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Abstract: Aero-engines are faced with severe challenges of availability and reliability in the increasing
operation, and traditional gas path filtering diagnostic methods have limitations restricted by various
factors such as strong nonlinearity of the system and lack of critical sensor information. A method
based on the aerothermodynamic inverse model (AIM) is proposed to improve the adaptation
accuracy and fault diagnostic dynamic estimation response speed in this paper. Thermodynamic
mechanisms are utilized to develop AIM, and scaling factors are designed to be calculated iteratively
in the presence of measurement correction. In addition, the proposed method is implemented in
combination with compensation of the nonlinear filter for real-time estimation of health parameters
under the hypothesis of estimated dimensionality reduction. Simulations involved experimental
datasets revealed that the maximum average simulated error decreased from 13.73% to 0.46% through
adaptation. It was also shown that the dynamic estimated convergence time of the improved
diagnostic method reached 2.183 s decrease averagely without divergence compared to the traditional
diagnostic method. This paper demonstrates the proposed method has the capacity to generalize
aero-engine adaptation approaches and to achieve unbiased estimation with fast convergence in
performance diagnostic techniques.

Keywords: turbofan engine; aerothermodynamic inverse model; model adaptation; performance
diagnosis; estimation compensation; nonlinear filter

1. Introduction

Aero-engine is an aerothermodynamic system with a complicated structure and strong
nonlinearity. It works in harsh environments with high temperatures, high pressures
and high rotating speeds for extended periods of time, which results into the inevitable
degradation of components. Once the performance failure and abrupt malfunction occur
in the power plant of the flight vehicle, it causes substantial economic losses and has a
high probability of initiating catastrophic accidents [1]. Therefore, an effective maintenance
is essential to maintain a high level of availability and reliability of aero-engines. With
the development of engine health monitoring technologies, gas path fault diagnosis of
a component or a system has become an aera of interest in the field of flight propulsion
researches [2].

Aero-engine gas path fault diagnosis can be divided into three categories: model-
based approach, data-driven approach, and information fusion approach [3], wherein
model-based diagnostic method is a practical tool with respect to on-board implementation
considerations and low model complexity. The method depends on the thermodynamic
model of the aero-engine, and the modeling accuracy directly determines the diagnostic
effectiveness. Consequently, an accurate mathematical model plays a vital role in the
successful gas path diagnosis.
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Various adaptation techniques have been employed for the goal mentioned above.
Data-based adaptation methods such as neural networks [4,5] or function fitting [6,7] are
frequently applied to the generation of the engine component performance maps. However,
these methods require large amounts of experimental data that have limited availability due
to proprietary issues and liability. Another more commonly used method involves scaling
and shifting the shape of reference component maps to best match the engine model and
target measurement. Stamatis et al. defined a set of scaling factors to modify the component
maps iteratively to increase the performance model accuracy [8]. From this foundation,
Kong et al. distinguished operating conditions between the design point (DP) and off-
design (OD) points for independent modification based on system identification [9]. To
avoid blindness in the adaptation process, optimization algorithms have been implemented
extensively for the fittest solution among all potential solutions. Kong et al. used a genetic
algorithm (GA) to obtain more accurate component maps from experimental data [10].
Li et al. introduced quadratic function representing nonlinear scaling factors to produce
modifications for different speed lines using GA [11]. Tsoutsanis et al. considered rotation
of the ellipses and transformation of its coordinates, where the shape of a compressor
map was expressed by the mathematical equations of an ellipse with a fixed center and no
rotation [12]. The Nelder–Mead algorithm was implemented to ensure the minimum of the
objective function [13]. Nevertheless, the advantages and benefits of the above approaches
for performance adaptation are extensive. It is hard to trade off key parameters such as
accuracy, local optimum, and computational time.

The performance diagnosis of the aero-engine is a more challenging task with deep-
rooted and underlying problems, and it provides crucial support for the engine security,
reliability and economy. With the help of an accurate engine model, abundant technologies
relevant to model-based diagnosis are studied. Urban first introduced a gas path analysis
(GPA) method for a linear approximation at a certain operating point, and it can detect
different fault modes with a small quantity of fault coefficients [14]. Multiple diagnostic
systems based on GPA have been developed so far, such as TEMPER [15] and MAPNET [16].
In addition, Bai introduced a robust state estimation method with the internal searching
optimized by GA [17]. Brotherton et al. introduced a diagnostic method for the subset of
the health parameters against multicollinearity [18].

