω. The complete pseudo-code used to generate ω from the AOI (i.e., Qi)
while avoiding obstacles safely is given in Algorithm 1. The proposed algorithm computes
and selects the low-cost obstacle avoidance option from the three candidate options (shown
in Figure 9a). To successfully avoid scattered obstacles present in an AOI, two additional
points on all three sides of an obstacle are introduced, and the distance is computed for
low-cost collision avoidance.

Algorithm 1: Sparse Waypoint Graph Construction from an AOI Qi located in an Urban Environment.

Input : (1) Qi inhabiting N obstacles, where N = {o1, o2, o3, . . . , on} and each obstacle has random geometry.
(2) Set ν of sweeps’ visiting sequence, where ν = {( f1, x1), ( f2, x2), . . . , ( fn, xn)}.
(3) Set S of the sensor footprints’ sweeps, where s = { f1, f2, . . . , fn} and fi = ( f i

s , f i
t ).

Output : Sparse waypoints graph ω
Procedure :

1 for every sweep fi, where fi = f1 to fn ∈ S do
2 Find the next sweep f j considering the the optimized visiting sequence (i.e., x values in set ν).

3 Figure out the relevant endpoint pair using ( f i
s , f j

s , f i
t , f j

t ) for the connection ci
4 if INTERSECTS(ci,ok) then
5 Evaluate the obstacle ok bypassing options values, dl , dr, dt using the following Equations.

6 Calculate dr for bypassing from the right: dr = d{( f i
s , f i

t ), pr1)}+ d(pr1 , pr2) + d{pr2 , ( f j
s , f j

t )}.
7 Calculate dl for bypassing from the left: dl = d{( f i

s , f i
t ), pl1)}+ d(pl1 , pl2) + d{pl2 , ( f j

s , f j
t )}.

8 Calculate dt for bypassing from the top: dt = d{( f i
s , f i

t ), pt1)}+ d(pt1 , pt2) + d{pt2 , ( f j
s , f j

t )}.
9 Select the appropriate obstacle ok bypassing option AOBOk using AOBOk = min(dr, dl , dt), where

dr, dl , dt shows the minimum cost required to avoid ok from the right, left, and top, respectively.
10 Create collision free ci between sweeps fi and f j by acquiring the relevant endpoints.
11 else
12 Create collision free ci between sweeps fi and f j with the relevant endpoints.
13 End if
14 End for
15 return ω

In Algorithm 1, the AOI Qi inhabits N obstacles, SFSs set S, and the SFSs’ visiting
sequence set ν are given as an input. The SWG ω, where ω = {V, E} is obtained as an
output. Line 2 implements the finding of an appropriate SFS f j to be connected with
an SFS fi from set S based on the optimized visiting sequence values stored in a set
ν. Line 3 implements the figuring out of the relevant endpoint’s pairs with the help of
which a collision-free connection ci which can be established between fi and f j. Line 4
performs the check for the possible obstacle(s) existence that can hinder the formation of a
collision-free connection ci. Lines 5–8 implement the cost/distance computation to avoid
an obstacle ok from either the top, left or right using ok, fi, and f j geometry’s information.
Line 9 implements the finding of a lowest cost obstacle avoidance option among the
three candidate options. Line 10 implements the connection formation while avoiding
obstacles present between SFSs fi and f j. Line 12 implements the connection formation if
no obstacles exist between two sweeps. When under the i f − else condition, Lines 4–13
perform the generation of the collision free connections with and without the presence of
the obstacles. Furthermore, the same process is repeated for all sweeps until a complete
SWG is constructed. Finally, an SWG ω is returned as an output (line 15). Furthermore, in
some cases, the connection gap value is also taken as an input to be considered during the
ω construction for turns handling depending upon the type of a UAV.
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3.4.6. Intra-Regional Path Searching over the SWG to Fully Cover an AOI

After generating the ω from an AOI Qi, the path searching is carried out to find
an intra-regional path ζ from the UAV’s depot location (i.e., vs). It is assumed that vs is
very close to the Qi, and no obstacles exist between the vs and starting location bi of the
Qi. The location in which UAV finishes the perfect coverage of an Qi is denoted with
ei. The ei location is used to make decisions in switching between areas. After complete
ω construction, the path searching process begins from the point vs and continues until
the perfect coverage is achieved. To find an intra-regional collision-free path ζi over an
SWG constructed from the Qi located in an urban environment, we employed the ACO
algorithm which generated the optimized visiting order of the SFSs, and informed the
search. Our algorithm maintains the track of the locations to be visited by a UAV using
the order generated by the ACO for SFSs connections. It is assumes that UAV is able to
execute turning maneuvers with sufficient accuracy while transiting from one sweep to
another during the coverage mission. The complete pseudo-code is used to find ζi from
Qi) without sacrificing the guarantees on the stated assertions is given in Algorithm 2.

Algorithm 2: Coverage pathfinding to fully scan a target area Qi with a UAV-mounted Sensor/Camera.