In recent decades, the Kalman filter (KF) has attracted much attention due to its
easy implementation and optimal estimation performance under a Gaussian white noise
environment. Linear KF (LKF) was used by Simon for gas path fault estimation with
constraints such as linear inequalities [19] and density functions [20] to improve accuracy
and stability. Nonlinear KFs, an extension of KF, developed rapidly in the application of the
nonlinear system. Several forms such as Extended KF (EKF) [21], Unscented KF (UKF) [22]
and Cubature KF (CKF) [23], had better state estimation accuracy for gas turbine engines
when compared to LKF [24–27]. Kobayashi used EKF for the performance parameter
estimation on a turbofan engine [28]. Dewallef studied online performance monitoring and
diagnostic technologies based on UKF [29]. Yang et al. proposed a hybrid KF to improve
the fault detection and isolation rates [30]. These previous works mainly focus on detecting
gas path fault depending on the statistical properties of parameter variations. In practical
engineering, the linearization of a strong nonlinear system cannot always approximate the
nonlinearity characteristic of the state equation, leading to the accumulation of estimated
errors even divergence with the flight cycles. The lack of critical sensor information
generates the diagnostic unreliability. Meanwhile, the nature and quantity of the health
parameters calculated at different sampling points may also change due to the change of
engine nonlinear features in the transient operating process. These primary problems are
the core elements generating high misdiagnosis incidences.

To address this dilemma, the main contribution of this paper proposes a novel method
with the capacity to refine model adaptation and performance diagnosis, and it is then
integrated into a thermodynamic model of turbofan engine in the development stage.
The component aerothermodynamic inverse model (AIM) is established to iteratively
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calculate measurement and characteristic scaling factors based on multiple experimental
data to improve performance prediction accuracy. Besides, due to measurement restrictions,
AIM can also be applied to gas path fault diagnostic with the assumption of estimated
dimensionality reduction for unbiased estimation. Seven health parameters can be obtained,
and compensation is provided using EKF according to the measurement residuals to achieve
the real-time diagnosis under transient conditions. The advantages of the proposed method
are that the modification achieves high-performance accuracy and low computational cost,
which can avoid trapping into local optimum like conventional optimization algorithms.
The sensor information also can be utilized adequately for unbiased estimation with fast
convergence in fault diagnosis in this method.

This paper is organized as follows: Section 2 introduces the establishment of com-
ponent AIMs to calculate scaling factors considering measurement correction for model
adaptation; Section 3 gives an introduction of computation of health parameters with the
compensation of EKF; a set of simulation cases are conducted in Section 4 to test the quality
of the proposed performance adaptation and diagnostic method, and Section 5 presents a
summary of the research.

2. Model Adaptation
2.1. Measurement Correction

A reliable engine model is the basis of a model-based diagnostic system. The model
accuracy is determined by the quality of the measurement. Unfortunately, measured
data are usually contaminated by sensor noise, disturbances, instrument degradation and
human errors [31]. Hence, measurement correction receives the highest priority during the
model adaptation.

The research of this paper focuses on a twin-spool turbofan engine, a reaction engine
utilizing high-speed gas flow to generate thrust according to Newton’s laws of motion.
The typical components of the engine contain an inlet, a fan, a high-pressure compressor
(HPC), a combustor, a high-pressure turbine (HPT), a low-pressure turbine (LPT), a mixing
chamber, a bypass, an afterburner, and a nozzle. The configuration of the engine is shown
in Figure 1, and the definition of each engine section numbers is listed in Table 1. The
turbofan engine has the prominent ability of the complicated structure and numerous
condition parameters. Due to the engine geometry construction restriction and hostile
operating environments, the parameters about combustor outlet section and HPT outlet
section cannot be measured directly. The measurable parameters in the test bench of engine
are nL, nH , P2, T2, P25, T25, P3, T3, P6, T6, P16 and T16. In addition, the engine control
parameters such as fuel flow rate (W f ), throat area (A8) and outlet area (A9) of the nozzle
can be obtained in the experiment.
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Table 1. Definition of engine section numbers.

Section Number Definition Section Number Definition

2 Fan inlet 6 Core outlet
25 HPC inlet 13 Bypass inlet
3 HPC outlet 16 Bypass outlet
4 Combustor outlet 65 Mixer outlet
45 HPT outlet 7 Nozzle inlet
5 LPT outlet 9 Nozzle outlet

Unlike engine component faults, which generally affect changes in a plurality of
measurements, the measurement error only results in a single sensor deviation [32]. The
case where multiple sensors simultaneously fail rarely occurs. One significant measurement
error is considered in this research for greater detection visibility and correction by the
appropriate measurement scaling factor cz defined in Equation (1).

cz = z/z′, (1)

where z is corrected measurement, and z′ is uncorrected measurement.
Measurement correction characterizes a sensor error compensation, assisting AIM to

achieve optimal and appropriate scaling factors to minimize the measurement errors.

2.2. AIM Establishment

The primary mission of AIM is to generate component characteristic parameters ac-
cording to the available measured parameters instead of the forward calculation method
of the conventional model. To simplify the engine modeling, the influence of combustion
delay and energy accumulation is ignored, and gas is assumed as a quasi-one-dimensional
flow. AIM is developed by using aerothermodynamic mechanisms for guaranteeing the en-
gine component matching condition. Its objective mainly contains compressor components,
a combustor and turbine components. Furthermore, the scaling factors are introduced in
a way to implement the model adaptation for quantitatively presentation the degree of
component performance deviation.