Input : (1) The depot location vs of the UAV, where vs = (xs, ys, zs).
(2) Set ν of the sweeps’ visiting sequence, where ν = {( f1, x1), ( f2, x2), . . . , ( fn, xn)}.
(3) Sparse waypoints graph ω of the sweeps connections, where ω = {V, E}.
(4) The starting location bi of the mission in the AOI, where bi = f i

s = (xi
s, yi

s, zi
s)

Output : Intra-regional path ζi and mission end location ei
Procedure :

1 Connect the UAV’s depot location vs with the starting location bi of the mission in the AOI with a line le.
2 for every sweep fi, where fi = f1 to fn ∈ ω do
3 Find the next sweep f j considering the the optimized visiting sequence (i.e., x values in set ν).
4 Find the connection ci which connects the fi and f j in ω

5 Traverse all the nodes and lines of the fi, f j, and ci in a BF manner, and record this as r1.
6 Repeat: steps 3–5 for the next sweep fk ∈ ω, where f j is the successor sweep of fk.
7 Traverse all the nodes and lines of the f j, fk, and ci+1 in a BF manner, and record this as r2.
8 if lastRound( fk, fn) then
9 Traverse all the nodes and lines of the fk, fn, and ci+n in a BF manner, and record this as rn.

10 Assign the endpoint of the rn to the ei.
11 else
12 Repeat: ∀ { fl , fm, fn, . . . , fn} ∈ ω, find all respective rounds.
13 Assign the endpoint of the rn to the ei.
14 End if
15 Add the path information in ζi, where ζi = {le, (r1, r2, r3, . . . , rn)} .
16 End for
17 return ζi and ei

In Algorithm 2, the UAV depot location vs, SFSs set S, and SFSs’ visiting sequence set
ν, SWG ω, and starting location bi which is the point of entry in Qi are given as an input.
The path ζi and mission end location ei are obtained as an output. Line 1 implements the
connection establishment between the vs and bi. Lines 3–5 implement the first complete
round formation in a BF manner using the two SFSs ( fi and f j) and their connection (ci).
Lines 6–7 implement the the second complete round formation in a BF manner using
the two SFSs ( f j and fk) and their connection (ci+1). Lines 8–14 determines whether the
perfect coverage has been achieved or not via if−else conditions; in both cases, the location
where the mission finishes is recorded (Lines 10 and 13). The complete coverage path
information is stored in ζi (Line 15). Finally, path information along with the mission
completion location is returned as an output (line 17). Our CPP algorithm finds the path
very quickly since the already optimized visiting order and informed search strategy
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is utilized. Furthermore, the ω contains fewer nodes and edges, and thereby the path
searching time is significantly lower, and ζi can be computed quickly.

3.5. Determining the Next Area of Interest to Switch from the Current Area of Interest with the
Lowest Possible Cost

After the perfect coverage of an AOI Qi with the path ζi, the next AOI Qj to be covered
is determined. Although the traversal order for each AOI’s visits is determined in advance
but it cannot lead to optimal results in some cases. Therefore, the appropriateness of
traversal order is re-assessed while switching between different AOIs. The two cases
in which the traversal order can/cannot yield the appropriate results are presented in
Figure 10. As shown in Figure 10ii, the cost of switching from Q2 to Q1 as per the ACO
algorithm’s suggested order is more than Q2 to Q3 based on the coverage path end location.
Hence, in such cases, the traversal order is re-evaluated and modified if required to lower
the overall path cost. In such cases, the intra-regional and inter-regional path computation
cannot be separated. Concisely, if the AOIs are not well separated, the traversal order
computed at the start may yield longer paths. This work resolves this problem by analyzing
the distances between the AOIs. If the distance between all AOIs is sufficiently large, then
the traversal order computed at the start can yield optimal results in most cases as shown in
Figure 10i. However, if the AOIs are not well-separated, then the traversal order computed
at the start can no longer yield feasible results, and re-assessment of the traversal order
is needed as shown in Figure 10ii. The main reason behind this problem is the intra-
regional path that can impact traversal order based on the mission completion locations in
a respective AOI.

Figure 10. Overview of two cases regarding the feasibility of traversal order (e.g., order is feasible (i), and is infeasible (ii)).

Once, the decision about the next AOI is made, the low-cost path is determined for
switching from the current AOI to the next AOI. We formalize and solve it as a traditional
PP problem between two pre-determined locations.