The following formula derivation takes no account of the engine bleed air system for
the sake of convenience. However, the establishment of AIM is an indispensable ingredient
to improve calculation accuracy in the practical application. It is worth mentioning that
there is no modification for proportion and structure of the air system in order to maintain
the original design in this research.

2.2.1. Compressor Component AIM

The compressor components contain the Fan and the HPC. Their operating principle
and modeling procedure are similar. The calculation process of the compressor component
AIM is shown in Figure 2. Based on the known pressure and temperature in the component
inlet and outlet section, the characteristic parameters are calculated as follows:

π = Pout/Pin
hin = fT2H(γin, Tin)
hout = fT2H(γout, Tout)
Sout = fT2S(γin, Tin) + lgπ
η = [ fS2H(γout, Sout)− hin]/(hout − hin)

, (2)

where fT2H denotes the function calculating the gas specific enthalpy from its temperature,
fT2S denotes the function calculating the gas specific entropy from its temperature, and
fH2S denotes the function calculating the gas specific entropy from its specific enthalpy.
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Assuming that the air mass flow of the compressor component has been determined
as an adjustment parameter, the consumption power can be calculated from Equation (3).

N = Win(hout − hin) (3)

The scaling factors are calculated to modify the compressor component characteristics:
ncor =

(
n/
√

Tin
)
/
(
nd/

√
Tin,d

)
cW =

WinPin,d
fmap,W (ncor ,π)Pin

√
Tin

Tin,d

cη = η/ fmap,η(ncor, π)

, (4)

where fmap,W and fmap,η denote the interpolation function of the performance map of mass
flow capacity and efficiency, respectively.

2.2.2. Combustor AIM

The combustor computes the stagnation temperature rise from a specified input fuel
flow. The combustor’s high temperature leads to outlet measurement difficulties. To
estimate characteristic parameters such as combustion efficiency, the components between
the inlet and mixing chamber can be viewed as a whole. The calculation principle is shown
in Figure 3, where adjustment parameters are indicated by dotted lines. The power balance
of the system can be described using the first law of thermodynamics. The basic equation
is expressed as

Nin − Nout = ∆U, (5)

where ∆U is the variation of the system internal energy. It is assumed no energy accumula-
tion in the modeling, ∆U = 0.
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In the hypothetical condition of the given Fan and HPC air mass flow (W2 and W25)
which are chosen as adjustment parameters in the compressor component AIM, combustion
efficiency is estimated:

ηb =
[
(W2 −W25) fT2H(γ16, T16) + (W25 + W f ) fT2H(γ6, T6)−W2 fT2H(γ2, T2)

]
/W f Hu, (6)

where Hu denotes the fuel heating value.
The combustor efficiency characteristic scaling factor is defined:

cη,b = ηb/ηb,d, (7)

The estimated combustion efficiency can be used to obtain the combustor outlet
parameters against the lack of sensors. The calculation process can be shown as follows:

h3 = fT2H(γ3, T3)

T4 = fH2T

(
γ4,

W f Huηb+W3h3
W f +W3

)
P4 = P3σb
W4 = W3 + W f

, (8)

where σb denotes the total pressure recovery coefficient without modification.

2.2.3. Turbine Component AIM

The turbine components contain the HPT and the LPT. Similarly, the turbine compo-
nents also suffer from the harsh environment of high temperatures. The parameters in the
section between the HPT and LPT is unmeasurable due to installation restrictions with
regards to sensors. In order to evaluate the operating condition of the turbine components,
the inlet parameters can be solved from the forward component. The calculation process
of the turbine component AIM is shown in Figure 4. Assuming that the expansion ratio
of the turbine component has been determined as an adjustment parameter, and the inlet
parameters can be obtained directly depending on the combustor AIM and air system. On
this basis, the outlet parameters are calculated according to the consumption power of the
compressor component located at the same shaft:

hin = fT2H(γin, Tin)
hout = hin − (N + Nex + ∆N)/ηmWin
Sout = fT2S(γin, Tin)− lgπ
η = (hin − hout)/[hin − fS2H(γout, Sout)]
Pout = Pin/π
Tout = fH2T(γout, hout)

, (9)

where ηm denotes the shaft mechanical efficiency, Nex denotes the extraction power, and
∆N denotes the excess power. In common, the model adaptation is procedured at the
steady-state condition, so ∆N = 0.
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The characteristic scaling factors of the turbine components are defined in Equation (10),
which are consistent with those of the compressor components.{

cW =
WinPin,d

fmap,W (ncor ,π)Pin

√
Tin

Tin,d

cη = η/ fmap,η(ncor, π)
, (10)

2.3. Scaling Factor Calculation

The goal of the model adaptation is to make the engine model outputs approximating
the measured data by the estimated scaling factors. The component AIM established above
can calculate the scaling factors directly without any iteration. However, the compressor
component air mass flow and turbine component expansion ratio are uncertain, causing
that AIM cannot perform the normal calculation. The adjustment parameters λ are set to
seek for the potential truth values through iteration.