3.6. Switching to the Next AOI by Formulating and Solving It as a Traditional Path
Planning Problem

To safely switch from the end location ei of an AOI Qi to the start location bj of an
AOI Qj, a five-step process was devised. The whole process is formalized as a traditional
path planning problem in which ei and bj are perceived as the source and target locations,
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respectively. The objective is to find the shortest path Wij in a 3D urban environment
between two points,ei and bj, avoiding obstacles present in an underlying environment. The
nodes set of the path (Wij) has two characteristics, (i) Wij ∈ X f ree and (ii) Wij ∩Xobstacles = ∅.
The functional model between ei and bj for the two-PP objective optimization is as follows:

Wij = [ei = wij1 , wij2 , wij3 , . . . , wijn , wijn+1 = bj]

Minimize f1(Wij) = Computing Time(Wij)

Minimize f2(Wij) = Length(Wij)

The proposed algorithm effectively resolves the two conflicting goals by exploiting
the obstacles’ geometry information, and UAV the is assumed as a single point in this work.
The process employed to compute the Wij by fulfilling the two objectives is comprised
of following five steps: (i) drawing straight line l0 between two locations (i.e., ei and bj),
(ii) filtering the obstacles that intersect with the axis l0, (iii) finding the initial path W

′
ij by

exploiting the relevant obstacles geometry information, (iv) refining the initial path by
clustering obstacles, and utilizing the straight line’s point of intersection information, and
(iv) path following to reach to Qj from the Qi (i.e., inter-region switching).

3.6.1. Drawing Straight Line from the Exit Location of the Previous AOI to the Beginning
Location of the Next AOI

At the beginning, a straight line l0 is drawn from the exit location (e) of the previous
AOI to the beginning location (b) of the next AOI. For example, when l0 is drawn from ei of
an ith-AOI to the bj of the jth-AOI for an inter-AOI switching, three types of the results can
be observed. All three are results visually presented in Figure 11. In the first two scenarios,
the l0 does not intersect the obstacles, and l0 can be used as working path for switching
(i.e., l0 = Wij). Meanwhile, in the second scenario, there are some obstacles which lie very
close to the l0 and the UAV can possibly collide with them. Therefore, slight adjustments
are performed in l0 by considering nearby obstacles to find a Wij for inter-region switching.
The third scenario is a typical PP problem, and it requires further processing since l0
intersects with obstacles either from the middle or the corners. In this scenario, the further
processing is carried to find the Wij by filtering the intersected obstacles and analyzing their
geometry information. The detailed procedure to find Wij is described in the subsequent
Sections 3.6.2–3.6.5.

Figure 11. Pictorial overview of the three possible options while planning to switch between AOIs.

3.6.2. Filtering the Obstacles That Intersect with the Straight Line

In the third scenario, as shown in Figure 11c, two obstacles intersect with the l0,
and we need to avoid them while switching from the ei to bj locations. Consequently,
such obstacles are filtered from the 3D urban environment map, and further processing is
applied. The complete pseudo-code used to filter obstacles that intersect with the l0 from
the map is given in Algorithm 3. In Algorithm 3, urban environment map M encompassing
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N number of obstacles, mission end location ei of an ith AOI, and mission beginning
location bj of the jth AOI are provided as an input. Set <, where (< ⊆ N) of relevant
obstacles is yielded as an output. Line 2 implements the l0 drawing between two locations
ei and bj. Lines 3–7 perform the filtering of the obstacles that intersect with the l0. Finally,
set < of the relevant obstacles is returned (line 8). Meanwhile, if no obstacle lies between
the two locations, then < = ∅ will be returned as an output.

Algorithm 3: Filtering relevant obstacles from the urban environment map.

Input : (1) Urban environment map M containing N number of obstacles, where N = {o1, o2, o3, . . . , on}
(2) Mission end location (ei) of an ith AOI
(3) Mission beginning location bj of the jth AOI

Output : Set < of the filtered relevant obstacles
Procedure :

1 Initialize:, set < = ∅
2 Draw straight line l0 between (ei) and (bj)
3 for each oi, where oi = o1 to on ∈ N do
4 if INTERSECTS (l0, oi) then
5 < = < ∪ {oi}
6 End if
7 End for
8 return <

After obtaining set < of the relevant obstacles, we enlarge the filtered obstacles by
the safe distance (Dsa f e). After that, we analyze the obstacles’ geometry that are on the l0
between ei and bj to find a low cost W

′
ij.

3.6.3. Finding the Initial Path by Exploiting the Filtered Obstacles’ Geometry Information

We find the initial (i.e., coarse) path W
′
ij for inter-region switching by considering the

obstacles lying on l0. Mathematically, W
′
ij can be expressed as:

W
′
ij = dl0 +

N

∑
i=0

Di (11)

where dl0 represents the straight line distance d between two locations (ei and bj), computed

as dl0 =
√
(xi

t − xj
s)2 + (yi

t − yj
s)2 + (zi

t − zj
s)2, Di is the degradation in straight line path

caused by the obstacles lying on the l0, and W
′
ij is an initial path which is subsequently

optimized. The degradation (D) in path length due to an obstacle (e.g., i) is calculated
using Equation (12).

Di = min(
Ow

2
, Oh) (12)

where Ow and Oh are the obstacle’s width and height, respectively.
This indicates three options for bypassing an obstacle. This work does not consider

the hanged obstacles; therefore, there are only three options to avoid each obstacle. If there
is no obstacle between ei and bj, then, the second term in Equation (11) will be zero, and
W
′
ij = dl0 . The path complexity CWi j is mathematically expressed in Equation (13).

CWi j =
dl0

W ′
ij

(13)

where dl0 and W
′
ij show the length of the path without and with obstacles’ presence,

respectively. The CWi j value close to one is preferred. If a large number of obstacles exist
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between the two locations, the D value will be higher, and consequently CWi j will be
close to zero, and vice versa. Meanwhile, the CWi j value is optimized more by exploiting
obstacles’ geometry information to find the actual path Wij.

3.6.4. Refining the Initial Path by Clustering Nearby Obstacles, and Utilizing the Straight
Line’s Point of Intersection Information

After finding the initial path W
′
ij, its length is optimized by exploiting the obstacle’s

geometry information that is lying on the l0. In order to lower the CWi j, obstacles that
are lying close to each other are grouped to be considered as one obstacle. This helps in
reducing the path length and number of turns in the path. Furthermore, the actual point of
intersection with obstacles is taken into account rather than assuming that l0 intersects each
obstacle from the middle. By jointly using the accurate point of intersection information,
and grouping the nearby obstacles, the path length is significantly shortened. The initial
path W

′
ij becomes the working path Wij, and it will be followed by the UAV for inter-region

switching. In the path-refining phase, the main objective is to shorten the path’s length,
and make it smooth to the greatest extent possible.

3.6.5. Path following for Inter-Region Switching

Once the Wij is determined, the UAV moves from one AOI to another. The UAV
switches to the next AOI based on the traversal order and computed path. In the inter-
region path computation, no attention is paid to the coverage and it is assumed that the
UAV camera/scanner is off during the region’s switching. This work assumes zero-wind
scenarios, and that the UAV has the ability to follow the computed path with sufficient
accuracy. After switching to the AOI, the intra-regional path computing process begins as
explained earlier in Section 3.4.1. The intra-and inter-regional path computation process
carries on until the completion of all N AOI coverage. At the end, the Γ is returned, which is
the working path for the mission. The Γ is the combination of both inter-and intra-regional
paths which can be mathematically expressed as Equation (14).

Γ = {le, ζ1, W12, ζ2, W23, ζ3, W34, . . . , W(n−1)(n), ζn} (14)

where le is the path from vs to the first AOI, and ζi and W(i)(i+1) represent the intra-and
inter-regional paths, respectively. The Γ is a path for the full tour, and ensures the perfect
coverage of all AOIs with low cost switching between AOIs during the coverage mission.

4. Experimental Evaluation and Discussion

This section presents the experimental results obtained from various representative
scenarios, and their comparisons with the existing CPP algorithms. The improvements of
the proposed CPP algorithm were compared from two different perspectives, singular AOI,
and multiple AOI coverage. For the former case, the proposed algorithm’s effectiveness
was evaluated using four metrics; (i) the improvements in computation time, (ii) path
overlapping, (iii) path lengths, and (iv) the number of turning maneuvers. In the latter
case, its effectiveness was evaluated using two metrics; (i) the improvements in computing
time and (ii) path length. To benchmark our algorithm, we compared its results with a
decomposition-based CPP method named the CA-CPP algorithm [63], and a dynamic
programming-based CPP method named TSP-CPP [80]. The simulation results were
generated and compared on a PC running Microsoft Windows 10, with a CPU Intel Core
i5 with 2.6 GHz and 8.00 GB memory, using MATLAB version 9.8.0.1359463 (R2020a).
In simulations, both global constraints that are related to the operating environment
(i.e., urban environment in our study), and local constraints that are related to the UAV
configuration and structure were considered. The numerical/non-numerical values related
to both constraints are summarized in Table 2.
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Table 2. Numerical/Non-numerical values of the global (urban environment) and local (UAV itself) constraints.

Constraints Type Constraint Name
Constraints Values

Numerical Non-Numerical

Local

Wing span
UAV size

Steering angle
Wind’s affect

Available energy/battery
Footprint sweep’s width
Footprint sweep’s length

Maximum UAV flight height limits
Minimum UAV flight height limits

1 m
25 kg

π
6 radius

-
-

20 m
30 m

155 m
25 m

-
-
-

No-affect (zero-wind scenarios)
Sufficient for whole coverage mission

-
-
-
-

Global

UAV workspace
Obstacle’s geometry information
Obstacles’ placement and sizes

Safe distance from obstacles

-
-
-
-

10 m

Urban areas
Fully-known

Random
-

The performance comparisons of our algorithm are presented in the following sub-
sections.

4.1. Performance Comparisons of the Proposed CPP Algorithm in Singular AOI Coverage

The overview of the 3D maps used in the simulations experiments and an exemplary
coverage path computed by the proposed CPP are visually presented in Figure 12. We com-
pared our algorithm’s results with the existing CA-CPP method by (i) varying obstacles’
complexity and (ii) the shape of the AOI. The relevant details about the obtained results
are described in the respective subsections.