λ = [W2, W25, πHT , πLT ] (11)

Depending on the given adjustment parameters, the convergence target is co-determined
by the model simulated errors and engine aerodynamic matching. The objective functions
are shown as follows:

F = [F1, F2, F3, F4] =

[(
Ps,16

Ps,6
− 1
)

,
(

W7

W9
− 1
)

,

(
P6

P6,re f
− 1

)
,

(
T6

T6,re f
− 1

)]
, (12)

where F1 denote the static pressure balance of the mixing chamber model without con-
sideration of mixing losses, F2 denote the flow balance of the nozzle model, and both F3
and F4 denote the comparisons between simulated values and measured values. Ps,16,
Ps,6, W7 and W9 can be obtained through conventional models of the mixing chamber,
the afterburner and the nozzle. The subscript re f denotes the reference value of the
measurement parameter.

The numerical solution method is used to minimize the residual errors of the objective
functions. In addition, measurement correction needs to be included in the iteration process
to update the measured parameters and characteristic scaling factors simultaneously. The
measurement correction can act on arbitrary sensors based on the hypothesis of only one
sensor fault in this research. The scaling factors are totally listed in Table 2.

Table 2. List of to-be-calculated scaling factors.

Objectives Scaling Factors

Fan cW cη

HPC cW cη

Combustor cη

HPT cW cη

LPT cW cη

Measurement cη

The calculation process is shown in Figure 5, and the system of AIM follows the princi-
ple of the forward-to-rear gas path computation sequence. For the individual components,
the grey block represents AIM, and the white block represents the forward calculation
model. Using the experimental data, the characteristic parameters can be estimated from
Section 2.2. The objective function values containing simulated errors and model resid-
uals are obtained with the initial guess adjustment parameters. The numerical solution
method is applied to tune adjustment parameters through iterations until F reaches a
minimum. However, the required precision may not be achieved only by the change of
adjustment parameters, due to the uncertain inaccuracy of the sensors. The measurement
correction needs to be performed for superior matching between the simulated values and
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the measured values. The measurement scaling factors are calculated for the modification
of certain experimental parameters. The original objective function will not converge after
measurement correction. AIM needs to enter a new iteration for the re-adaptation. Once
both F3 and F4 are less than a very small value ε set in advance, it yields the minimum of F
and the model adaptation stops. The characteristic and measurement scaling factors are
recorded for the update of the on-board engine model.
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3. Performance Diagnosis

An additional application feature of the proposed method is not only tested for
the model adaptation, but also extends the investigation into the performance diagnosis.
According to the accurate engine model modified in the model adaptation, performance
diagnosis is researched for gas path fault detection during the entire flight cycles.

3.1. Estimated Dimensionality Reduction

An aero-engine is an extraordinarily complicated and highly nonlinear aerothermo-
dynamic system. Its performance varies with increasing operating time and the variance
is usually caused by component degeneration and malfunction. Health parameters are
defined to evaluate the variation of the efficiency and flow capacity of components to reflect
the magnitude of deterioration [25]. In general, any aero-engine model can be simply
expressed as follows: {

xk+1 = f (xk, uk) + wk
zk = h(xk, uk) + vk

, (13)

where f () denotes the process nonlinear vector function, h() denotes the observation
nonlinear vector function, k is the time index, u denotes the control input vector, z denotes
the measured output vector. w and v denotes the unrelated process noise and measurement
noise, respectively. x denotes the state vector, which represents the health condition of
the engine. The deterioration of components generates inevitable performance deviations
during the entire operating cycle. The typical feature of these degradations occurs in four
rotating components, namely, Fan, HPC, HPT and LPT. Consequently, x can be expressed
by Equation (14).

x = [SW1, SE1, SW2, SE2, SW3, SE3, SW4, SE4], (14)

where the health parameters SW and SE denote the flow capacity and the efficiency,
respectively, which are defined in Equation (15). The subscripts 1, 2, 3, 4 denote Fan, HPC,
HPT and LPT, respectively. {

SW = W/W∗

SE = η/η∗
, (15)
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where W and W∗ denote the degraded and ideal flow capacity, η and η∗ denote the
degraded and ideal efficiency, respectively. It can be noted that scaling factors and health
parameters are similar in the habitual form of expression, but their inherent significance
and application scenarios are fundamentally different.