Figure 12. Path (i.e., the yellow line) from the square-shaped AOI located in an urban environment.
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4.1.1. Comparisons with the Existing CPP Algorithm Based on Obstacles’ Complexities

The obstacles’ number and their placement in an AOI significantly impact the per-
formance of any CPP algorithm. To validate the proposed CPP algorithm feasibility for
coverage missions in 3D urban environments, we compared our algorithm’s computing
time, path lengths, number of turning maneuvers, and path overlapping results with the
existing method using five maps with varying obstacles’ complexities. Obstacles’ complex-
ity is referred to as the density of the obstacles. The proposed CPP algorithm performance
is compared using three obstacles’ density values (e.g., low, medium, and high) on the
regularly shaped AOI. The complete description about the AOI sizes used in the simula-
tion experiments, obstacles’ densities, and average running time and path length result
comparisons of the proposed CPP algorithm are shown in Table 3.

In experimental evaluation, all obstacles were placed randomly in an AOI. If the obsta-
cles’ density is low, it means that AOI has a smaller number of obstacles, and consequently
most parts of the AOI can be traversed. In contrast, the AOI with the high density of
obstacles has fewer traversable parts, and the path overlapping can increase due to the
complex obstacle geometry. The areas with medium density have uniform distribution of
obstacles, and almost half of the spaces can be covered with the SFSs. The proposed CPP
algorithm does not decompose the AOI into blocks/cells which can lead to excessive path
overlapping and very high computing time in complex scenarios. Meanwhile, the CA-CPP
method [63] decomposes the AOI into cells and find a coverage path. This algorithms is
suitable for coverage missions, but the small-sized cells obtained through decomposition
can cause path length degradation. In most cases, the computing time increases expo-
nentially with the problem size (i.e., AOI size, and obstacles’ geometries). Our algorithm
incurs less computing time by using SFSs and SWG with the minimum nodes and edges to
accomplish the complete coverage task.

From the results, it can be observed that the computing time increases with an increase
in obstacles’ densities and the size of the AOI. However, the path length in each case
decrease with an increase in obstacles’ densities. Moreover, our algorithm shows a 20.09%
reduction in the computing time compared to the prior algorithm. From the path length
point of view, the proposed algorithm shows a 4.39% reduction compared to the CA-CPP
algorithm. Meanwhile, in some cases, when the environment complexity is low or the AOI
size is small (i.e., the first two cases), the CA-CPP algorithm yields the shortest length path
compared to the proposed algorithm. Meanwhile, as the AOI size and obstacle densities
increase, the performance of our algorithm improves on both metrics (i.e., computing time
and path lengths). The significant improvements in computing time and path lengths are
due to the sensor range-aware footprints’ sweeps fitting that guarantees maximal coverage
with fewer sweeps. Our algorithm’s path overlapping and turning maneuvers results with
the prior algorithm in each map (listed in Table 3) were compared, and corresponding
results and their comparison are shown in Table 4.

The proposed algorithm on average gives 7.92% and 5.34% improvements in path
overlapping and turning maneuver results compared to the prior algorithm on five different
maps of varying obstacle densities and AOI sizes. Furthermore, it ensures the coverage
ratio cratio of 1.0 that represents perfect coverage (i.e., 100%) of an AOI.
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Table 3. Description of the AOI and the proposed algorithm CPP results in comparison with the CA-CPP method.

Map id Area of Intrest Size Obstacles Density
CA-CPP Algorithm [63] Results Proposed-CPP Algorithm Results

Avg. Computing Time (s) Avg. Path Length (m) Avg. Computing Time (s) Avg. Path Length (m)

Map 1 500 × 600 × 300
Low

Medium
High

6.07
11.47
20.49

9518.08
8460.47
7609.68

5.04
9.58

17.01

9152.50
8135.40
7317.19

Map 2 1000 × 1200 × 300
Low

Medium
High

10.15
20.22
26.32

40,665.13
35,753.12
34,278.49

8.48
16.53
21.93

38,914.02
34,378.51
32,960.98

Map 3 1200 × 1400 × 300
Low

Medium
High

13.45
22.40
29.81

57,830.31
56,047.68
52,140.4

11.24
18.72
24.91

55,340.24
53,892.23
50,130.08

Map 4 1500 × 1500 × 400
Low

Medium
High

18.09
26.72
35.76

76,504.45
72,846.82
72,644.25

15.12
22.33
29.88

73,210.21
70,040.32
69,840.89

Map 5 2000 × 2000 × 400
Low

Medium
High

20.41
33.50
37.92

133,866.59
126,360.78
122,304.78

17.05
27.88
31.54

128,100.45
121,400.11
117,500.92

Table 4. Path overlapping comparison between three algorithms for the same area of interest.