The problems of performance diagnosis have motivated various researchers to explore
alternative methods of estimating health parameters. Nevertheless, in most cases, the
difficulty of unbiased estimation has proved immense due to the lack of crucial sensor
information. The mismatching of the dimensionality between the state vector and the
measured output vector which is underdetermined leads to the inaccurate estimation. The
improved research was performed to explain the mechanism and features in causing this
problem simply [33]. In the Reference [33], a sensitivity analysis was carried out through
the condition number of the deviation matrix. For a deviation matrix Ψ with respect to
disturbance of health parameters injected into the engine model, the condition number is
defined in Equation (16). The condition number characterizes the sensitivity of the matrix
calculation to errors. Generally, a matrix with a large condition number has several vectors
with strong relativity. The simulation showed the absence of the pressure sensor between
the HPT and the LPT could lead to an improper diagnosis. The dimension reduction of
the state vector is an efficient approach aimed at addressing this issue. According to the
Reference [34], the degradation values for health parameters due to usage and aging are
listed in Table 3 from the MAPSS simulation platform. From Table 3, the variation of the
LPT flow capacity health parameter is not evident with the increasing flight cycles. Hence,
the estimation of SW4 is ignored in this research and state vector is revised in Equation (17).

cond(Ψ) = τmax/τmin, (16)

where τmax and τmin are the maximum and minimum singular values of Ψ, respectively.

x = [SW1, SE1, SW2, SE2, SW3, SE3, SE4] (17)

Table 3. Degradation values for health parameters provided from MAPSS [34].

Flight
Cycles

Fan LPC HPC HPT LPT

η(%) W(%) η(%) W(%) η(%) W(%) η(%) W(%) η(%) W(%)

0 0 0 0 0 0 0 0 0 0 0
3000 −1.5 −2.04 −1.46 −2.08 −2.94 −3.91 −2.63 1.76 −0.54 0.26
6000 −2.18 −2.85 −2.04 −3.04 −6.17 −8.99 −3.22 2.17 −0.81 0.34
9000 −2.85 −3.65 −2.61 −4.00 −9.40 −14.06 −3.81 2.57 −1.08 0.42

3.2. Health Parameters Estimation

The real-time performance diagnostics is crucial to help third-party users of the engine
to monitor the operating condition. However, obtaining high quality steady-state data
has proven to be difficult, and diagnosing the health of an aero-engine might be based
on the transient data [35]. This section focuses on the formulation of the performance
diagnosis based on AIM. Instead of the model adaptation in Section 2 aiming at the steady-
state accuracy improvement of the engine model, the performance diagnosis emphasizes
real-time estimation of health parameters during the entire operating cycle. The excess
power in Equation (9) varies in the transient condition of the aero-engine. The theory of
rotor dynamics is used to calculate the excess power according to the measured data of the
rotating speed [36]:

∆N = Jn
dn
dt

( π

30

)2
, (18)

where J denotes the rotational inertia, which is simplified to a constant value regardless of
the degradation and extreme conditions. The derivative of the rotating speed dn/dt can be
solved by the Euler method.
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AIM can track the dynamic behavior of the aero-engine by Equation (18). However,
the signal of the speed sensors contains the contamination of measurement noise. The
rotor dynamics equation enhances the influence of the noise while calculating the excess
power, and it causes the sacrifice of the estimation accuracy. The linear tracking differen-
tiator with high speed in the whole course is then employed on the measured data of the
rotating speed [37].

The calculation method of health parameters is consistent with the characteristic
scaling factors in principle. Due to the dimensionality reduction of estimated param-
eters in Section 3.1, slight variations of AIM should be processed as follows. The non-
estimation of SW4 reduces the quantity of the adjustment parameters and changes the
computation manners.

λ = [W2, W25, πLT ] (19)

AIMs of the Fan, HPC, combustor, HPT and LPT, follow the original operation mode.
Different from the model adaptation, the expansion ratio of the HPT in the performance
diagnosis can be calculated in Equation (20) through πLT and the measured data P6. All the
health parameters can be estimated directly with the corresponding adjustment parameters.
Since the information of the sensors about mixing chamber inlet section has been employed
in the inverse modeling, the objective functions F3 and F4 are not applicable anymore. To
achieve the dimensionality matching between the adjustment parameters and objective
functions. The flow balance equation is established as Equation (21) for objective functions,
in allusion to the flow continuity of the turbine.

πHT = P4σd/P6πLT , (20)

F3 = W45/ fmap,W(ncor,LT , πLT)− 1, (21)

where σd denotes the total pressure recovery coefficient of the duct between the LPT and
the mixing chamber.

In the end, the numerical method is used to solve the nonlinear equations with three
variables. It is worth mentioning that the measurement correction scaling factor needs to
maintain the value calculated in the model adaptation unchanged.

3.3. Estimation Compensation

The basic idea of model-based diagnostic method is to obtain the system transient
procedure and state parameters, depending on a sufficient precise mathematical model. In
the traditional theory, health parameters can be estimated by various KFs, along with the
constraint tuning on the basis of measurement residuals. Nevertheless, AIM in this research
employs physical measurement values directly, instead of the deviations between the on-
board model and measurement in the conventional approaches. The diagnostic effect can
weaken on account of uncertain factors in practical, even if the component characteristics
have been modified to improve the simulated accuracy in the model adaptation. For
the problem mentioned above, EKF is used for the estimation compensation of health
parameters to monitor the measurement residuals online and accelerate dynamic estimation
response speed in this research. The recursion formula of the EKF can be expressed as:

x̂k|k−1 = f (x̂k−1, uk−1)

Pk|k−1 = APk−1 AT + Qk−1

Kk = Pk|k−1CT
(

CPk|k−1CT + Rk

)−1

x̂k = x̂k|k−1 + Kk

[
zk − h

(
x̂k|k−1, uk−1

)]
Pk = (I − KkC)Pk|k−1

, (22)

where Q and R denote the covariance matrices of process noise and measurement noise,
respectively, and Qk−1 = E(wk−1wk−1

T), Rk = E(vkvk
T). x̂k|k−1 indicates the estimation of

xk at time k based on the information available up to and including time k− 1, K denotes
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the Kalman gain matrix, and Pk|k−1 denotes the forecast error covariance. A and C are the
Jacobian matrixes which can be calculated in Equation (23). A =

∂ f (xk−1,uk−1)
∂xk−1

C =
∂h(xk|k−1,uk−1)

∂xk

(23)

The complete process of the performance diagnosis is illustrated in Figure 6. First,
the measured data are gathered for AIM to obtain the preliminary estimation of health
parameters x0 by iterative computation. The quality of this set of health parameters can
be assessed according to the on-board engine model. The magnitude of the value can
determine the approximation between the simulated output y and measurement z. Two
different strategies for parallelism are then carried out depending on the residuals (z− y). If
|z− y| exceeds a very small pre-set value, the EKF will work synchronously to estimate the
compensation ∆x of health parameters online from (z− y). The consolidation of the output
of these two estimators (x0 +∆x) can reduce performance deviations of the on-board engine
model further. Otherwise, once the accuracy is met, x0 from AIM can directly represent
the degradation of the actual engine. The final estimated health parameters x of the entire
diagnostic system can be expressed in Equation (24). As shown in Figure 6, red and green
lines represent two different operating circuits, leading to different estimated values. It can
be noted that the three constituents of the system (AIM, the EKF and the on-board engine
model) are performed without affecting the internal operation of each other.{

x = x0 + ∆x |z− y| > ε
x = x0 |z− y| ≤ ε

(24)Aerospace 2022, 9, x FOR PEER REVIEW 12 of 21 
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To clearly illustrate the proposed diagnostic method, a distribution diagram of the
estimated health degradation at each sampling time step is shown in Figure 7. In the



Aerospace 2022, 9, 16 12 of 21

process of gradual approximation from the initial state to the actual state at a transient
condition, the estimated value of AIM plays a dominant role as a baseline. The EKF
provides additional compensation to improve the dynamic tracking effects on this basis.
Therefore, combining these two approaches can further enhance the estimation response
speed of the health parameters in the entire performance diagnostic system.
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4. Simulation and Analysis

To verify the proposed method, the model adaptation and performance diagnostic
simulations are carried out, based on the aircraft turbofan engine model [38]. The former
case is tested for steady-state operation at the normal condition, and the latter case is tested
for transient operation at degraded status.

4.1. Model Adaptation Simulation

The objective of the first case study is to test the quality of the proposed model
adaptation scheme under healthy steady-state conditions. The experimental data, which is
the proprietary information of engine manufacturers, is provided to improve the accuracy
of the engine model as the modification baseline.

Assuming that a potential problem may consist in the measured data of T6, the
measurement correction needs to work during the iteration according to the evaluation of
experimental data. Under the ambient conditions (P2 = 100.5 kPa, T2 = 275 K), the control
parameters are listed in Table 4. All the parameters are processed in the data normalization
according to their maximum value under the standard condition. The sampling frequency
is 40 Hz. The variation of the adjustment parameters can be seen clearly as the relative non-
dimensional rotating speed drops, and the value of the adjustment parameters decrease
in Figure 8. Due to the critical condition of the HPT at high speeds, the value of πHT
remains almost unchanged. The estimated scaling factor can be shown in Figure 9. The
value of the measurement scaling factor approximates to 1.034. All the scaling factors are
distributed in the interval of 0.8 to 1.15. Once the values are either considerably bigger
or smaller than unity, a significant variant of component characteristics will occur, which
reflects the deviation of accuracy between the original model and the actual engine. As the
rotational speed changes, the flow capacity characteristic scaling factors of the compressor
components have a wider range of distribution than those of the turbine components. This
may stem from how Fan and HPC conditions principally restrict the inner and outer bypass
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airflow. The operation points distributed in the performance maps of π versus W emerge
widely. In addition, the scaling factors are non-monotonic with increasing rotational speed,
which indicates the difference of the tendency between the design characteristic and the
actual behavior for the components.

Table 4. Control parameters of the model input.