Coverage Algorithms Evaluation Criteria
Map id (Area of Interest Size)

1 (500 × 600 × 300) 2 (1000 × 1200 × 300) 3 (1200 × 1400 × 300) 4 (1500 × 1500 × 400) 5 (2000 × 2000 × 400)

CA-CPP Algorithm [63] Avg. path overlapping (m)
Avg. number of turning maneuver

119.09
116

278.07
210

1090.15
223

1351.08
238

2079.11
318

Proposed CPP algorithm Avg. path overlapping (m)
Avg. number of turning maneuver

160.69
104

291.72
199

911.85
211

1223.02
227

1967.05
316
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4.1.2. Comparisons with the Prior CPP Algorithm Based on the Shape of the Area
of Interest

Besides the obstacle’s densities, the shape of the AOI is also a relevant factor that can
significantly impact performance of any CPP algorithm. CPP over a regularly shaped AOI
is relatively easier compared to that for an irregularly shaped AOI. In a regularly shaped
AOI, coverage can be performed with the help of a simple BF pattern. Moreover, in an
irregularly shaped AOI, the coverage requires concavity modification, and hybrid motion
patterns are needed to achieve full coverage. The CPP complexity varies with the shape of
the AOI, and to find a low-cost path obstacles’ geometry knowledge to the fine-grained
level is required. To this end, we compared our algorithm performance with the existing
methods over five different types of AOI. We performed rigorous experiments to verify
the algorithm performance in relation to the shape of the AOI. The average results of path
length, computation time, turning maneuvers, and path overlapping are shown in Table 5.

Through simulations and comparison with the prior algorithm using five distinct
shapes of the AOI, on average, our proposed algorithm reduces the computing time of
coverage path-finding by 19.24%. From a path length and path overlapping point of view,
it reduces path length by 3.90% and path overlapping by 10.77%, respectively. Additionally,
the proposed CPP algorithm reduces turning maneuvers by 9.26%. These results emphasize
the proposed algorithm’s effectiveness in all four criteria.

4.1.3. General Comparisons of the Proposed Algorithm with the Existing CPP Algorithms

Apart from the numerical result explained above, the proposed CPP algorithm has
several more advantages compared to the existing CPP methods. Four potential advantages
of the proposed CPP algorithm that can highlight the utility of our algorithm for practical
scenarios in urban environments are summarized below.

A. Compared with the previous solution in terms of the improved solution quality:
in the literature, several exact cellular decomposition-based algorithms employ the same
coverage direction in each subarea after decomposition of an AOI [16]. Using same coverage
direction in each subarea is highly inefficient when the map complexity is high. In contrast,
our CPP algorithm uses an alternate coverage direction by capturing the notion of free
spaces to achieve maximal coverage with fewer SFSs. Figure 13 shows the comparison of
two methods with the same and alternate coverage directions. Our algorithm fits sweeps
of longer lengths to achieve better coverage. Additionally, the proposed algorithm path
has the smallest number of turns and improved solution quality compared to the prior
algorithms which employ same coverage direction in each decomposed area.

Figure 13. Improved path quality using the alternate (b) coverage direction compared to same (a).

B. Compared with the previous solution in terms of transition distance between
subareas: Most decomposition-based methods involve two types of the optimization in
CPP: intra-cell and inter-cell [29]. In the latter optimization, it is desirable to consider
the exit point of the previous cell/subarea and entrance point of the next cell/subarea
simultaneously. However, most of the algorithms use pre-determined exits and entrance
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locations for subarea switching. Using the pre-determined entrance and exits locations
can reduce the length of a path inside each cell/subarea up to some extent. However, the
transition distance to switch from one subarea to another can increase drastically. Figure 14
shows the comparison of transition distance between subareas and the footprints’ sweeps
connection. The red line shows the transition distance for both methods. Our algorithm
shown in Figure 14b has a lower switching cost compared to the prior decomposition-based
methods Figure 14a. Furthermore, it has less path overlapping than existing CPP methods
in most cases.

Figure 14. Transition distance comparison between the proposed (b) and existing methods (a).

C. Compared with the previous solution in terms of the number of way-points: The
grid-based methods decompose the AOI into smaller grids of varying sizes and shapes [26].
Each grid can be either free or occupied by obstacles as shown in Figure 2b. Later, the graph
is constructed from the middle of the obstacle-free grids, and an optimization algorithm is
used to find the coverage path. The complexity of the CPP problem rises steadily with the
increase in the number of nodes and edges obtained through the grids. Figure 15 shows
the number of waypoints generated by our algorithm and existing grid-based methods for
the same size of the AOI. From the results, it can be observed that the proposed algorithm
has the smallest number of waypoints compared to the grid-based methods. Therefore, the
proposed algorithm has the least computational complexity.

Figure 15. Number of waypoints for the proposed method (a) compared to the grid-based methods (b).
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D. Compared with the previous solution in terms of perfect coverage of AOI: the
decomposition-based methods decompose the AOI into smaller cells of varying sizes/
shapes [64]. Each cell has distinct geometry as shown in Figure 16a. Depending upon
decomposition type, many traversable places of an AOI cannot be scanned fully if SFs
are not considered during CPP process. Hence, in most cases, the prior CPP algorithms
do not guarantee the coverage ratio cratio of 1.0 that refers to perfect coverage (i.e., 100%).
As shown in Figure 16a, some traversable parts are not covered by the BCDH-CPP [64].
However, our algorithm considers the SF on the ground from the desired UAV altitude.
Therefore, in most cases, our algorithm guarantees the coverage ratio Cratio of 1.0 (i.e.,
100%) of an AOI. From the results, it can be observed that our algorithm can achieve perfect
coverage of an AOI with fewer turns than the prior method. Therefore, the proposed CPP
algorithm has better utility for practical scenarios than the existing CPP methods.