Point 1 2 3 4 5 6 7

W f (%) 7.05 23.25 27.10 58.92 67.97 79.45 84.41
A8 (%) 100.00 50.00 50.00 50.00 50.00 50.00 50.00
A9 (%) 100.00 54.67 54.67 54.67 54.67 54.67 54.67
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After the implementation of the model update with estimated scaling factors, Table 5
presents the simulated errors compared with experimental data before and after the model
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adaptation. The seven operation points are arranged in sequence from the low to high
condition of aero-engine. Point 1 of the original model has the worst accuracy on behalf
of the idle state. In general, Excessive errors of DP indicate a significant deviation of the
entire component characteristic from “actual” performance, which leads to more difficulties
for reducing errors at OD points. Consequently, the points approaching the design point
need to be modified with top priorities. On this basis, the scaling factors at other points
can be estimated at low levels. It can be seen in Table 5 that substantial improvements on
performance accuracy occur after the adaptation. The maximum absolute error decreases
from 33.31% to 1.53%. In order to better evaluate the overall quality of the proposed method,
the average simulated error is introduced and expressed in Equation (25). Figure 10 presents
the comparison of the average errors. The white bars represent the outputs of the original
model, and the red bars represent the ones of the modified model. The apparent reduction
in magnitude can be seen, and the maximum average simulated error decreases from
13.73% to 0.46%.

EAVE =
1
m

m

∑
i=1

|yi − zi|
zi

, (25)

where m denotes the number of OD points and subscript i denotes the i-th sampling point.

Table 5. Simulated errors compared with experimental data before and after model adaptation (%).

Point nL nH T25 P25 T3 P3 T6 P6 T16 P16

Original
model

1 −14.76 −12.07 −4.51 −11.98 −12.04 −33.31 7.88 −0.61 −1.43 −6.43
2 −10.96 −1.60 −3.53 −4.00 −4.94 −13.32 10.73 0.77 −2.69 −1.20
3 −9.22 −1.87 −3.48 −4.18 −4.62 −13.49 11.21 1.35 −2.94 −1.29
4 −1.80 0.11 −0.93 0.61 −1.97 −9.41 11.01 3.16 −3.02 2.28
5 −1.87 0.36 −0.38 1.70 −1.49 −9.17 11.74 3.32 −2.37 2.97
6 −2.10 1.07 0.28 2.23 −1.16 −8.84 11.56 3.06 −2.04 3.24
7 −1.73 0.86 −0.03 2.64 −1.56 −8.59 10.87 3.67 −1.95 3.80

Modified
model

1 1.53 −0.25 −0.12 −0.38 −0.03 −0.18 0.23 −1.24 −0.09 1.01
2 −0.48 −0.07 −0.15 −0.44 −0.15 −0.46 0.35 0.39 −0.19 −0.26
3 −0.27 −0.09 −0.21 −0.72 −0.19 −0.76 0.57 0.20 −0.24 −0.13
4 0.01 0.18 −0.10 −0.33 −0.05 −0.09 −0.02 0.08 −0.61 −0.11
5 −0.11 0.16 −0.06 −0.24 −0.02 −0.10 0.02 −0.01 −0.52 −0.25
6 −0.17 0.16 −0.06 −0.17 −0.02 −0.04 0.04 0.00 −0.80 −0.12
7 −0.07 0.14 −0.05 −0.14 −0.01 −0.02 0.06 0.01 −0.81 −0.18
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The improved accuracy of the model adaptation indicates that it can be applied to
explore its implementation and testing for the performance diagnosis, which is described
in Section 4.2.

4.2. Performance Diagnostic Simulation

The objective of the second case study is to test the proposed method for the perfor-
mance diagnosis, and the traditional EKF-based gas path diagnostic method is compared.
The modified engine model approaching the behavior of the actual engine is chosen as
the on-board engine model. The reference engine is a similar model representing the
actual engine to generate measured data. To simulate the degraded condition, the rotating
components of the reference engine are injected with an abrupt failure, by the statistical
data of changes after a certain number of the operating cycles in Table 3.

The situation of single-component failures is considered first. The simulation with
abrupt faults in an individual component is performed under different operating points in
the envelope from Figures 11–13. Three cases are selected, denoted as Case 1 (H = 0 km,
Ma = 0, nH,cor = 100%, Fan fails), Case 2 (H = 4 km, Ma = 0.3, nH,cor = 98%, HPC fails),
Case 3 (H = 11 km, Ma = 0.8, nH,cor = 97%, HPT fails), respectively. Due to the random
noise in the entire process, the figures are plotted every five sampling points for more
convenient views. The Root Mean Square Error (RMSE) is used to evaluate the estimation
effect in quantitative terms.