Figure 16. Perfect coverage of the AOI with a path with fewer turns (b) compared to the decomposition-based methods (a).

4.2. Performance Comparisons of the Proposed CPP Algorithm in Multiple AOI Coverage

This subsection discuses the detailed results in multiple AOI coverage. Two metrics
computing time and path lengths are chosen to evaluate our algorithm effectiveness over
the existing algorithm in multiple CPP scenarios. The results are compared with the TSP-
CPP algorithm [80]; it is the only available algorithm until now for the coverage of multiple
regions. The overview of the 3D maps used in the experiments, and an exemplary coverage
path computed by the proposed CPP for covering multiple AOIs, is visually presented in
Figure 17. In Figure 17a, four rectangular-shaped AOIs are marked with the red boundary.
In Figure 17b, the green part shows the sensor scan on the ground, and blue lines represent
the upper portion of the sweeps from a certain altitude as shown in Figure 17b. The SWG
is shown in Figure 17c, which is obtained by connecting sweeps. Finally, the complete
coverage path obtained from four spatially distributed AOIs is sown in Figure 17d. In
the next subsections, our algorithm results were compared with the prior algorithm by (i)
varying AOI counts and (ii) the sizes of each AOI.
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(a) (b)

(c) (d)

Figure 17. Pictorial overview of the coverage path computed by the proposed CPP algorithm. (a) Overview of an urban
environment and the AOIs located in it. (b) Overview of the sensor’s footprints sweeps. (c) SWG obtained by connecting
footprints sweeps. (d) Complete coverage flight path for a UAV.

4.2.1. Comparisons with the Prior CPP Algorithm Based on Counts of the Area of Interest

The number of the AOIs can increase the complexity of the CPP algorithm due to the
inclusion of excessive operations/calculations. Furthermore, the obstacles’ presence and
their capricious placement in the AOI can further complicate the CPP process. To evaluate
the performance, the number of AOIs (i.e., regions) was varied, and five scenarios were
considered: (i.e., N = {2, 4, 6, 8, 10}). All AOIs are of the convex-polygonal shape, and
are randomly generated, not overlapping with each other. We evaluated the performance
via efficiency and optimality, and compared the results with TSP-CPP [80]. Although
the TSP-CPP algorithm [80] was tested on large number of regions, all the regions were
obstacle-free. The average computing time and path length results obtained from the
experiments are shown in Figure 18. These results are the average of five runs in each test.
From the results, it can be seen that our algorithm performs consistently better than the
TSP-CPP algorithm. Although both time and length increase with number of AOIs, our
algorithm reduces both metrics at the same time. Our algorithm, on average, reduces the
computing time by 20.99%, and path length by 9.10% than TSP-CPP algorithm. Beside the
improvements in numerical results, it has the least space complexity due to lesser SFSs.
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(a) Computing Time Comparisons
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Figure 18. (a): Computing Time: Proposed algorithm vs. TSP-CPP. (b): Path Lengths: Proposed algorithm vs. TSP-CPP.

4.2.2. Comparisons with the Prior CPP Algorithm Based on Sizes of the Area of Interest

The size of an AOI is an important factor in evaluating any CPP algorithm’s perfor-
mance. A small-sized AOI can be covered quickly, and vice versa. To this end, rigorous
comparisons were made by varying the sizes of the AOI in each test. Three scenarios
were considered regarding the variation of the sizes of the AOIs (i.e., regions): small-sized,
medium-sized, and large-sized AOI. In addition, we consider five scenarios: N = 2, N = 4,
N = 6, N = 8 and N = 10 of the AOI’s counts along with their sizes. The test results
obtained from the experiments, and their comparison with the TSP-CPP algorithm [80] are
shown in Table 6. From the results given in Table 6, it can be observed that both path length
and computing time increase with the increase in sizes and number of AOIs. Meanwhile,
our algorithm, on average, shows a 22.34% reduction in computing time compared to the
TSP-CPP algorithm [80]. From the path lengths point of view, it lowers the path length by
8.84% compared to the TSP-CPP algorithm [80]. Our algorithm performs poorly in the 1st
scenario, the main reason for this being the smaller amount of parameter setting for the
TSP-CPP algorithm and obstacle-free environment. With the increase in problem size (i.e.,
the number of AOIs and their sizes), the performance of our algorithm improves compared
to the TSP-CPP algorithm. These results emphasize the validity of the proposed algorithm
from a technical point of view.

The algebraic complexity of the CPP process increases explosively with increase in
the size of the AOI, counts of the AOI, shape of the AOI, number of obstacles, capricious
obstacle placement, and many other geometric constraints present in an AOI. However,
during experimental evaluation, the proposed algorithm yielded better results on most
objectives than the state-of-the-art algorithms. Furthermore, through solving the CPP
problem in a sequential manner and utilizing the concepts of informed search on SWG for
path computation, the memory consumption of the proposed algorithm is not very high.
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Table 5. Comparison of the proposed algorithm performance with varying shapes of the area of interest.

Coverage Algorithms Shape of the Area of Interest
Evaluation Criteria (s)

Avg. Path Length (m) Avg. Computing Time (s) Avg. Path Overlapping (m) Avg. Turning Maneuvers

CA-CPP Algorithm [63]

Square
Rectangle

Polygon (convex)
Polygon (non-convex)

Irregular

70,904.37
8451.67

52,000.22
55,824.41
48,762.62

28.36
13.84
22.03
32.21

21.205

1259.31
179.35
684.88
775.35
988.91

51
55
52
95

103

Proposed CPP Algorithm

Square
Rectangle

Polygon (convex)
Polygon (non-convex)

Irregular

67,220.92
7905.12

51,098.11
53,915.78
46,591.09

17.15
8.88
15.19
21.91
13.10

1041.22
164.09
614.04
701.05
948.31

35
45
47
79
84

Table 6. Computing time and path length comparisons between CPP algorithms by varying AOI sizes.

AOI Sizes Evaluation Criteria Coverage Algorithms
Number of the Areas of Interest (i.e., Regions) Located in Urban Environments

2 4 6 8 10

Small-sized Computing Time, Path Length TSP-CPP Algorithm [80]
Proposed CPP algorithm

2.9 s, 1505.32 m
3.27 s, 1519.92 m

11.76 s, 2039.56 m
8.52 s, 1921.12 m

18.25 s, 2832.23 m
13.67 s, 2532.23 m

27.32 s, 3656.23 m
19.32 s, 3023.45 m

35.81 s, 4123.45 m
25.21 s, 3412.34 m

Medium-sized Computing Time, Path Length TSP-CPP Algorithm [80]
Proposed CPP algorithm

5.69 s, 1815.12 m
6.27 s, 1829.12 m

16.61 s, 2409.06 m
12.32 s, 2321.02 m

26.59 s, 3372.13 m
20.56 s, 3052.23 m

39.72 s, 4506.21 m
30.92 s, 4003.15 m

55.01 s, 5313.95 m
41.28 s, 4902.14 m

Large-sized Computing Time, Path Length TSP-CPP Algorithm [80]
Proposed CPP algorithm

10.19 s, 2319.02 m
11.87 s, 2321.19 m

25.01 s, 2999.16 m
20.52 s, 2901.12 m

37.95 s, 4170.03 m
30.51 s, 3852.93 m

54.02 s, 5500.31 m
44.02 s, 5010.05 m

76.91 s, 7123.02 m
60.31 s, 6512.24 m
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5. Conclusions and Future Work

This paper has presented a coverage flight path planning algorithm for unmanned
aerial vehicle (UAV) navigation in order to cover spatially distributed and obstacle-
surrounded strewn areas of interest (AOIs) located in three-dimensional (3D) urban envi-
ronments with fixed obstacles. The main goals of the proposed algorithm are to reduce
the computational time and path length for the inter-regional path, and to reduce the com-
putational time, the number of turning maneuvers, and path overlapping while finding
a minimum length path that passes over all the reachable points of an area or volume
of interest for a UAV flying at lower altitudes in urban environments. To solve this chal-
lenging problem, the traversal order of each AOI in the form of a coarse tour (i.e., graph)
with the help of an ant colony optimization (ACO) algorithm was determined initially by
formulating it as a traveling salesman problem (TSP) from the center of each AOI, which
is subsequently optimized. The intra-regional path finding problem is solved with the
integration of fitting sensors’ footprints sweeps (SFS) and sparse waypoint graphs (SWG)
in the AOI. The proposed algorithm finds a global solution(e.g., an inter + intra-regional
path) without sacrificing the guarantees on the stated assertions. It yields comparatively
better performance on multiple objectives than existing algorithms. It is complete, effective,
and is applicable for a wide-range of practical applications in urban environments. To
the best of our knowledge, this is the first practical algorithm used to compute a low-cost
coverage path for spatially distributed AOIs in the urban environments inhabiting multiple
obstacles. Although the proposed CPP algorithm is directly inspired by the real-world
applications of UAVs, but rigorous testing and incorporating the applications constraints
(i.e., image resolution, AOI visiting priorities, UAV battery, and varying altitudes etc.) is
yet to be conducted. Furthermore, the algorithms test with distinct shapes of the AOI are
left for future work. In addition, during CPP at lower heights in urban environments, there
is a need to pay ample attention to hanging/thin obstacles (e.g., poles and electrical wires
in streets). Another set of parameters to be considered is wind/crosswind and wind/gust
(e.g., wind speed and direction), specifically when passing through tall buildings. Hence,
further analysis with these practical parameters is yet to be explored in future work. Finally,
authors intend to extend the proposed CPP algorithm for online CPP problems in large
and complex 3D urban environments for practical applications.
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