ERMSE =
1

M2

M2

∑
j=1

√√√√ 1
M1

M1

∑
i=1

(xij − x̂ij)
2, (26)

where M1 is the number of the sampling points and M2 is the number of the estimated
health parameters, x and x̂ is the injected value and the estimated value of health parame-
ters, respectively.
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As can be observed in Figures 11–13, the proposed method gives an apparent superior
performance in the diagnosis for a dynamic transient response when an abrupt failure
occurs in the single component. In addition, Cases 2–3 show that multiple estimated
health parameters of the traditional method diverge under the transient condition, even
the steady-state condition of the engine. It indicates that the traditional method cannot
eliminate the parameter coupling, particularly in the turbine fault diagnosis in the absence
of sensors between the HPT and the LPT, even if the estimated dimensionality is reduced
correspondingly. However, an unbiased estimation with fast convergence is achieved
through the proposed method. The RMSEs of the traditional method are separately 0.0199,
0.0457 and 0.0460 in Case 1, Case 2 and Case 3, and the RMSEs of the proposed method
are 0.0175, 0.0253, 0.01991. Otherwise, the dynamic estimated convergence time of the
traditional method are 2.050 s, 2.750 s and 3.375 s, and the time of the proposed method
are 0.250 s, 0.625 s, and 0.750 s in Case 1, Case 2 and Case 3. It indicates that the dynamic
estimated convergence time of the improved method decreases 2.183 s averagely without
divergence. In short, a significant improvement of the estimation accuracy and dynamic
convergence rates can be obtained. Therefore, it shows that the proposed method based on
AIM is more appropriate for the single-component fault diagnosis.

To describe the operating mechanism of the proposed diagnostic approach, local
analysis graphs are illustrated in Figures 14–16, which use the SW in Cases 1–3 as an
example. The simulation process from fault injecting to diagnostic converging is also
chosen. It can be obviously seen that the proportion of the estimation values of AIM plays
a significant role in health parameters, and EKF provides auxiliary support to decrease the
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deviations. In addition, EKF is not running at every sampling time. EKF works mainly
during the time frame when an abrupt failure occurs in the HPT to accelerate dynamic
estimation response speed.
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The concurrent degradation of multiple components is a more challenging task for any
diagnostic scheme. In order to test the proposed performance diagnostic method, multiple
random faults are injected into each component. Figure 17 illustrates the comparison of the
traditional and improved method for the multiple abrupt component malfunction. Based
on Figure 17 that the phenomenon of coupling and divergence for the estimated health
parameters further persists in the traditional EKF-based method. Under the circumstance
of large measurement residuals, the multiplicity of solutions occurs in the process of the
estimation of the EKF, especially with missing crucial sensor information. However, the
high-quality diagnostic results of the proposed method can still be obtained. The leading
causes lie in the sufficient and effective utilization information of AIM for the preliminary
estimation. On this basis, the slight variation can be calculated by the EKF as compensation
in the case of the minor measurement residuals, which will not lead to inappropriate
deviations. The RMSEs of the traditional and proposed methods are 0.0569 and 0.0227,
respectively. In summary, this illustrates the superiority of the proposed performance
adaptation and diagnostic approach.
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5. Conclusions

For aero-engine performance diagnosis, there are two major challenges that are difficult
to be addressed. The first is that the inaccuracy on-board model causes the accumulation
of estimated errors. The second is the lack of critical sensor information generates the
divergence of diagnostic approaches.

The quest to solve above problems is divided into two steps. The first step develops a
new model adaptation method with respect to the twin-spool turbofan engine, which aims
to improve the accuracy of the on-board engine model under steady-state conditions. AIMs
of components are established to calculate the characteristic scaling factors. Considering
the measurement correction, adjustment parameters are solved iteratively through the
numerical solution for the engine aerodynamic matching and the accuracy improvement.
The second step is an extension of the application of AIM on the performance diagnosis.
The estimation dimensionality is reduced for unbiased estimation due to missing sensors
between the HPT and the LPT. The theory of the rotor dynamics and modifications are
integrated into the model adaptation system for the real-time gas path fault diagnosis under
transient conditions. Based on the health parameters estimated from AIM, an auxiliary
strategy is designed where the EKF is used for the estimation compensation to minimize the
measurement residuals. With this in hand, a novel performance adaptation and diagnostic
method for aero-engines based on AIM is proposed.
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A series of simulation cases demonstrate that scaling factors can be obtained to modify
the engine model to match the experimental data in the model adaptation system. In addi-
tion, under the circumstances of the single-component and multiple-component abrupt
malfunction, the proposed method can achieve an unbiased estimation with fast conver-
gence and significant accuracy improvement compared against the traditional EKF-based
diagnostic method. The tests demonstrate that the proposed method exhibits the effective
capacity of adaptation and diagnosis for aero-engines.
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Nomenclature

Notations
P Pressure c Scaling factor
T Temperature n Rotating speed
W Mass flow rate z Measurement
π Pressure ratio F Objective function
η Efficiency γ Fuel-air ratio
h Specific enthalpy U Internal energy
S Specific entropy λ Adjustment parameter
N Power J Rotational inertia
x State vector u Input vector
y Output vector w Process noise
v Measurement noise Ψ Deviation matrix
τ Singular value K Kalman gain matrix
A Jacobian matrix C Jacobian matrix
ε Pre-set value σ Recovery coefficient
Subscripts
in Component inlet cor Corrected
out Component outlet d Design point
s Static H High-pressure shaft
F Fan L Low-pressure shaft
C HPC f Fuel flow
b Combustor z Measurement
HT HPT W Mass flow rate
LT LPT η Efficiency
k Time index i Sampling point
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